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Numerical Simulation of Multi-Phase Flows

Karsten Pruess

Earth Sciences Division
Lawrence Berkeley National Laboratory

Outline

• Fundamentals of multiphase, nonisothermal 
flows

• Numerical simulation

• Hands-on use of TOUGH2

occurrence, physics, mathematical model

general approach: space and time discretization, 
TOUGH2: methods, architecture, input data

illustrative applications and sample problems, 
problem variations
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Phases and Components

• Homogeneous continuum
• Thermophysical properties (density, 

viscosity, specific enthalpy) vary 
slowly and continuously with position

• May consist of one or more chemical 
components

• Examples: aqueous phase, non-aqueous 
(oil) phase, gas, solid

• In a closed system, amount of different 
phases present may change

• Phase change usually involves 
substantial heat effects

• Chemical species
• Can be present in several different phases
• Examples: H2O, NaCl, CO2, CnH2n+2,...
• Distribution of components among 

phases is determined by chemical 
potential, kinetics

• All components in a phase flow together
• In a closed system, components are 

conserved (except for chemical reactions)

Phases Components

Gibbs’ phase rule: f  =  NK + 2 - NPH

In a system with NPH phases, have NPH-1 phase saturations:

Number of degreees of freedom is then f+NPH-1 = NK+1

Sβ
β=1

NPH

∑ =1

Multiphase Flow Systems

alkanes, aromatics, solutes

CH4, ...
water, solutes

oil
gas
aqueous

oil reservoir

CH4, CO2, water vapor

water, solutes
gas
aqueous

gas reservoir

water, solutes
air, vapor, CO2, ...
VOCs, water, air

aqueous
gas
NAPL

vadose zone

water, solutesaqueousgroundwater aquifer

ComponentsPhasesFlow System
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Storage: the amount of mass present in a unit 
volume of the flow system

Pore volume:   φ
Volume of phase β:   φSβ

Mass of a single phase: M = φρ
Mass of component κ in that phase: Mκ = φρXκ

Mass of phase β:   Mβ = φSβρβ
Mass of component κ in phase β:  

Total mass of component κ in all phases:

Total mass of component κ in volume V:   

Mβ
κ = φSβρβXβ

κ

Mκ = φ SβρβXβ
κ

β

∑

Mκ dV
V
∫

Darcy's Law (Henri Darcy, 1856)

²x

P1
P1  + ²P

Analogy to Ohm’s law: I =
∆U
R

k - permeability (m2), 1 darcy ≈ 10-12 m2

I ≡ F ∆U ≡ ∆P R ≡
∆x

k ρ µ( )

F = −k ρ
µ

∆P
∆x

= uρ

P1

∆x

P1 + ∆P
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F = −k ρ
µ

∇P − ρg( )

u = −
k
µ

∇P − ρg( )

Fluid Flux in 3-D

Fx

Fy

Fz

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

= −k ρ
µ

∆P ∆x
∆P ∆y

∆P ∆z+ρg

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

Pore Velocity

v u = φv

v = u / φ
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Multiphase Flow

• phases: β = liquid, gas
• relative permeability:
• phase pressure:
• capillary pressure:

Fβ = −k
krβ ρβ

µβ

∇Pβ − ρβg( )

krβ

Pcap = Pgas - Pliq

Pβ = P ref − Pcap

Relative Permeability
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Relative Permeability
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Capillary Pressure

h =
2σcos γ

ρgR

Pcap = ρgh =
2σcos γ

R

water
σ(T = 20 ˚C) ≈ 0.073 N/m; cos γ ≈ 1

for R = 1 µm = 10-6 m have 
Pcap ≈ 1.46x105 Pa = 1.46 bar

σ(T = 250 ˚C) ≈ 0.026 N/m
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Capillary Pressure in Porous Media

air entry
pressure

Mass Transport
• fluid mixtures: solutes, non-condensible gases (water, 

NaCl, CO2, other solutes and NCGs)
• advective mass flux in two-phase system

• diffusion

• hydrodynamic dispersion

F κ = Xg
κFg + Xl

κFl

fβ
κ = −φ τ0 τβ ρβ dβ

κ∇Xβ
κ

change of fluid 
mass in volume V

mass of fluid 
entering V

mass of fluid 
leaving V

= -

Mass conservation (mass balance)
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Mass Balance

change in fluid  
mass in volume V  = net fluid inflow across

surface of V + net gain of fluid from
sinks and sources  

d
dt

Mκ dV = F κ •n dΓ + qκdV
V
∫

Γ
∫

V
∫

M - “accumulation term” F - “flow (or flux) term” q - “sink/source term”

Gauss’ (divergence) theorem

F κ •n dΓ =
Γ
∫ − divFκ dV

V
∫

==> ∂
∂t

Mκ + divF κ⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

dV = 0
V
∫ ∂

∂t
Mκ + divFκ = 0==> 

single-phase, single component

M = φρ

∂
∂t

φρ( ) = ρ
∂φ
∂t

+ φ
∂ρ
∂t

= ρ
dφ
dP

+ φ
dρ
dP

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
∂P
∂t

= φρ
1
φ

dφ
dP

+
1
ρ

dρ
dP

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
∂P
∂t

= φρ cφ + cρ( )∂P
∂t

= φρc ∂P
∂t

divF ≈ − k ρ
µ

∆PF = − k ρ
µ

∇P
∂
∂t

M = − divF

∂P
∂t

=
k

φcµ
∆P diffusion equation with diffusivity D =

k
φcµ

“partial differential equation” (PDE)

==>
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single-phase, two component
∂
∂t

Mκ = − divFκ
Mκ = φρXκ F κ = − k ρ

µ
Xκ ∇P = uρXκ

∂
∂t

φρC( ) ≈ φρ
∂C
∂t

divF κ = ρu•∇C

==>
∂C
∂t

+ v•∇C = 0 v = u φwith

change notation: solute concentration Xκ ≡ C

Variably Saturated Flow
∂
∂t

M = − divF• water flow in the vadose zone

• consider air a passive bystander at
constant pressure

• neglect air dissolution in water, water
evaporation into air

• neglect variations in liquid density
and viscosity

∂
∂t

φSl ρl = div k krl

µ l

ρl ∇ Pl + ρl gz( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

mass balance just for water

ρl
∂
∂t

φSl = ρl div k krl

µ l

ρl g ∇
Pl

ρl g
+ z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

∂
∂t

θ = div K∇h[ ]Richards’ equation (1931)

θ = φSl
specific volumetric 
moisture content

hydraulic 
conductivity

h =
Pl

ρl g
+ z hydraulic 

head
K = k krl

µ l

ρl g
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Two Phases, two Components
(Buckley-Leverett Problem)

• consider flow of two immiscible fluids (oil-water)

• assume fluids are incompressible

• neglect capillary pressure effects

• neglect gravity

• specialize to 1-D

∂
∂t

φSiρi = − divFi = −
∂Fi

∂x
Fi = − k kri

µ i

ρi
∂P
∂x

= uiρi

∂
∂t

φSi = −
∂ui

∂x

basic mass balances mass fluxes

==> ∂
∂t

φ S1 + S2( ) = 0 = −
∂ u1 + u2( )

∂x

==> total volumetric flux u = u1 + u2 is constant

ui =
kri µ i

k r1 µ1 + kr 2 µ2

u = fiu
∂
∂t

Si = −
u
φ

∂fi

∂x
= − v dfi

dSi

∂Si

∂x

“fractional flow” fi

Buckley-Leverett Problem (cont’d)
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gas
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fractional
flow of gas

∂Si

∂t
= − v dfi

dSi

∂Si

∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dS1 =
∂S1

∂t
dt +

∂S1

∂x
dx Consider a fixed saturation value; 

then dS1 = 0, and we get:

dx
dt

= −
∂S1 ∂t
∂S1 ∂x

= v dfi

dSi

==> x = x0 + v dfi

dSi

t
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Diffusion

fκ( )nm
= − Σl

κ( )nm

Xl
κ( )m

− Xl
κ( )n

Dnm

− Σg
κ( )nm

Xg
κ( )m

− Xg
κ( )n

Dnm

f κ = − Σl
κ ∇Xl

κ − Σg
κ ∇Xg

κ

Σβ
κ = φ τ0τβ ρβ dβ

κ

f = − Σ∇X

Space discretization for single-phase conditions

nD
n

mD
m

fnm = Σnm
Xm − Xn

Dn + Dm

= Σn
Xnm − Xn

Dn

= Σm
Xm − Xnm

Dm

Dn + Dm

Σnm

=
Dn

Σn

+
Dm

Σm

Harmonic weighting

fβ
κ = −φ τ0 τβ ρβ dβ

κ∇Xβ
κ

f = − d ∇C

Two-Phase System

fκ( )nm
= − Σl

κ( )nm

Xl
κ( )

m
− Xl

κ( )
n

Dnm

− Σg
κ( )nm

Xg
κ( )

m
− Xg

κ( )
n

Dnm

n m

Sl = 1 Sg = 1 Σg( )n
= 0; ⇒ Σg( )nm

= 0

Σl( )m = 0; ⇒ Σl( )nm = 0

fκ( )nm
= − Σl

κ + Σg
κ

Xg
κ( )

m
− Xg

κ( )
n

Xl
κ( )m

− Xl
κ( )n

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
nm

Xl
κ( )

m
− Xl

κ( )
n

Dnm

X liq,1 X gas,2liqf

1m 1m

Xliq ,2

X gas,1

gasf
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P, T, C

x

t0

t1 > t0

∂C
∂t

+ v ∂C
∂x

= 0

∂P
∂t

− D ∂2P
∂x2 = 0

x = 2 Dt

advection

diffusion

C x,t( ) = C0 x − v t − t 0[ ]( )

C, S

x

t0 t > t0

² x = v(t - t0)

P x,t( ) =
exp −x2

4Dt( )
t

penetration depth

∆x = v t − t 0( )

Hydrodynamic Dispersion
(solute tracers)

diffusive analogue (Scheidegger, 1952; Bear, 1972)

D  ≈ αv;   x = αvt = αL
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Energy Balance

gas

piston
weight First Law of Thermodynamics

work W = force x distance

∆U = G + W

∆U = G − P∆V

W = − PA∆z = − P∆V

enthalpy H = U + PV (J)
specific enthalpy

h = u+Pv = u+
P
ρ

J kg( )

change in
internal

energy in
volume V  

=
net

transfer of
energy by   
fluid flow

+ mechanical
work done

to volume V
+ net heat

transfer by
conduction   

+
net energy
gain from
sinks and
sources  

Energy Balance

internal energy of rock-fluid mixture

(Fourier’s Law)
G = − K∇T

Mh = 1− φ( )ρRCRT + φ Sβρβuβ
β

∑

F h = hβFβ
β

∑
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Energy Balance for Isotropic Solid
M = ρcTAccumulation term (heat content, internal energy per unit volume)

Conductive heat flux (Fourier’s Law) G = − K∇T

d
dt

MdV = G •n dΓ
Γ
∫

V
∫Heat balance equation

ρc ∂T
∂t

dV = − divG dV
V
∫

V
∫ = K∆T dV

V
∫

∂T
∂t

−
K
ρc

∆T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dV = 0

V
∫

∂T
∂t

=
K
ρc

∆T =
K
ρc

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

===>

===>

K
ρc

= D = diffusivity

partial differential
equation (PDE)

Phase States of Water

Pressure

Temperature

Tcrit = 374.15 ÞC

Pcrit =
221.2 bar

supercritical
fluid

superheated
gas

subcooled
liquid

saturation
line

oC
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Vapor Pressure Lowering (VPL)

Pv T,Sl( ) = fVPL T,Sl( )⋅Psat T( )

fVPL = exp
Mw Psuc Sl( )

ρl R T+273.15( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

• in porous media, liquid water can be held by capillary force,
and by adsorption on hydrophilic mineral surfaces

• the interaction between water and rock alters the physical
properties of water

• an important effect is vapor pressure lowering (VPL)

• Psuc is suction pressure

• the upshot is that liquid water can be present when P < Psat

• important for vapor-dominated reservoirs

“Kelvin’s equation”
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Suction Pressure Characteristics for 
Different Geologic Media

(K. Pruess and M.J. O’Sullivan, 
Stanford 1992)
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(T, P) = 
(250 ˚C, 100 bar)
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Salinity Effects

Gases

PV = nRT

cT = −
1
V

∆V
∆P

=
1
P

PV = ZnRTReal gas law

Ideal gas law

Compressibility

Z  =  “real gas compressibility factor”
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Phase Partitioning

PNCG = Kh xaq
NCGHenry's Law

Water

Steam

Tracer

Henry’s coefficient for dissolution of CO2
in water

700

600

500

400

300

200

100

0
3002001000

Temperature (ÞC)

 A. Battistelli et al.
 S. White
 M. O'Sullivan et al.
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Towards Numerical Solution of Mass and Energy Balances
(space and time discretization)

• For a flow system of interest, we want to 
know P(x, t), C(x, t), S(x, t), T(x, t).

• Mass and energy balance equations can 
be solved in “closed form” only for very 
simple conditions.

• In general, will need to resort to 
numerical approaches that approximate 
the true solutions.

• Key to numerical solution approaches is 
discretizing the continuous space and 
time variables.

• Discretization inevitably introduces 
inaccuracies.

“finite differences” (FD)
∂f
∂t

⎯ → ⎯ 
∆f
∆t

=
f x,t k +1( )− f x,t k( )

t k +1 − t k

∂f
∂x

⎯ → ⎯ 
∆f
∆x

=
f xn +1,t( )− f xn,t( )

xn +1 − xn

x

t

n n+1n-1

k-1

k

k+1

k+2

n+2

Integral Finite Differences (IFD):
subdomain Vn, closed surface Γn, surface segments Anm

M dV =
Vn

∫ Vn Mn

dMn
κ

dt
=

1
Vn

Anm Fnm
κ

m
∑ + qn

κ

F •n dΓ
Γn

∫ = Anm
m
∑ Fnm

V

Vn
n

Γn

Fnm

A nm
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n

m4

m3

m2

m1

d Mn
κ

d t
=

1
Vn

Anm Fnm
κ

m
∑ + qn

κ

Fnm = knm
ρ
µ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

nm

Pm −Pn

Dnm

+ ρnm gnm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Discretized  Flow Term

Time Discretization

Rn
κ,k +1 = Mn

κ,k +1 − Mn
κ,k −

∆ t
Vn

Anm Fnm
κ,k +1

m
∑ + Vn qn

κ,k +1
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0

Rn
κ,k+1 xi,p+1( ) = Rn

κ,k+1 xi,p( ) +
∂ Rn

κ,k+1

∂ xii
∑

p

xi,p+1 − xi,p( )+ .. . = 0

−
∂Rn

κ,k+1

∂xii
∑

p

xi,p+1 − xi,p( ) = Rn
κ,k+1 xi,p( )

dMn
κ

dt
=

1
Vn

Anm Fnm
κ

m
∑ + qn

κ

Mn
κ,k +1 − Mn

κ,k

t k +1 − t k =
1

Vn

Anm Fnm
κ,k +θ

m
∑ + qn

κ,k +θ

“fully implicit”

(Newton’s method)
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{X0} {F0}

thermodynamic
conditions

mass and
energy fluxes

{X1}

{X2}

{Xn}

{F1}

{F2}

{Fn}

...

iteration

Iterative Procedure for a Time Step

Approach to Reservoir Simulation

identify and understand the basic physical and chemical processes 
operating in a reservoir

develop mathematical expressions for describing these processes
(mass and energy balance equations)

discretize continuous space variables (volume and areal averaging; 
approximate thermodynamic equilibrium locally)

discretize time (time steps ∆t)

set up iteration for resulting non-linear algebraic equations

perform linear equation solution at each iteration step

“outer iteration”: march in time; “inner (Newtonian) iteration”: solve 
non-linear equations
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Data Needs

hydrogeologic parameters of the formations (such as absolute and 
relative permeability, porosity, capillary pressure, etc.), including their 
spatial variation

fluid properties (such as density, viscosity, enthalpy, vapor pressure, 
etc.), and their dependence on the thermodynamic conditions

initial conditions throughout the system, and conditions at the outer 
boundary of the system for all times

nature, location, and rates of sinks and sources

discretized description of reservoir geometry (grid, mesh)

simulation parameters (choice of approximations, time stepping 
controls, iteration and convergence parameters, linear equation solvers, 
output controls)

Words to the Wise
• When running simulations for field problems, where site-specific 

features should be modeled, much of the work ends up dealing with 
geometry (gridding).

• Large grids make simulations run more slowly, generate larger data 
files, and make it harder to understand what is going on.

• Start with a simple, coarse grid, and “debug” the problem.
– facilitates data preparation
– runs more easily and faster
– smaller input and output files
– makes it easier to understand what's happening
– facilitates checking and debugging

• Can put most other problem features in place.
• After model is running satisfactorily, proceed to desired gridding and 

grid resolution.
• Check on grid sensitivity.
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Heat Conduction in 1-D

n-1 n n+2n+1

∆x

Vn = A nm ∆x

Anm

d
dt

MdV = G •n dΓ
Γn

∫
Vn

∫ ===> Vn
d
dt

Mn = AnmGnm
m
∑

Gnm ≈ K Tm − Tn

∆x
Anm

Vn

=
1

∆x

Tn
k +1 − Tn

k

∆t
=

K
ρc

1
∆x

Tn +1
k +1 − Tn

k +1

∆x
+

Tn−1
k +1 − Tn

k +1

∆x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

K
ρc

1
∆x2 Tn +1

k +1 − 2Tn
k +1 + Tn−1

k +1( )

dMn

dt
≈ ρc Tn

k +1 − Tn
k

∆t

∂T
∂t

=
K
ρc

∂2T
∂x2

Compare PDE:

Space and Time Truncation Errors
Taylor series

T x + h( ) = T(x) + h ∂T
∂x

+
h2

2!
∂2T
∂x2 +

h3

3!
∂3T
∂x3 + ...

==>
T x + h( )− T(x)

h
=

∂T
∂x

+
1
h

h2

2!
∂2T
∂x2 +

h3

3!
∂3T
∂x3 + ...

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

error terms

Discretization error for 1-D diffusion equation (Peaceman, 1977)

ε =
∆x2

12
∂4T
∂x4 −

∆t
2

ρc
K

∂2T
∂t 2

• Due to the mathematical equivalence between FD and IFD methods,
error estimates for FD are applicable to regular grid systems for IFD.

• For irregular grids, we are walking on less firm ground.
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Flow in Fractured Media

• global flow vs. "interporosity" flow
• different approaches

– explicit modeling of fractures
– effective continuum model (ECM)
– double porosity model (DPM)
– dual permeability
– multiple porosity, multiple interacting 

continua (MINC)

fP̂ =
1
Vf

P dV∫

mP̂ =
1

Vm
PdV∫

Qf ↔ m ∝ Afm −( )fP̂ mP̂

Vf

Vm

Fractures

Matrix
 Blocks

double
porosity

MINC
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F

F

FFF

M

MMMM

MMM

MMM

MMM

F

F

F

F

F

FFF

F

M

F
M

F

dual
permeability

Space Discretization by IFD
• In the Integral Finite Difference (IFD) method, space discretization is 

made directly from the integrals.
• The IFD does not make reference to a global coordinate system; the 

system geometry is described in terms of grid block (element) 
volumes, interface areas between grid blocks, nodal distances, and 
orientation of the nodal line with respect to the vertical.

• The IFD does not distinguish between 1-D, 2-D or 3-D systems, and 
allows great flexibility in dealing with irregular geometries.

• Even heterogeneous systems described by multiple overlapping 
continua can be treated without any coding changes in the simulator, 
simply by preprocessing of geometric data.

• This flexibility does not come at a price - for regular grids referred to 
global coordinates, IFD is equivalent to conventional finite differences.

• The geometric flexibility of the IFD must be used with caution, 
however, to avoid inaccurate results.
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More on Space Discretization
• The basic space-discretized equations are valid regardless of how the 

discretization is made (including arbitrary irregular gridding).

• Practical limitations for how discretization is made arise from two 
sources:

d
dt

MdV = F •n dΓ
Γn

∫
Vn

∫ ===> Vn
d
dt

Mn = AnmFnm
m
∑

We need to be able to obtain fluxes between grid blocks from
averages of intensive quantities (pressure, temperature, etc.) within
grid blocks:

We need to be able to keep track of where the grid blocks are, so we
can understand what is happening in the simulation, and can plot

results.

Fnm ∝ Mm − Mn[ ] Dnm( )

More on Space Discretization (cont’d)

(J. Krämer, 1995)

n

m4

m3

m2

m1

start with arbitrary nodal
points
draw nodal lines (dashed)
draw perpendicular bisectors
partition plane into polygons
(Voronoi tesselation)
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Areal View of Grid for Olkaria/Kenya
(from Bodvarsson et al., 1985)

Radial Flow

 = 100 kg/sCO 2Q

T = 45 oC

P = 120 bar

Sgas = 0 %

XNaCl = 15 wt.- %

R =

k = 100 md
φ = 12 %

�

(0 wt.- %)

 H = 100 m
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Five-Spot Production-Injection System

Production

Injection

1000 m

Diagonal and Parallel Grids
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parallel grid diagonal grid

“Grid Orientation Effects”

Five- and Nine-Point Finite Difference 
Approximations
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Heater Test at Yucca Mountain
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n m

k

Problematic Gridding

http://cage.rug.ac.be/~dc/alhtml/Delaunay.html

Interface Weighting
• Space-discretized expressions for fluxes (advection, diffusion, heat 

conduction) generally involve the product of a driving force (gradient 
of pressure, species concentrations, temperature) with a conductance-
type “strength parameter” (permeability, diffusivity, thermal 
conductivity, etc.).

• The rock and fluid parameters in the conductance term (k, ρ, µ) will in 
general be different for the two grid blocks. This raises the question, 
how to obtain the appropriate strength parameter at the interface in 
terms of those of the two grid blocks?

Fnm = knm
ρ
µ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

nm

Pm −Pn

Dnm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Example: single-phase flow without gravity.
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Interface Weighting (cont’d)
Knm = knm

ρ
µ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

nm

Fnm = Knm
Pm −Pn

Dnm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Simplify notation by abbreviating

Then have

Introduce the (unknown) fluid pressure Pnm at the interface and write

Fnm = Km
Pm −Pnm

Dm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = Kn

Pnm −Pn

Dn

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Setting this equal to the above flux expression gives two equations for the 
two unknowns Pnm and Knm.

Dm

Km Pm − Pnm( )
=

Dnm

Knm Pm − Pn( )
Dn

Kn Pnm − Pn( )
=

Dnm

Knm Pm − Pn( )
Multiply the first equation with (Pm - Pnm), the second with (Pnm - Pn) and 
add:

Dm

Km

+
Dn

Kn

=
Dnm Pm − Pnm + Pnm − Pn( )

Knm Pm − Pn( )
=

Dnm

Knm

“harmonic
weighting”

n m

nm

Dn Dm

Dnm = D n + D m

Interface Weighting (cont’d)
How do we proceed in more complicated circumstances? For example, consider
solute transport (C = concentration).

Fnm
κ = knm

ρ
µ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

nm

Cnm
Pm −Pn

Dnm

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ F κ = − k ρ

µ
C∇P

n m

nm

One might think of interpolating, Cnm =
1
2

Cn + Cm( )

Let us suppose flow is from m to n, and Cm < Cn. Then Cmn > Cm, and by flowing 
from m to n we would remove fluid from m that has a higher concentration than is 
present in m. Concentrations in m could even become negative, for example when Cm
= 0. Similar considerations apply for heat flow: we could be transferring heat from the 
colder region to the hotter one, while cooling the colder region, in violation of the 
Second Law of Thermodynamics.

To avoid this kind of unphysical behavior, employ “total variation diminishing”
(TVD) interpolation schemes. The simplest such scheme is “upstream weighting”:

Cnm =
Cm if flow is from m to n
Cn if flow is from n to m

⎧ 
⎨ 
⎩ 

However...
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Interface Weighting (cont’d)
transient two-phase flow

uniform medium composite medium

k  (constant)
kr  (upstream)

k
kr

upstream

steady two-phase flow

single-phase flow

harmonick kr

(none)

}

harmonick
kr


