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* Fundamentals of multiphase, nonisothermal

flows
occurrence, physics, mathematical model

* Numerical simulation
general approach: space and time discretization,
TOUGH2: methods, architecture, input data

* Hands-on use of TOUGH?2

illustrative applications and sample problems,
problem variations




Phases and Components

Phases

Homogeneous continuum
Thermophysical properties (density,
viscosity, specific enthalpy) vary
slowly and continuously with position
May consist of one or more chemical
components

Examples: aqueous phase, non-aqueous
(oil) phase, gas, solid

In a closed system, amount of different
phases present may change

Phase change usually involves
substantial heat effects

Components

Chemical species

Can be present in several different phases
Examples: H,0, NaCl, CO,, C.H,, .,,...
Distribution of components among

phases is determined by chemical
potential, kinetics

All components in a phase flow together

In a closed system, components are
conserved (except for chemical reactions)

Gibbs’ phase rule:

f = NK+2-NPH

NPH

In a system with NPH phases, have NPH-1 phase saturations: 2.S; =1

p=1

Number of degreees of freedom is then f+NPH-1 = NK+1

Multiphase Flow Systems

Flow System

Phases

Components

groundwater aquifer | aqueous

water, solutes

aqueous

vadose zone aqueous water, solutes
gas air, vapor, CO,, ...
NAPL VOCs, water, air

gas reservoir gas CH,, CO,, water vapor
aqueous water, solutes

oil reservoir oil alkanes, aromatics, solutes
gas CH,, ...

water, solutes




Storage: the amount of mass present in a unit
volume of the flow system

Pore volume: ¢
Volume of phase B: ¢S

Mass of a single phase: M = ¢p
Mass of component « in that phase: M* = ppX*

Mass of phase B: Mg = ¢Sgpg
Mass of component « in phase p: My = 0Sypp Xy

Total mass of component «k in all phases: M" = ¢ZSBPBXE
B

Total mass of component k in volume V: j M*dv
v

Darcy's Law (Henri Darcy, 1856)

- Ax >
L Ax
\ k - permeability (m?), 1 darcy = 10-12 m?
Y p ty (m?) y
Pl

P, + AP

AU
Analogy to Ohm’s law: I = R

AX

I=F AU = AP R=
k(p/u)




Fluid Flux in 3-D

Fx AP/AX
P

B | = k| Ap/ay

FZ AP/AZ+pg

u( pg)
k
u = —(VP-
u( pg)
Pore Velocity
u = (I)V




Multiphase Flow

Fy = —k@ﬁ%@@—pﬁg)

phases: = liquid, gas

relative permeability: krB

phase pressure: P, =P . —P
capillary pressure: Py, = Pyyq - Pjig

Relative permeability

Relative Permeability

Liquid saturation




Relative Permeability

(log scale)
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Capillary Pressure
20C0os
cap = pgh = R !

\/

h=20cosy

pgR water

o(T =20 °C)~=0.073 N/m; cos y =~ 1

for R=1 um = 10° m have
P~ 1.46x10° Pa= 1.46 bar

o(T =250 °C) = 0.026 N/m




Capillary Pressure in Porous Media
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Mass Transport

fluid mixtures: solutes, non-condensible gases (water,
NaCl, CO,, other solutes and NCGs)
advective mass flux in two-phase system

F* = X'F,+XF,

diffusion

fﬁ" =0 1,705 dgVX§

hydrodynamic dispersion

Mass conservation (mass balance)

change of fluid — | mass of fluid mass of fluid
mass in volume V entering V leaving V




Mass Balance

change in fluid
mass in volume V

d <
aiM dv

M - “accumulation term’

net gain of fluid from
sinks and sources

net fluid inflow across
surface of V

+

[Frendr+ [quav
r \%

? F - “flow (or flux) term” q - “sink/source term”

Gauss’ (divergence) theorem

|Frendr = —|divFrdv
r v

0 . N
==> I{EMK+diVFK}dV = 0 ==>__—-M"+divF
* Lot ot

0

single-phase, single component

d .
~M = —divF| M=¢p F = —-kPvP =—> divF ~ —kPap
ot i i
0 b . op [ do dp}@P
LA il Ll
1dp 1 dp}aP oP oP
= b c, +C = ¢pc—
odp | pdp ot boEite )z = ey
s = LAP diffusion equation with diffusivity |D = K
ot dep dep

“partial differential equation” (PDE)




single-phase, two component

0« g
—M" = —divF"| Mr=gpxx F* = —kPxrvp = upX"®
ot u
change notation: X"® = C solute concentration
0 oC
— C) = — ivF*® = \%
5 (#pC) ~ dp— divF pueVC
_ %Cw.vc - with v = u/o
t

0 =

Variably Saturated Flow

0 .
* water flow in the vadose zone gM = —divk
* consider air a passive bystander at
constant pressure mass balance just for water

* neglect air dissolution in water, water
evaporation into air

3 ok
atbslpl = le{k H” pr(P1+png)}

1

* neglect variations in liquid density s
and viscosit = i
y #0 leE)

Richards’ equation (1931) ge = div[KVh]

g specific volumetric K = kﬁp, hydraulic h = lJrZ hydraulic

" moisture content I, conductivity pig head




Two Phases, two Components
(Buckley-Leverett Problem)

« consider flow of two immiscible fluids (oil-water)
« assume fluids are incompressible

* neglect capillary pressure effects

* neglect gravity

* specialize to 1-D

basic mass balances mass fluxes

0 . OF k. oOP

—0S, = —divF, = —-— F = —-k=fip— = u

6t¢ P vF, o . " Pis up,
0 ou, 0 oy, +u,)
—¢S, = —— => —(,+S,) = 0 AT 7
ot oS, ox ot ¢( it “) X

==> total volumetric flux u=u, + u, is constant

0 u of; df, oS,
u = u = fu =S| = —— =|-v=+—
ot ¢ Ox ds; ox

“fractional flow” f;

Relative permeability

Buckley-Leverett Problem (cont’d)

oS, 08, Consider a fixed saturation value; dx = — és,/at = v df;
ds, = —Sdt+—tdx dt a5, /ox ds
ot ox then dS, =0, and we get: | i
df; ¢ ot ds, ox
==> [x = x,+v
0 dS‘
1.0 1.0 1.0+ 15
0s | faed =\ Los o g
gas b z g
06 Lost 2 ps6- 3
\ S 'g 2
2 4 g
0.4 \ o4z T 04 §
2 [ E]
0.2 "qr'd \ 0.2 0.2 :
1 ] i
0.0 . . . - : 0.0 0.0 r .
0.3 0.4 05 0.6 0.7 0.8 0.9 0.3 04 05 0.6 or 08 09 1.0

Liguid saturation

Liquid saturation

——  Buckley-Leverett
& standard TOUGH2
% TOUG2 w/ front tracking

Distance (m)
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Diffusion

f = —dve O ——
= —¢tmp VX I o= dnmpdy

), - ). (Xf).“D -nm(Xf)" @), (Xé)nb:m(xé)“

Space discretization for single-phase conditions

D,+D, = D, D
Zom DI

f = -3ZVX
an7 E)rﬂ' £, = 3, ;‘)m* ];in _— Xnm[; X, _ oy xm;) X,
n m " * m n m
Harmonic weighting

Two-Phase System

™), = -E), (Xr)"b:m(xr)“ -®), (Xg)mD:m(Xz ).

)0 = @),

=),=6 = (2),,=0

1. - fnfhl o

nm
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advection

C,S
fo t>1
4 7 ac  ac
—+v— =0
ot ox
Ax=v(t-t,)
______ e ’C(x,t) = Cy(x—v[t —to]){
X
diffusion
P,T,C P _5 IP
ot ox?
to
(2
4 p(*/ip1)
P(x,t) = 7
1>ty
s
penetration depth x = 2+/Dt
> X

Hydrodynamic Dispersion
(solute tracers)

diffusive analogue (Scheidegger, 1952; Bear, 1972)
D = av; X = Aavt = Aol
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Energy Balance

weight First Law of Thermodynamics
piston N AU = G+W
work W = force x distance
W = —-PAAz = -—-PAV
AU = G-PAV
gas // enthalpy H=U + PV (J)
specific enthalpy P
k V4 h=u+Pv=u+— (J/kg)
P
Energy Balance
internal energy of rock-fluid mixture
(1 - ¢)pRCRT + ¢ZSBpﬁuB
B

change in net mechanical net heat net energy
internal = transfer of | H work done transfer by +H gain from
energy in energy by to volume V conduction sinks and
volume V fluid flow sources

G = —-KVT

h
F= zhﬁ FB (Fourier’s Law)

13



Energy Balance for Isotropic Solid

Accumulation term (heat content, internal energy per unit volume) M = pcT
Conductive heat flux (Fourier’sLaw) G = —-KVT
. d
Heat balance equation | — j MdV = _[ Gendl’
dt v r
| \
‘ \
Ipc—dv - —[daivGav = [kaTav
A% v

v

K_ D =diffusivity
/ pc

— oT K AT = o'T 627T +627T partial differential
a2 E = y* oy o7 equation (PDE)
Phase States of Water

4
Pressure !
|
|
|
| supercritical
I fluid
| subcooled | .
7] liquid
Perit = superheated
221.2 bar gas
— >
saturation / Temperature
line

Terit= 374.15 oC:
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Vapor Pressure Lowering (VPL)

* in porous media, liquid water can be held by capillary force,
and by adsorption on hydrophilic mineral surfaces

« the interaction between water and rock alters the physical
properties of water

* an important effect is vapor pressure lowering (VPL)
PV(T’SI) = fVPL(T’Sl)'Psa[(T)

B pPIR(T+273.15) elvin’s equation

VPL

* P, is suction pressure
- the upshot is that liquid water can be present when P <P,

* important for vapor-dominated reservoirs
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Suction Pressure Characteristics for
Different Geologic Media

relatlve vapor pressure
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Viscosity (Pa-s)

1050

Salinity Effects
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950 4

900 4
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800 |+t
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2

2.0x10™ ]
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Dissolved NaCl mass fraction

Gases

Ideal gaslaw PV = nRT

Real gaslaw PV = ZnRT

Z = “real gas compressibility factor”

1av_ 1

Compressibility cr = ~V AP b
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Phase Partitioning

Henry's Law  Pycg = Ky x;\glCG
® o o o e
,® * . ° ° e Steam
° o ® o
‘e °° °° o  Tracere
° ° *®
® )

Henry’s coefficient for dissolution of CO,
in water

T T T T T T
0 100 200 300
Temperature (°C)
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Towards Numerical Solution of Mass and Energy Balances
(space and time discretization)

For a flow system of interest, we want to
know P(x, t), C(x, t), S(x, t), T(x, t).
Mass and energy balance equations can
be solved in “closed form” only for very

simple conditions.

In general, will need to resort to
numerical approaches that approximate

the true solutions.

Key to numerical solution approaches is
discretizing the continuous space and

time variables.

Discretization inevitably introduces

inaccuracies.

t

k+2 —

k+1—

k-1 -

4
| 1 [ [
- o— 90— 9 ¢ o o o
| | | | | | |
| | [ [
AR A Sk o olle Sl B
| 1 [ [
4otk
I | [ [
b 6— 66 ¢ —¢ o ¢—
| 1 [ [
| | | | | | |
-2 ¢ -¢ ¢ ¢ 90—
I | [ [
X
n-1 n n+ln+2

“finite differences” (FD)
of N Af _ f(x,tk”)— (x,tk)
ot At t

o A £, £(x,0)
6)( AX xn+| - Xn

Integral Finite Differences (IFD):

subdomain V,, closed surface I',, surface segments A

| Mav

V,

n

N
7

m

= Vn Mn

= Z Anm an

1 K K
v D ALEL+q
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Discretized Flow Term

an = knm|:E:| Pm _Pfl +
pi,L D

nm

pnm gnm

Vi

,m
M2

T

|

‘ .-m3_ B _TF 1~ -.ml

1

Anm |

¢
My

Vm

dMK 1
dtn = V_nzAanEm

m

K
+dpn

Time Discretization

AM*
S Ly
o Z F.,m+qn

k4l ¥\ rik
Mn 7Mn

(R ¢k

nm - nm

*ZA Fxmo ‘Kkm

“fully implicit”

/
kil _ okt e At &k @D _
R = M -M; e 2 A F”Jf\’n =0

k+1
RK k+1 _ RK e+l ”RK
X ,p+l Xj p +Z

aRK,k-I-l
n
0xj

ic,k+1
(Xi,p+1—xi,p) = Ry (xip
P

@LP‘H _Xi,p)"'“- =0
p

(Newton’s method)
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Iterative Procedure for a Time Step

thermodynamic mass and
conditions energy fluxes

iteration Xo} —— {Fo}
\L X1} — {F1}

X2} — {F2}

Xn} — {Fn}

A4

YV V V V

Approach to Reservoir Simulation

identify and understand the basic physical and chemical processes
operating in a reservoir

develop mathematical expressions for describing these processes
(mass and energy balance equations)

discretize continuous space variables (volume and areal averaging;
approximate thermodynamic equilibrium locally)

discretize time (time steps At)
set up iteration for resulting non-linear algebraic equations
perform linear equation solution at each iteration step

“outer iteration”: march in time; “inner (Newtonian) iteration”: solve
non-linear equations
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A\

Data Needs

hydrogeologic parameters of the formations (such as absolute and
relative permeability, porosity, capillary pressure, etc.), including their
spatial variation

fluid properties (such as density, viscosity, enthalpy, vapor pressure,
etc.), and their dependence on the thermodynamic conditions

initial conditions throughout the system, and conditions at the outer
boundary of the system for all times

nature, location, and rates of sinks and sources
discretized description of reservoir geometry (grid, mesh)

simulation parameters (choice of approximations, time stepping
controls, iteration and convergence parameters, linear equation solvers,
output controls)

Words to the Wise

When running simulations for field problems, where site-specific
features should be modeled, much of the work ends up dealing with
geometry (gridding).
Large grids make simulations run more slowly, generate larger data
files, and make it harder to understand what is going on.
Start with a simple, coarse grid, and “debug” the problem.

— facilitates data preparation

— runs more easily and faster

— smaller input and output files

— makes it easier to understand what's happening

— facilitates checking and debugging
Can put most other problem features in place.
After model is running satisfactorily, proceed to desired gridding and
grid resolution.
Check on grid sensitivity.
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Heat Conduction in 1-D

AX Anm
B S—
I
° ° ° o
n-1 n n+l n+2
V,=A , AX
d d
[Mav = [Gendr| === V,=M, = YA,G,
dt dt -
v, r,
— A 1 k+l _ rk
G,, = KTm T, m L dM, < chn T,
Ax Vv, Ax dt At
ok T.TI.'—T.T”+T§J‘—T§”j _
pc Axk Ax Ax p
2
Compare PDE: ar Eﬂ
ot pc ox*

Space and Time Truncation Errors

Taylor series
oT h'&T h'oT

T(X+h) = T(X)‘th‘l‘ 2l 6X2 3 g

T(x+h)—-T(x) _or |1

ar {11262T+h363T
h ox |h

2oxE 3 ox

N

Discretization error for 1-D diffusion equation (Peaceman, 1977)
AX* &'T At pc &°T

12 ox* 2 K at’

error terms

* Due to the mathematical equivalence between FD and IFD methods,

error estimates for FD are applicable to regular grid systems for IFD.

* For irregular grids, we are walking on less firm ground.
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Flow in Fractured Media

+ global flow vs. "interporosity" flow
« different approaches

— explicit modeling of fractures

— effective continuum model (ECM)

— double porosity model (DPM)

— dual permeability
— multiple porosity, multiple interacting
continua (MINC)
/]Sf = % J‘ PdV
double "V
porosity A—op - L [Pav
7 Vin v,
/¢ b _ P
Qom € Am(Pr— Py

Fractures
z/

MINC
\

Mat ix
Blocks

L
LY
L
L
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Distance from fractures —
-

A~
Wellblock

Radial distance from well

dual
permeability

Space Discretization by I[FD

In the Integral Finite Difference (IFD) method, space discretization is
made directly from the integrals.

The IFD does not make reference to a global coordinate system; the
system geometry is described in terms of grid block (element)
volumes, interface areas between grid blocks, nodal distances, and
orientation of the nodal line with respect to the vertical.

The IFD does not distinguish between 1-D, 2-D or 3-D systems, and
allows great flexibility in dealing with irregular geometries.

Even heterogeneous systems described by multiple overlapping
continua can be treated without any coding changes in the simulator,
simply by preprocessing of geometric data.

This flexibility does not come at a price - for regular grids referred to

global coordinates, IFD is equivalent to conventional finite differences.

The geometric flexibility of the IFD must be used with caution,
however, to avoid inaccurate results.
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More on Space Discretization

The basic space-discretized equations are valid regardless of how the
discretization is made (including arbitrary irregular gridding).

d
i _.‘ MdV = J. F on dr ==> Vn EMn = zAannm
dt ; t "

n n

Practical limitations for how discretization is made arise from two
sources:

»We need to be able to obtain fluxes between grid blocks from
averages of intensive quantities (pressure, temperature, etc.) within

gridblocks: o (M., -M,1/p,,.)

»We need to be able to keep track of where the grid blocks are, so we
can understand what is happening in the simulation, and can plot
results.

More on Space Discretization (cont’d)

» start with arbitrary nodal
points

» draw nodal lines (dashed)

» draw perpendicular bisectors

» partition plane into polygons
(Voronoi tesselation)

(J. Krdmer, 1995)
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Areal View of Grid for Olkaria/Kenya

(from Bodvarsson et al., 1985)
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Five-Spot Production-Injection System

Diagonal and Parallel Grids
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“Grid Orientation Effects”
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1 2 3 4 5 6 7 8
rows
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Five- and Nine-Point Finite Difference
Approximations
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Problematic Gridding

http://cage.rug.ac.be/~dc/alhtml/Delaunay.html

Interface Weighting

Space-discretized expressions for fluxes (advection, diffusion, heat
conduction) generally involve the product of a driving force (gradient
of pressure, species concentrations, temperature) with a conductance-
type “strength parameter” (permeability, diffusivity, thermal
conductivity, etc.).

Example: single-phase flow without gravity.

an = knm|:p:| |:Pm _Pn :|
8 Ihm D nm

The rock and fluid parameters in the conductance term (k, p, p) will in
general be different for the two grid blocks. This raises the question,
how to obtain the appropriate strength parameter at the interface in
terms of those of the two grid blocks?
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Interface Weighting (cont’d)

. . . .o [o) Dpm=D,+Dp
Simplify notation by abbreviating K., = k[~ - -« T
H nm \\ N
Thenhave F_ = K, |:Pm_Pn } n m
D nm 'Dn' < Dm'

Introduce the (unknown) fluid pressure P, at the interface and write

D D,

m

Setting this equal to the above flux expression gives two equations for the
two unknowns P, and K, .

D D D D

m nm n

I<m (Pm - an ) B Knm (Pm - Pn) Kn (an - Pn) B Knm (Pm - Pn )

Multiply the first equation with (P, - P, ), the second with (P, - P,) and

add: .
D, D, _ DuwCPy-Pun+Pn-P) _ D, “harmonic

K, K K,.(P,-P,) K weighting”

m n nm

Interface Weighting (cont’d)

How do we proceed in more complicated circumstances? For example, consider
solute transport (C = concentration).

P P
Fr o= —k2cvp . = knm[E} C{ T J
i Ml D,
nm
1

. . One might think of interpolating, C,, = E(C“‘*'Cm)

n m
However...

Let us suppose flow is from m to n, and C, <C,. Then C_, > C,,, and by flowing
from m to n we would remove fluid from m that has a higher concentration than is
present in m. Concentrations in m could even become negative, for example when C,,
= 0. Similar considerations apply for heat flow: we could be transferring heat from the
colder region to the hotter one, while cooling the colder region, in violation of the
Second Law of Thermodynamics.

To avoid this kind of unphysical behavior, employ “total variation diminishing”
(TVD) interpolation schemes. The simplest such scheme is “upstream weighting”:
c {Cm if flow is from m to n

C, if flow is fromn to m
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Interface Weighting (cont’d)

transient two-phase flow

uniform medium composite medium
k (constant) k }u .
K, (upstream) Ky pstream

steady two-phase flow

k k, harmonic

single-phase flow

k harmonic
k, (none)
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