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Advances in synthetic methods have spawned an array of nanoparticles and bio-inspired molecules
of diverse shapes and interaction geometries. Recent experiments indicate that such anisotropic
particles exhibit a variety of nonclassical self-assembly pathways, forming ordered assemblies via
intermediates that do not share the architecture of the bulk material. Here we apply mean field
theory to a prototypical model of interacting anisotropic particles, and find a clear thermodynamic
impetus for nonclassical ordering in certain regimes of parameter space. In other parameter regimes,
by contrast, assembly pathways are selected by dynamics. This approach suggests a means of
predicting when anisotropic particles might assemble in a manner more complicated than that
assumed by classical nucleation theory. © 2010 American Institute of Physics.
�doi:10.1063/1.3425661�

I. INTRODUCTION

Classical nucleation theory assumes the formation of or-
dered structures from similarly ordered nuclei.1 Mounting
evidence, however, suggests that many molecular and nano-
scale systems form ordered structures in more complicated
ways, first associating as metastable, often amorphous aggre-
gates. Such nonclassical crystallization2–4 has been observed
in systems of spherical colloids5–7 and the globular protein
lysozyme,8–10 as well as in numerous simulation studies.11,12

Computational and theoretical work13–15 reveals one set
of circumstances in which particles bearing isotropic interac-
tions assemble non-classically: When these attractions are
made sufficiently short-ranged, the system’s liquid-vapor
critical point is submerged �in a density-temperature phase
diagram� within the regime of solid-fluid coexistence. In
what appears to be an immediate kinetic consequence of this
thermodynamics, randomly dispersed components possess-
ing short-ranged isotropic attractions, cooled below the
liquid-vapor critical temperature, tend to assemble into or-
dered solids only after forming transient liquidlike phases.
However, most real components, from proteins to ions16 to
the plethora of recently synthesized nanoparticles,17 interact
via anisotropic or “patchy” attractions. Simulation work18–22

reveals assembly pathways of such components to be in gen-
eral richer than those of their isotropic counterparts. Further,
experiments indicate that anisotropic proteins can crystallize
via a metastable dense phase outside the liquid-vapor coex-
istence regime,23 an observation bolstered by recent
simulations.24

Two important ideas underpin our understanding of non-
classical assembly. The step rule of Ostwald25 states that
metastable precursors of the stable phase may appear if those
precursors are closer in free energy to the parent phase than
is the stable solid. The conjecture of Stranski and
Totomanow26 �ST� is the closely related statement that the

precursors that emerge are those confronted by the smallest
free energy barriers to their nucleation. While these ideas
receive broad support,12 recent evidence suggests that dy-
namical effects can invalidate the ST conjecture.27 For all but
one-component isotropic particles, then, it seems that there
exists no simple physical picture that predicts when particles
might assemble in a nonclassical fashion.

Here we propose a step in this direction by considering a
microscopic model prototypical of a collection of particles
bearing isotropic and anisotropic interactions. In Secs. II and
III we introduce this model and use mean field theory to
determine its phase behavior. We summarize this behavior in
Fig. 1. In Sec. IV we focus on thermodynamic states at
which the solid phase is stable. We ask how the solid
emerges if one begins with a well-mixed system and consid-
ers Langevin evolution in a free energy space of bulk “den-
sity” and “structure” order parameters. We find that under
some conditions there exists a free energetic driving force for
assembly of the ordered solid phase via nonclassical path-
ways. In such cases the free energy surface local to the ho-
mogeneous fluid phase is stable in one “direction” of order
parameter space, and unstable in the other direction. Conse-
quently, density and structure order parameters evolve se-
quentially, rather than simultaneously. There also exist ther-
modynamic states at which no such bias exists. In such
cases, assembly pathways are determined principally by or-
der parameter dynamics. We summarize these observations
in Fig. 2. We conclude, in Sec. V, by discussing an extension
of this model in which the assembly of a solid phase is in-
duced by the formation of a solid intermediate. This discus-
sion is summarized in Fig. 3.

II. MODEL

We consider a collection of particles that live on the sites
i� �1, . . . ,N� of a d-dimensional hypercubic lattice. The
presence or absence of a particle at site i is signaled by the
occupancy variable ni taking the value 1 or 0, respectively.a�Electronic mail: swhitelam@lbl.gov.
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Particles bear unit orientation vectors Si, which, for simplic-
ity, we assume to rotate in a plane.28 We impose an energy
function H=�i=1

N ��1 /2z�� jUij − �̃ni�, where j runs over the
z=2d nearest neighbors of i, and �̃ is a chemical potential.
The dimensionality d profoundly affects the nature of fluc-
tuations within the model, but at mean field level serves only
to scale the strength of its pairwise interaction. We choose
the pairwise interaction Uij to be a minimal representation of
particles able to interact both isotropically and anisotropi-
cally:

Uij = − ninj�J + QSi · S j� . �1�

Here J is the strength of the isotropic interaction, and Q is
the strength of the anisotropic interaction. This model is de-
signed to describe vaporlike and liquidlike phases of small
and large occupancy number, respectively, in which particle
orientations Si are disordered, and a ferromagnetic solidlike
phase of large occupancy number in which particle orienta-
tions show a high degree of order �a related coupled Ising–
Heisenberg model possessing particle-vacancy symmetry
was studied in Ref. 29�. We next derive the free energy of
this model in a mean field approximation. In such an ap-
proximation �see, e.g., Ref. 30� the fluctuating variables at a
given site feel only the thermal averages of variables at
neighboring sites. The effective field at a given site is to this
approximation Heff=−n�J�+QS ·�+ �̃�	Ueff− �̃n. Here n
and S are fluctuating variables, and we have introduced the
collective density and structure order parameters �	
n� and
�	
nS�, respectively. These order parameters serve to dis-
tinguish phases of low and high density, and phases in which
particle orientations are disordered or mutually aligned. For
future notational convenience we also introduce the Ising-
like density variable �	2�−1; we will use both � and �.
Thermal averages are defined self-consistently through the
relation 
A�	Tr�APeq�, where the equilibrium measure Peq

=q−1e−�Heff with q	Tr e−�Heff=1+2�e��J�+�̃�I0��Q����.
Here In is the nth order modified Bessel function of the first
kind; �	1 /T �we adopt units such that kB=1�; and the trace
Tr� · �	�n=0,1��n,1dS+�n,0�� · � has been carried out by
aligning � with êx. The effective Helmholtz free energy per
site is then feff�� ,��=E−TS, where E= �1 /2�
Ueff�− �̃� and

−TS=T
ln Peq�=−
Heff�−T ln q. Thus feff�� ,��=−�1 /2�
	
Ueff�−T ln q, or

feff��,�� = 1
2 �J�2 + Q�2� − T ln�1 + e��J�+��I0��Q��� , �2�

where �	��� and �	 �̃+T ln 2�. We consider Eq. �2� to
have been divided through by dimensions of temperature,
and all parameters in that equation to have been dedimen-
sionalized accordingly. Equations of state for the density and
structure order parameters can be obtained by minimizing
the free energy, and read

� =
I0��Q��

e−��J�+�� + I0��Q��
�3�

and

� = êx
I1��Q��

e−��J�+�� + I0��Q��
. �4�

The expressions �2�–�4� describe phases of vapor �low den-
sity, orientationally disordered: �
0,�=0�, liquid �high
density, orientationally disordered: ��0,�=0�, and solid
�high density, orientationally ordered: ��0,��0�. In the
following section we derive the phase diagrams shown in
Fig. 1. Readers not interested in the details of these calcula-
tions should focus on Sec. IV, in which we ask how the solid
phase emerges if it is stable and if we start from conditions
of moderate density without orientational order.

III. MODEL PHASE BEHAVIOR

We first focus on the phase behavior of the model when
either the isotropic interaction or the anisotropic interaction
vanishes. For Q=0 we recover from �2�—ignoring field-
independent terms and introducing K	J /4, �coex	−2 K,
and h	�1 /2���−�coex�—the Ising model free energy f I���
= �K /2��2−T ln cosh���K�+h��. We recover from �3� the
equation of state �=tanh���K�+h��. These expressions cari-
cature the thermodynamics of the liquid-vapor phase
transition.31 For K=0, Eqs. �2�–�4� describe, at �=�coex, a
continuous phase transition in �	Q /4 from a fluid phase
having �=0=� to a solid phase whose order parameter
scales near the critical point �crit=�−1 as �sol���−�crit�1/4.
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FIG. 1. Thermodynamic phase diagrams derived from Eq. �2�. �a� In the space of varying isotropic-�K� and anisotropic ��� interaction strengths, we show
regimes of stable homogeneous fluid H �moderate density, orientationally disordered�; phase-separated �PS� liquid �L: high density, orientationally disordered�
and vapor �V: low density, orientationally disordered�; and solid S �high density, orientationally ordered�. Cartoons depict the nature of these phases. Critical
points and the nature of the lines F, M, and C1,2 are discussed in Sec. III. ��b� and �c�� Phase diagrams in the density ���-temperature �T� plane for model
parameters such that the solid phase emerges below �b� and above �c� the liquid-vapor critical point. We expect nonclassical ordering �when the solid is stable�
for temperatures between the ordering temperatures T� and T� �marked�. The insets to �b� and �c� show the emergence of solid order � as a function of T to
be continuous and discontinuous, respectively. Langevin trajectories at the three marked temperatures �red, green, and blue arrows� are shown in Fig. 2.
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The phase diagram for general values of K and � �for
T=1� is shown in Fig. 1�a� �henceforth we focus on the case
�=�coex�. It identifies a homogeneous fluid phase H��=0
=��; a regime of phase-separated �PS� liquid L���0,�=0�
and vapor V��
0,�=0�; and a solid phase S���0,��0�.
The solid phase is described by Eq. �4� with �=�sol���
=�I0�4���� / I1�4����. The points �K ,��= �1,0� and �0,1� are
continuous critical points; C1 and C2 are lines of continuous
critical points; and F �which abuts C2� is a line of first order
phase transitions. The line M delimits the limit of fluid meta-
stability. The equation of the union of the lines M and C2 is
2K= ��−1 /��−1ln�2��−1�. It was found by equating deriva-
tives with respect to �, at �=0, of each side of Eq. �4� �with
�=�sol����.

Panels �b� and �c� of Fig. 1 show phase diagrams in the
density-temperature plane for two choices of K and �. Panel
�b� describes a case �K=1.5, �=0.6� in which the solid
phase becomes stable only well below the liquid-vapor criti-
cal point. Expansion about �=0 of �2� with �=�sol��� reveals
the onset of � to be continuous with temperature �see inset�,
scaling below the solid phase critical temperature Tc=1.08
�obtained from �c��1+tanh�K��−1−�c���=1� as �sol��Tc

−T�1/2. The density of the solid phase at the critical point is
�sol��→0�= �2��c�−1�0.90. A different scenario is seen in
Fig. 1�c�: Here the solid phase becomes viable above the
liquid-vapor critical point �and stable with respect to the ho-
mogeneous fluid phase below T�1.1� and the onset of � is
now first order with � �see inset�. Cases �b� and �c� loosely
resemble phase diagrams of Lennard-Jones particles, with
distinct vapor, liquid, and solid phases; away from �=�coex

�not shown� the phenomenology of this model is more akin
to that of isotropic potentials of shorter range,14 where only
one fluid phase is stable.

IV. PATHWAYS OF ASSEMBLY OF THE SOLID PHASE

With the phase behavior of the model established, we
turn to the question of how the solid phase emerges if it is
stable and if the system is prepared in the homogeneous fluid
phase H��=0=��. We imagine this latter phase, which is of
moderate density and possesses no orientational order, to de-
scribe a well-mixed system. The thermodynamic driving
force associated with evolution of the bulk phase from H to
the solid is connected to the stability of the free energy sur-
face, in the vicinity of H, in the �- and �-directions of order
parameter space. These stabilities can be assessed by Taylor
expansion of Eq. �2�. Retaining only those terms required for
thermodynamic stability �and ignoring field-independent
terms� we find

feff��,�� � 1
2K�1 − �K��2 + 2��1 − ����2

+ c40�
4 + c06�

6 − c12��2

+ c14��4 + c24�
2�4 + c32�

3�2. �5�

Recall that K	J /4, �	Q /4, and �	2�−1. The coeffi-
cients cnm	�n !m!�−1��

n ��
mfeff�� ,�� ��,�=0 are positive con-

stants �for K, ��0�. The signs of the coefficients of the
quadratic terms determine the stability of the fluid phase H.
We see by inspection that the fluid is unstable to perturba-
tions of density below a temperature T�=K �recall that �
	1 /T�, and unstable to perturbations of structure � below a
temperature T�=�. While T� is the liquid-vapor critical tem-
perature, T� is not in general equal to the temperature at
which the solid becomes stable. Ordering temperatures for
specified model parameters are labeled in Figs. 1�b� and
1�c�.32

If the ordering temperatures T� and T� are different, and
if the assembly temperature T lies between them, then there
exists a thermodynamic driving force along a preferred di-
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FIG. 2. Thermodynamically preferred assembly pathways derived from Langevin evolution on the free energy surface Eq. �2�, with initial conditions
���0� ,��0��= �10−3 ,10−3�. Order parameter mobilities � and � are set to unity unless otherwise marked. Top: order parameters vs time; bottom: assembly
pathways �blue� plotted atop free energy contours �gray� with time as a parameter. Panels �a� show trajectories at two temperatures under conditions used to
generate Fig. 1�b�. At the higher temperature �T=1�, the nonclassical density-structure pathway is favored thermodynamically because the fluid phase ��
=0=�� is unstable to perturbations of density � but not to perturbations of structure �. Trajectories generated using structural mobilities �=1 �solid blue line�
and �=16 �dotted blue line� almost superpose. Cartoons depict the nature of three points along the trajectory. At the lower temperature �T=0.25�, by contrast,
the fluid phase is unstable in both directions in order parameter space, and no thermodynamic bias for nonclassical ordering exists. The trajectory followed
depends on order parameter mobilities. �b� Assembly at T=0.9 under conditions used to generate Fig. 1�c�. Here the structure-density pathway is favored
thermodynamically.
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rection of order parameter space, or, in other words, a ther-
modynamic impetus for nonclassical ordering. We can visu-
alize the thermodynamically preferred assembly pathway by
assuming evolution of the order parameters according to the
equations

�̇ = − ���feff��,�� �6�

and

�̇ = − ���feff��,�� . �7�

We assume the order parameter mobilities � and � to be
constant, and we imagine them to be directly related to par-
ticles’ translational and rotational diffusion constants, respec-
tively. It is likely that these approximations hold best in the
case of one-component molecular crystallization. In general,
order parameter mobilities will depend on the order param-
eters themselves, particularly whenever slow dynamics is en-
countered. Such is the case, for example, in models of sys-
tems undergoing gelation33 or vitrification;34 in systems in
which strong bonds are formed �e.g., in zeolite synthesis35�;
and in binary mixtures that exhibit slow interspecies
mixing.27,36 The dynamics considered here neglects several
other important features of real systems, such as the effects
of spatial diffusion, interfaces, and of assembly-impairing
kinetic traps. Interfaces confer a surface tension between
bulk phases, and can render order parameter mobilities an-
isotropic. In future work we will assess the extent to which

the effects of surfaces on assembly can be captured by a
Ginzburg–Landau expansion of the model defined by Eq. �1�,
and whether such expansions offer an alternative micro-
scopic route to “phase field” models of crystallization �see,
e.g., Refs. 37 and 38�. Here we focus on the simple dynamics
of Eqs. �6� and �7�. We argue that this dynamics reveals,
importantly, the thermodynamic preference for time-
dependent evolution of bulk order.

In Fig. 2�a� we show Langevin pathways at T=1 and T
=0.25 for model parameters of Fig. 1�b�. Interpreted literally,
the classical notion of assembly describes an approximately
straight line trajectory between start and end points in a
phase space of �� ,��. By contrast, at the higher temperature
the nonclassical “density-structure” pathway is dominant, re-
gardless of order parameter mobilities �pathways for �=1
and �=16 nearly superpose�, because the fluid H is stable to
perturbations of structure but not of density. At the lower
temperature the fluid is unstable in both directions of order
parameter space, and both classical and nonclassical path-
ways can be taken, depending upon order parameter mobili-
ties. The density-structure pathway, characteristic of certain
proteins’ crystallization, owes its existence to the liquid-
vapor critical point, as in the case of isotropic interactions. In
panel �b� we show preferred pathways at T=0.9 for the
model parameters of Fig. 1�c�. Here the nonclassical
“structure-density” pathway, characteristic of some melts,2 is
preferred, though rapid evolution of � results in near-
classical behavior.

V. INTERMEDIATE SOLID PHASES

The density-structure pathway in our model is driven by
the liquid-vapor critical point. However, recent work23,24

suggests that crystallization can be induced by assembly of a
dense phase possessing some of the symmetries of the crystal
even above the liquid-vapor critical temperature. To rational-
ize such behavior within the framework discussed here we
can add to Eq. �1� the nematic interaction term �Uij =
−Q2ninj cos�2�ij�, where �ij is the angle between neighbor-
ing particle orientations. The effective dimensionless Helm-
holtz free energy density for this augmented model is

feff��,�,�� = 1
2 �J�2 + Q�2 + Q2�2�

− T ln�1 + e��J�+�̃�I��,��� , �8�

where I�� ,��	0
2�d�e�Q� cos �+�Q2� cos�2��. Here �

	
n cos�2��� is a nematic order parameter. From this free
energy we find, via Taylor expansion, the ordering tempera-
ture for � to be T�=�2	Q2 /4. The phase diagram for K
=0.5, �=0.6, �2=1 is shown in Fig. 3�a�, labeled with the
ordering temperatures T�, T�, and T�; we focus on assembly
at T=0.9 �arrow�. Here we observe a stable ferromagnetic
solid phase S1��1 ,�1 ,�1�= �0.99,0.88,0.95� having free en-
ergy density �1.1, and an unstable nematic solid phase
S2��2 ,�2 ,�2�= �0.91,0.81,0� of free energy density �0.6. In
the absence of the nematic coupling �2 the ferromagnetic
solid �shown by line S1� in �a�� is not viable at T=0.9. When
�2=1 it becomes stable, but because T lies above T� and
below T� we observe �Figs. 3�b� and 3�c�� assembly of the
ferromagnetic phase S1 via the unstable nematic phase S2,
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FIG. 3. Thermodynamics �a� and thermodynamically preferred assembly
pathway �b� and �c� derived from Eq. �8�, for K=0.5, �=0.6, �2=1. Panel
�a� identifies two solid phases, a ferromagnetic phase S1 and a nematic phase
S2, in addition to the liquid-vapor coexistence curve. The assembly pathway
shown in panels �b� �order parameters vs time� and �c� �parametric plot in
order parameter space� is generated at T=0.9 by Langevin evolution on the
free energy hypersurface Eq. �8�, starting from ���0� ,��0� ,��0��
=10−3�1,1 ,1�, with equal order parameter mobilities. At this temperature
the fluid phase H��=�=�=0� is unstable to perturbations of nematic struc-
ture � but not to perturbations of ferromagnetic structure � �because T lies
below T� and above T�; see panel �a��. Assembly of the stable ferromagnetic
phase therefore occurs via the nematic phase. Cartoons depict the nature of
the solid phases.
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along the �−�−� pathway. Thus, assembly via a dense in-
termediate phase, whose symmetries are partially commen-
surate with the stable solid, occurs well above the liquid-
vapor critical temperature. While different in detail, this
behavior echoes the notion of assembly via metastable or-
dered intermediates considered in Ref. 24; here it occurs be-
cause the free energy structure local to the homogeneous
fluid phase favors assembly of the unstable solid phase S2,
rather than its stable counterpart S1.

VI. CONCLUSIONS

We have used mean field theory to study two models
prototypical of particles able to interact isotropically and an-
isotropically. While the approach considered here neglects
important effects of surfaces, molecular detail, and thermal
fluctuations, it reveals that complex behavior can be driven
by bulk free energy alone. We find that for a broad range of
parameters the free energy structures of these models favor
assembly of stable solid phases via intermediate phases, ei-
ther amorphous or ordered. For other parameter choices, by
contrast, assembly pathways are determined principally by
dynamical considerations. One can observe in such cases
classical pathways along which intermediate phases re-
semble the stable phase. The work presented here suggests a
simple microscopic framework within which to rationalize
and predict the assembly pathways of anisotropic particles.
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