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ABSTRACT

The structural approach to joint inversion, entailing com-
mon boundaries or gradients, offers a flexible and effective
way to invert diverse types of surface-based and/or crosshole
geophysical data. The cross-gradients function has been in-
troduced as a means to construct models in which spatial
changes in two distinct physical-property models are parallel
or antiparallel. Inversion methods that use such structural
constraints also provide estimates of nonlinear and nonu-
nique field-scale relationships between model parameters.
Here, we jointly invert crosshole radar and seismic travel-
times for structurally similar models using an iterative non-
linear traveltime tomography algorithm. Application of the
inversion scheme to synthetic data demonstrates that it better
resolves lithologic boundaries than the individual inversions
alone. Tests of the scheme on GPR and seismic data acquired
within a shallow aquifer illustrate that the resultant models
have improved correlations with flowmeter data in compari-
son with models based on individual inversions. The highest
correlation with the flowmeter data is obtained when the joint
inversion is combined with a stochastic regularization opera-
tor and the vertical integral scale is estimated from the flow-
meter data. Point-spread functions show that the most signifi-
cant resolution improvements offered by the joint inversion
are in the horizontal direction.

INTRODUCTION

To determine petrophysical properties, state variables, and struc-
ural boundaries, it might be necessary to combine information pro-
ided by models obtained from different geophysical data �e.g.,
ronicke et al., 2004; Bedrosian et al., 2007�. Interpretation of sever-
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l individually inverted data sets can be illuminating, but the results
sually are affected by the resolution limitations of each model.

For consistent interpretations of multiple geophysical models, it
ould be advantageous to have inversion tools that have similar for-
ulations of the inverse problem regardless of the type of geophysi-

al data being inverted. This would allow models to be coupled, as
ong as the data have comparable spatial support. By joint inversion,
e refer to coupled models that are obtained by simultaneously min-

mizing a misfit function that includes the data misfit of each data
ype. Joint inversion can improve the resolution of each geophysical

odel and provide models that are consistent with one another and
herefore easier to interpret �e.g., Gallardo and Meju, 2004�.

Joint inversion is not yet a standard tool in geophysical applica-
ions, mainly because robust and well-established petrophysical

odels that can be used to couple the models are usually available
nly for certain geophysical parameters, such as compressional and
hear waves speeds �Tryggvason et al., 2002�. Furthermore, petro-
hysical models often apply only in restricted geologic settings �e.g.,
en et al., 1981; Marion et al., 1992�. In addition, the parameters of
etrophysical models seldom can be constrained adequately by indi-
idual field data sets, so that fairly strong assumptions are required to
ouple models based on their petrophysical properties.

To avoid introducing questionable petrophysical models, joint in-
ersion methods have been developed for layered �1D� structures
hat are expected to have coincident layer boundaries and constant
roperties within each layer �e.g., Monteiro Santos et al., 2006�. A
atural extension to 2D and 3D applications has been to assume that
he earth can be divided into subvolumes of uniform properties with
eometries that are common for all physical properties in the inver-
ion �e.g., Hyndman and Gorelick, 1996; Musil et al., 2003�. Such
pproaches are certainly useful, but physical properties can vary
radually in space, and not all data necessarily are sensitive to the
ame changes in lithology and state variables. Furthermore, the zo-
ations must be updated continuously, making the inversions com-
utationally expensive.
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G30 Linde et al.
In Occam’s inversion �Constable et al., 1987�, fine model discreti-
ations are used. The inverse problem is regularized by minimizing,
or example, model roughness with the constraint that the simulated
odel response is close to a given target data misfit. Haber and Old-

nburg �1997� introduce a joint inversion scheme to find models that
re structurally similar, in the sense that spatial changes in models
ccur at the same location. This scheme is applicable to overparam-
terized 2D and 3D models. In essence, it is based on minimizing the
quared difference of a weighted Laplace operator of the two mod-
ls.

Gallardo and Meju �2003� further developed the framework of the
tructural approach to joint inversion proposed by Haber and Olden-
urg �1997� by defining the cross-gradients function t�x,y,z� as

t�x,y,z� � � mA�x,y,z� � � mB�x,y,z� , �1�

here �mA�x,y,z� and �mB�x,y,z� are the gradients of models mA

nd mB at location x, y, and z, and � indicates the cross product. By
orcing the discretized cross-gradients function to be close to zero at
ach location and in each direction during the inversion process, ei-
her the gradients of the two resulting models will be parallel or anti-
arallel to each other or one or both of the models does not change.
he boundaries of the resulting models have the same orientation,

hus facilitating geologic interpretations. An advantage compared
ith the method of Haber and Oldenburg �1997� is that constraints
ased on the cross-gradients function do not focus on the magnitudes
f the changes, which are difficult to estimate a priori and might ne-
essitate some tuning parameters but in a common direction. The va-
idity of imposing the cross-gradients function to be zero is dis-
ussed by Linde et al. �2006a� in the context of electrical properties.

The cross-gradients function first was employed in 2D for joint in-
ersion of surface-based electrical resistance tomography �ERT�
nd seismic refraction profiles collected over weathered granodiorit-
c bedrock overlain by mudstone �Gallardo and Meju, 2003; 2004�.
he same seismic refraction data later were inverted jointly with
ontrolled-source audio magnetotelluric data �Gallardo and Meju,
003�. Recently, Gallardo �2007� proposed an extension of the
ross-gradients function that allows simultaneous inversion of more
han two data types. Gallardo �2007� then used this scheme in two di-

ensions to jointly invert surface-based P-wave and S-wave travel-
imes, ERT, and magnetic data.

Tryggvason and Linde �2006� presented the first 3D application of
oint inversion based on the cross-gradients function. By jointly in-
erting P- and S-wave traveltimes in a synthetic local earthquake to-
ography experiment, they found that the resulting anomalous
P/VS ratios were defined better than those obtained by separate in-
ersions or by joint inversion based on damping the solution around
predefined VP/VS ratio. The efficiency of this approach was demon-
trated on seismological data collected in the surroundings of the
engill volcanic system on Iceland �Tryggvason and Linde, 2007�.
inde et al. �2006a� jointly inverted crosshole ground-penetrating

adar �GPR� and ERT data collected in unsaturated sandstone in
hree dimensions. Scatter plots of the jointly inverted models were
sed along with petrophysical models to infer a zonation and to de-
ermine possible ranges of the electrical formation factors, water
ontents, and effective grain radii of sediments within each of the
ones. The resulting estimates were consistent with gamma logs,
easured clay fractions, and electrical formation factors in a cored

orehole.
Linde et al. �2006a� presented the only study so far in which geo-

hysical models obtained from joint inversions using the cross-gra-
ients function were evaluated against borehole data. However, their
xample provided by the unsaturated Sherwood Sandstone was lim-
ted by the 1D character of the geology. We acknowledge that the
ross-gradients method needs to be applied to additional well-instru-
ented study sites before it is accepted widely.
The objective of our study was to test whether a joint inversion

ould improve the resolution of lithologic boundaries compared
ith individual inversions of the same data sets. Here, we present the

esults of jointly inverted crosshole radar and seismic traveltimes re-
orded at the South Oyster study site in Virginia �Chen et al., 2001;
ubbard et al., 2001�, where the geology consists of saturated, un-

onsolidated sediments with 3D heterogeneity. To guide the choice
f inversion parameters, we calculate trade-off curves between the
eight given to the cross-gradients constraint in the objective func-

ion and the resulting structural similarity of the resulting model as
ell as between the weight given to the cross-gradients constraints

nd the weight given to the regularization operators. Finally, the im-
roved resolution offered by the joint inversion approach is visual-
zed with point-spread functions calculated in the central part of the
nterwell region.

METHODS

nversion method

Our formulation of the joint inverse problem closely follows that
eveloped by Linde et al. �2006a� for use with ERT and GPR data. In
he algorithm, the first-arrival traveltimes are computed with the fi-
ite-difference �FD� algorithm time3d �Podvin and Lecomte, 1991;
ryggvason and Bergman, 2006�. Ray tracing is performed by a pos-

eriori back propagation perpendicular to the wavefronts from the re-
eivers to the transmitters �Vidale, 1988�.

Our objective function has three competing components: the data
t resulting from two piecewise constant individual slowness mod-
ls mA and mB weighted by the estimated data errors; regularization
f the individual models by penalizing model complexity �the rela-
ive weights given to the regularization operators are determined by

p
A and �p

B, where small values provide a strong relative weight com-
ared with the weight given to data misfit in the objective function�;
nd coupling of the two models by enforcing structural similarity via
ross-gradients constraints. The weight given to this coupling term
s controlled by � that scales the predicted cross-gradients function
or a proposed model. A high � gives a large relative weight to struc-
ural similarity in comparison with the regularization and the data

isfit terms. These objectives are formulated in one objective func-
ion that we seek to minimize, at each iteration, in a least-squares
ense �see equations 8–9 in Linde et al., 2006a� with the iterative
onjugate gradient algorithm LSQR �Paige and Saunders, 1982�. In-
ividual inversions are performed by considering only one data set
nd model at a time �see equations 1–2 in Linde et al., 2006a�.

We regularize the inverse problem by seeking either a model that
as small second derivatives �i.e., smoothness constraints� or is
lose to a given stationary exponential covariance function. Linde et
l. �2006a� show how such stochastic regularization operators can be
alculated efficiently. To include the structural constraints in our ob-
ective function, we discretize the cross-gradients function, equation
, with a central finite-difference scheme, which provides better re-
ults than the forward-difference scheme used in previous work
e.g., Gallardo and Meju, 2004�. The cross-gradients function for a
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Joint inversion of traveltime data G31
andidate model is estimated using a first-order Taylor expansion
round the cross-gradients function at the previous iteration �see
quation 7 in Linde et al., 2006a�.

nversion strategy

The goal of the inversion is to construct two models so that each
odel satisfies the data within predefined data errors �i.e., the
eighted rms of each of the models is very close to 1, indicating that

he data are fitted to their estimated error levels� for a given �, with
he smallest possible values of �p

A and �p
B. For the joint inversion of

adar and seismic traveltimes, in which the same type of traveltime
omography is employed and in which the relative variations in the

odel are expected to be similar, we assign �p
A � �p

B � �p. A simple
ay to test this assumption is to perform individual inversions to as-

ure that �p
A ��p

B at the final iteration stage. When considering meth-
ds with significantly different resolution characteristics or relative
ariations in the parameters inverted for, we recommend a line
earch for both �p

A and �p
B at each iteration �Linde et al., 2006a�. To

implify the inversion process, we keep � fixed during the inversion
nd choose it so that the objective function is dominated by the terms
hat force the linearized cross-gradients function to be close to zero
i.e., � is large�. In the section on joint inversions, we investigate
ow the choice of � affects the resulting model.

The joint inverse problem is nonlinear, not only because the ray-
aths depend on the slowness structure but also because the cross-
radients function is nonlinear �see equation 1�. The derivatives of
he cross-gradients function are valid only in the vicinity of the pre-
ious model, and care must be taken that the mod-
l updates are made within the region where the
inearized cross-gradients function is reasonably
alid.

To avoid large model updates outside the re-
ion where the linearizations are valid, we keep
p small in the first few iterations so that we solve
problem in which the regularization operator is
eighted heavily relative to the data fit. In prac-

ice, we choose �p for p � 1 such that the relative
mprovement in the data fit after one iteration is
nly approximately 10%. In each iteration, we
valuate three candidate models derived from the
nversion for �p/1.3, �p, and 1.3��p, respective-
y. We retain the model with the lowest rms or the

odel with the smallest �p that meets the target
isfit. The trade-off parameter corresponding to

he preferred model will be the new �p in the next
teration. When the target data misfit has been
eached, we perform additional inversions in
hich we seek to decrease �p under the constraint

hat the resulting models explain the data within
he target data misfit. These additional inversions,
n which only minor changes between iterations
ccur, also further decrease the value of the cross-
radients function. This approach, in which we
nly gradually change �p, requires more inver-
ion steps than does a full line search at each itera-
ion �Linde et al., 2006a�, but it allows for better
andling of the nonlinearity of the cross-gradi-
nts function.
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To visualize the results, we introduce a normalized cross-gradi-
nts function as

t��x,y,z� �
�mA�x,y,z� � � mB�x,y,z�

�mA�x,y,z�� · �mB�x,y,z�� , �2�

here the cross-gradients function is weighted by the absolute val-
es of the models and where t��x,y,z� has units of m�2 regardless of
he units of the inverted parameters. In the 2D examples considered
elow, we visualize the y-component ty� in the interwell area.

SYNTHETIC EXAMPLE

A synthetic example is used to demonstrate the impact of the
ross-gradients constraints on the solution of the inverse problem.
igure 1a shows a GPR velocity model that consists of three homo-
eneous rectangular zones of high �100 m/�s� and low �50 m/�s�
elocity embedded in a homogeneous background �75 m/�s�. Fig-
re 1d shows a matching seismic velocity model in which the high
nd low velocities of 2 km/s and 1 km/s, respectively, are embed-
ed in a homogeneous background of 1.5 km/s.Adiscretization cell
ize of 0.25�0.25 m2 is used for both forward and inverse model-
ng, yielding 1750 model cells for each model type. The two models
re characterized by sharp boundaries that are difficult to resolve us-
ng individual smoothness-constrained inversions. These models il-
ustrate a case in which the petrophysical relationships between the
adar and seismic velocities are nonunique.
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G32 Linde et al.
Our synthetic experiment involved seismic and GPR pulses trans-
itted at intervals of 0.25 m in the 0.125–12.125-m depth range of a

orehole located along the left side of the model. The resulting syn-
hetic traveltimes were computed in the high-frequency limit
Vidale, 1988; Podvin and Lecomte, 1991� for a set of receivers with
he same interval and depth range in a borehole located on the right
ide of the model. We restricted the inversions to the 2095�2 rays
ith angles less than 45°. This is done often in field applications to

void fast GPR raypaths within boreholes and because traveltime
alculations typically are based on the assumption that the GPR
ransmitter acts like a point source, thereby overestimating veloci-
ies when inverting data with high angular coverage. The traveltimes
ere contaminated with uncorrelated Gaussian noise with standard
eviations of 0.5 ns and 20 �s for the radar and seismic traveltimes,
espectively.

The resulting radar and seismic velocity models of the individual
nversions are shown in Figure 1b and e. The models are smeared,

aking it difficult to determine the actual geometry of the zones. The
odels also indicate that the locations of the highest velocities in the

ommon high-velocity zone differ for the seismic and radar models.
he radar and seismic velocity estimates are plotted for every collo-
ated model pair between boreholes �Figure 2a�. This scatter plot
eems to indicate that the subsurface is composed of three anoma-
ous zones.

The resulting radar and seismic velocity models of the joint inver-
ion are shown in Figure 1c and f. The three zones are less smeared
ut, and the geometries of the upper and lower zones correspond
ell with the actual geometries. In addition, the common high-ve-

ocity zone in Figure 1c and f has fairly uniform velocities. The scat-
er plot in Figure 2b shows very little scatter in the direction normal
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igure 2. Scatter plots of �a� individually and �b� jointly inverted
odels shown in Figure 1. The large dots in �a� and �b� are the true

elocity values, and the small dots with the same color coding are
anges of the tomographic estimates at the corresponding locations.
c� and �d� Corresponding scatter plots in which the true velocity val-
es have a smaller range, as indicated by large dots.
o the main axes of the velocity gradients, and the anomalies there-
ore can be picked by eye. For additional examples and discussions
llustrating this situation, see Gallardo and Meju �2004, 2007�, Linde
t al. �2006a�, and Tryggvason and Linde �2006�. All models have a
eighted rms very close to one.
As expected, the models constructed from the individual inver-

ions and the joint inversion all resolve the high-velocity zones bet-
er than the low-velocity zones. Figure 2b indicates that the joint in-
ersion resolves the upper zone of high seismic velocity better than
he corresponding zone of low radar velocity, and that it resolves the
ower zone of high radar velocity better than the corresponding zone
f low seismic velocity. However, the joint inversion improves the
eometry of the low-velocity zones �e.g., compare the low-velocity
ones in Figure 1b and c�.

The velocity contrasts considered in the example above are larger
han the ones encountered in most environmental applications. Fig-
re 2c and d shows the scatter plots resulting from individual inver-
ions and joint inversion for a model in which the velocity range of
he radar model was 70–90 m/�s and for the seismic model
.4–1.8 km/s. The low-velocity zones are resolved better now be-
ause ray coverage in low-velocity regions is improved.

FIELD EXAMPLE

We now consider radar and seismic traveltime data collected be-
ween wells S14 and M3 in the South Oyster focus area, Virginia
Hubbard et al., 2001�. Radar data were collected using a Pul-
eEKKO 100 system with 100-MHz nominal-frequency antennae
nd a transmitter and receiver spacing of 0.125 m in each borehole.
eismic data were collected using a Geometrics Strataview seismic
ystem, a Lawrence Berkeley National Laboratory piezoelectric
ource, and an ITI hydrophone sensor string. The central frequency
f the pulse was 4000 Hz, with a bandwidth of approximately 1000
o 7000 Hz, and the source and geophone spacings in the boreholes
ere 0.125 m. These high-resolution data sets consist of 3248 radar

nd 2530 seismic traveltimes.
We used a cell-size discretization of 0.125�0.125 m2 in our for-

ard modeling and a model discretization of 0.25�0.25 m2 for the
nverse solution. We defined a target data misfit of 0.5 ns for the ra-
ar traveltimes and 20 �s for the seismic traveltimes.

ndividual inversions

Individual inversions were carried out using two types of regular-
zation. The first was an anisotropic roughness operator that penaliz-
s spatial variations in the horizontal direction five times as much as
n the vertical direction. The second was a stochastic regularization
perator �Linde et al., 2006a� based on an exponential model with a
ertical integral scale of 0.28 m and an anisotropy factor of five,
hich is the model proposed and used by Hubbard et al. �2001�. Be-

ause the marine shoreface deposits at the Oyster site are expected to
ave a longer horizontal than vertical correlation length, assuming a
ertain anisotropy when defining the regularization operators pro-
ides geologically more reasonable models compared with isotropic
egularization.

The individually inverted smoothness-constrained radar �Figure
a� and seismic �Figure 3e� velocity models contain a common low-
elocity zone in the upper 2 m and a common high-velocity zone at
–5 m. The radar velocity model also includes a smaller low-veloci-
y zone at 3 m, which is much less pronounced in the seismic model.
he radar model includes a low-velocity zone at 5.5–6 m that is not
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Joint inversion of traveltime data G33
een in the seismic model, possibly because of low ray coverage in
hat depth interval. The two models are not particularly similar in
tructure, as shown by the size of the cross-gradients function �Fig-
re 3i�. A scatter plot of velocities presented by the two models indi-
ates an overall positive relationship �Figure 3m� with a correlation
oefficient of 0.83.

The individually inverted radar �Figure 3b� and seismic �Figure
f� velocity models based on stochastic regularization include the
ame main zones as those based on smoothness-constrained inver-
ions. However, the former models are more variable because sto-
hastic regularization operators represent a combination of general
moothness constraints �i.e., providing smooth models� and damp-
ng constraints �i.e., providing uncorrelated small-scale variability
round an a priori model� �Maurer et al., 1998�. The short vertical in-
egral scale used here makes the zones thinner, more variable, and

ore pronounced. Models based on stochastic regularization tend to
plit the upper low-velocity zones into two horizontally aligned
ones. A similar behavior is found in the high-velocity zone at
–5 m. Again, a scatter plot of the radar and seismic velocities �Fig-
re 3n� indicates a strong correlation, with a correlation coefficient
f 0.86.
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igure 3. Radar velocity models from the Oyster site: �a� individual i
ith stochastic regularization; �c� joint inversion with anisotropic sm
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oint inversions

A series of joint inversions with stochastic regularizations was
arried out with different weights � given to the cross-gradients con-
traints �see equations 8–9 in Linde et al., 2006a�. Figure 4a indi-
ates that the smallest value of the cross-gradients function is ob-
ained for a � of 10,000, which results in models in which the cross-
radients function is approximately 100 times smaller than for the
ndividual inversions. Figure 4b shows that a � in the range of 100 to
0,000 causes the trade-off parameter in the final iteration �p to be in-
reased by 30% compared with the individual inversions. As �
rows above 10,000, �p is increased significantly to achieve a model
hat lies within the target data misfit. The inversion results presented
elow were performed with a � of 10,000, corresponding to models
hat are structurally the most similar and with spatial variabilities
hat are only slightly larger than those of the individual inversions.

The models obtained by jointly inverting radar �Figure 3c� and
eismic �Figure 3g� traveltimes with anisotropic smoothness con-
traints contain the same main zones as in the individually inverted
odels. However, the resolution is higher because more small-scale

ariability is present and the boundaries between the different zones
re sharper. The low-velocity zone in the upper 2 m of the seismic
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odel is divided into two.Ahigh-velocity region between 2–3 m on
he left side of the model, which is indicated only weakly in the indi-
idually inverted models, appears more clearly in the jointly invert-
d model. The high-velocity zone at 4 m becomes thinner and more
longated, and the modeled velocities are higher than those in the in-
ividually inverted models. Finally, the low-velocity zone at
.5–6 m in the radar velocity model now appears in the seismic
odel.
The associated scatter plot �Figure 3o� is less scattered and there-

y easier to interpret than those of the individually inverted models
Figure 3m and n�. As expected, a strong positive correlation exists
etween the radar and seismic velocities. However, there are also
ones in which the relationship changes, thus demonstrating the
exibility of the structural approach to joint inversion in dealing
ith nonstationary apparent petrophysical relationships. The corre-

ation coefficient is 0.88.
The models obtained by jointly inverting radar �Figure 3d� and

eismic �Figure 3h� traveltimes with stochastic regularization opera-
ors are spatially the most variable, but they contain mostly the same
eatures as observed in models based on anisotropic smoothness
onstraints. The associated scatter plot �Figure 3p� indicates a strong
inear correlation between the radar and seismic velocities, with a
orrelation coefficient of 0.90.

The values of the resulting cross-gradients function are approxi-
ately 100 times smaller for the joint inversion using the smooth-

ess constraints �Figure 3k� and the stochastic regularization �Figure
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igure 4. �a� The mean value of �t�� and �b� �p for different choices of
. Values correspond to those of the final iteration of the inversion
ith stochastic regularization operators.
l� compared with the corresponding individual inversions �Figure
i and j�. The zones of high and low cross-gradients values are also
uch smaller in the joint inversions than in the individual inver-

ions.
Table 1 demonstrates that the rms data fits for all models are quite

imilar. The joint inversions decrease the spread in the scatter plots
ignificantly �Figure 3o and p�, but they do not markedly change the
rends that appear in the scatter plots for the individual inversions
Figure 3m and n�. This result indicates that the regularization opera-
or also is very important, because it will influence any zonation or
etrophysical interpretation of the models significantly. The visual
imilarity between the individual inversions and the joint inversions
ndicates that the joint inversion is not getting trapped in local mini-
a.

mage appraisal

To investigate the resolution characteristics of the resulting mod-
ls, we calculate the point-spread function �PSF� for the final inver-
ion models based on the stochastic regularizations. The PSF is a
ow of the resolution matrix �e.g., Alumbaugh and Newman, 2000�.
t can be interpreted as the spatial averaging filter that relates the true
nderlying model to the resulting model estimate at a specific loca-
ion. The PSFs are calculated with the LSQR algorithm in a method
nalogous to the one presented by Alumbaugh and Newman �2000�
or the conjugate gradient method and with the assumption that the
ross-gradients function for the true model is zero. The PSFs calcu-
ated for the joint inversions are normalized first with regard to the

ean values of the radar and seismic slownesses. The PSFs then are
ormalized with regard to the largest value, in accordance with
lumbaugh and Newman �2000�.
Horizontal and vertical profiles through the normalized PSFs at a

entral location �depth � 3.2 m, distance � 3.4 m� are shown in
igure 5. The individual inversions have similar PSFs for the radar
nd seismic inversions. A much poorer horizontal �Figure 5a and c�
han vertical resolution �Figure 5b and d� is evident. The profile of
he PSF in the horizontal direction is narrower for the joint inversion
Figure 5a and c� than for the individual inversions, indicating a
igher resolution. In addition, the PSF constructed for the joint in-
ersion has no side lobes in the vertical direction �Figure 5b and d�.

able 1. Final rms value with regards to a target data fit of
.5 ns for radar traveltimes and 20 �s for seismic
raveltimes.

nversion type
rms of radar

model
rms of seismic

model

ndividual inversion,
nisotropic smoothness
onstraints

0.99 0.97

ndividual inversion,
tochastic regularization

0.95 0.98

oint inversion,
nistropic smoothness
onstraints

0.98 0.99

oint inversion,
tochastic regularization

0.97 0.97
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Joint inversion of traveltime data G35
The radar model from the joint inversion is dependent at this loca-
ion only on the surrounding radar model and not on the seismic

odel �Figure 5a and b�. The seismic model is affected here primari-
y by the neighboring seismic model, but it also is affected strongly
y the surrounding radar model. This observation can be explained
y studying the models at this location. The radar model indicates a
ow-velocity zone with a significant gradient that influences the re-
ulting seismic model through the cross-gradients constraints �see
quation 7 in Linde et al., 2006a�. The seismic model is fairly uni-
orm at this location and therefore does not impose any significant
estrictions on the radar model. The PSFs constructed for the joint in-
ersion are thus strongly dependent on the neighboring values of the
eismic and radar slowness models. This means that the PSFs are
eaningful only if they are evaluated around the final model esti-
ate.

omparison with flowmeter data

Hubbard et al. �2001� used tomograms from the Oyster site along
ith flowmeter data to create a hydraulic conductivity model. The
owmeter data collected in the boreholes were kriged first to provide
prior model of hydraulic conductivity. Relationships between geo-
hysical model parameters and hydraulic conductivity were devel-
ped using collocated tomographic estimates and flowmeter data.
hese relationships had a linear correlation coefficient of 0.68 �be-

ween hydraulic conductivity and radar velocity� and 0.67 �between
ydraulic conductivity and seismic velocity�. A Bayesian model
hen was used to update this prior model based on the observed cor-
elation between flowmeter data and collocated geophysical model
arameters. Scheibe and Chien �2003� found that model predictions
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igure 5. Normalized PSFs for the final radar models in the �a� horizo
irection and �c� and �d� for the corresponding seismic models. Dotte
les of PSFs from individual inversions with stochastic regularizat
ate PSFs for radar parameters from joint inversion with stochastic
ashed lines indicate the corresponding seismic parameters.
ased on stochastic indicator simulations conditioned to these esti-
ates were superior to those based on stochastic indicator simula-

ions conditioned to the flowmeter data alone.
The usefulness of geophysical tomograms for constraining hydro-

ogic models depends strongly on the intrinsic relationships between
he geophysical properties and hydraulic conductivity �e.g., Linde et
l., 2006b�, here most likely through a common link with porosity
e.g., Carcione et al., 2007�. If the models based on the joint inver-
ions correlate better with the flowmeter data, it should be possible to
mprove the hydraulic conductivity model of Hubbard et al. �2001�
nd therefore also the solute transport predictions.

To evaluate whether the joint inversions are likely to provide bet-
er models than those supplied by the individual inversions, we have
ompared hydraulic conductivity estimates based on flowmeter data
t borehole M3 �located near the right side of the tomographic mod-
ls in Figure 3� with tomographic estimates located two model cells
way from the borehole. The flowmeter data are shown in Figure 6a,
nd the collocated radar velocity and seismic velocity models are
hown in Figure 6b and c. To facilitate comparison, we highlight
hree depth intervals in which the hydraulic conductivity data dis-
lay a local minimum �L1-L3� and three in which they display a lo-
al maximum �H1-H3�.

The radar velocity model based on individual inversion with sto-
hastic regularization accurately indicates five zones, whereas the
adar model based on anisotropic smoothness constraints accurately
ndicates only one zone. The seismic velocity model based on sto-
hastic regularization accurately indicates five zones, whereas the
eismic model based on anisotropic smoothness constraints does not
ndicate any of those zones. The correlation coefficients of the collo-
ated models based on the separate inversion and the flowmeter data
re higher for the stochastic regularization �0.72 for radar velocity

and 0.60 for seismic velocity� than for the aniso-
tropic smoothness constraints �0.63 for radar ve-
locity and 0.49 for seismic velocity�.

The models based on the joint inversion with
stochastic regularization indicate all six zones.
The radar model based on anisotropic regulariza-
tion indicates three zones, and the seismic veloci-
ty model indicates four zones. The correlation co-
efficients of the collocated models based on joint
inversion and flowmeter data are higher when us-
ing stochastic regularization �0.78 for radar ve-
locity and 0.69 for seismic velocity� than when
using anisotropic smoothness constraints �0.67
for radar velocity and 0.52 for seismic velocity�.

These results, which are summarized in Table
2, indicate that joint inversion with stochastic
regularization at this site offers higher resolution
and accuracy in determining lithologic changes
than do the other inversion approaches consid-
ered here. Stochastic regularization operators
based on borehole data �flowmeter data� provided
better models than those supplied by traditional
anisotropic smoothness constraints. Indeed,
changes associated with varying the regulariza-
tion operator seem to improve the resulting mod-
els slightly more than the joint inversion. Individ-
ually, the radar and seismic traveltime data could
not provide the necessary resolution to image the
small-scale variability revealed by the flowmeter
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G36 Linde et al.
ata. Regularization based on flowmeter data from the site and the
ssumption that the two models are structurally similar improves the
esolution of the resulting models.

DISCUSSION

The resulting inversion models are qualitatively similar, and they
each the target misfit for all inversion types considered. This indi-
ates that the nonlinearity of the cross-gradients function does not
ause the joint inversion process to be trapped in local minima for
he examples considered here. When performing this type of joint in-
ersion, we recommend first to perform individual inversions to as-
ess whether the models appear to be structurally similar. In addi-
ion, the individual inversions help to define a target data misfit and
o assure that �p

A ��p
B. The joint inversion is expected to focus the im-

ges obtained from the individual inversions. If the joint and individ-

able 2. Extent to which low-permeability (L1-L3) and high-p
H1-H3) zones can be identified in the different inversion mod
f the correlation coefficients (�) between flowmeter data and
nversion models.

Separate inversions Joint inv

Radar models Seismic models Radar models

Smooth Stochastic Smooth Stochastic Smooth Stochastic

1 � � � � � �

1 � � � � � �

2 � � � � � �

2 � � � � � �

3 � � � � � �

3 � � � � � �

0.63 0.72 0.49 0.60 0.67 0.78
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igure 6. �a� Flowmeter data for hydraulic conductivity in borehole
ight side of the tomograms in Figure 3�; �b� tomographic radar veloci
l cells away from M3; �c� tomographic seismic velocity models tw
rom M3. The red solid and dotted lines in �b� and �c� represent mod
ersion model with stochastic regularization and anisotropic smooth
pectively. The black solid and dotted lines represent the correspondi
ividual inversions. The shaded zones �L1-L3� denote locations in
ydraulic conductivity has a local minima and the zones �H1-H3� in
axima.
al inversion models are very different, that likely indicates that the
wo physical properties under consideration are not structurally sim-
lar or that the model updates at the early iteration steps have been
oo large.

The best way to choose � when performing the joint inversions is
o perform a series of inversions with different choices of � �see Fig-
re 4�. The resolution improvements offered by the joint inversion
ary from case to case and throughout the model domain because
hey are dependent largely on the spatial variations of the physical
arameters we wish to recover. To evaluate the resolution improve-
ents, we recommend calculating PSFs at selected locations �see
igure 5�, as suggested by Alumbaugh and Newman �2000�. We ex-
ect that some of the oscillations in the horizontal profiles of the PSF
e.g., Figure 5c� are caused by the discretization of the cross-gradi-
nts constraints, which operates on neighboring model cells only.
his problem could be avoided if the cross-gradients constraints

were discretized on the same scale as the stochas-
tic regularization operator.

The stochastic regularization operator defines
a presumably known scale on which structure is
resolved. Large integral scales will result in large-
scale features with large amplitudes, whereas
small integral scales will result in a heavily
damped solution with much small-scale variabili-
ty �see Maurer et al., 1998, for an illustration�.
This implies that the magnitudes exhibited in the
scatter plots of radar and seismic velocities �e.g.,
Figure 3p� are dependent on the regularization
operator. The synthetic example also shows that
earth models with large variability �e.g., Figure
1a and d� will introduce bias in the resulting scat-
ter plots �see Figure 2b� because the velocity of
low-velocity zones will be overestimated. These
effects must be considered when making petro-
physical interferences from such scatter plots
�e.g., Linde et al., 2006a�.

The sharper boundaries and the more variable
models offered by the joint inversion with sto-
chastic regularization are likely to improve flow
and transport predictions significantly if used to
constrain hydrologic models compared with us-
ing individual inversions with smoothness con-
straints. In the future, we plan to develop new
strategies to infer the underlying geometry and
physical properties of the earth from geophysical
models resulting from joint inversion. The result-
ing method will be used to parameterize a 3D
flow and transport model at an active research
site.

CONCLUSIONS

We used the cross-gradients function to devel-
op an iterative nonlinear traveltime tomography
algorithm that jointly inverts crosshole seismic
and GPR traveltimes. From a synthetic example,
we conclude that for structurally similar models,
the joint inversion improves the determination of
lithologic boundaries compared with models
based on individual inversions.
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The inversion method was applied to crosshole GPR and seismic
raveltime data collected in an unconsolidated, saturated environ-

ent. The radar and seismic velocity models based on individual in-
ersions indicated a strong structural similarity. The magnitudes of
he cross-gradients function for the models based on the joint inver-
ion were approximately 1% of the individually inverted models.
he jointly inverted models were not only structurally more similar,
ut they also displayed larger spatial variability for a given data fit.

We used flowmeter data collected in one of the boreholes to assess
hether the stochastic regularization and the joint inversion could

mprove the resulting models as indicators of geologic variability.
e identified three zones in which flowmeter data indicated local
inima in hydraulic conductivity and three zones indicating local
axima. The joint inversion based on the stochastic regularization
as the only one that accurately located all six zones. Because to-
ographic models can be used to constrain hydrologic flow and

ransport models, we conclude that if structural similarity can be es-
ablished, then the structural approach to joint inversion and the use
f borehole data to determine regularization operators potentially
an improve such hydrologic models.

We recommend this approach to joint inversion �1� when models
ased on individual inversions are structurally similar and �2� when
tructural similarity of geophysical properties can be expected from
etrophysical considerations.
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