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ABSTRACT

Accurate characterization of near-surface soil water content is vital for guiding
agricultural management decisions and for reducing the potential negative environmental

impacts of agriculture. Characterizing the near-surface soil water content can be difficult, as this

parameter is often both spatially and temporally variable, and obtaining sufficient

measurements to describe the heterogeneity can be prohibitively expensive. Understanding

the spatial correlation of near-surface soil water content can help optimize data acquisition and

improve understanding of the processes controlling soil water content at the field scale. In this

study, ground penetrating radar (GPR) methods were used to characterize the spatial

correlation of water content in a three acre field as a function of sampling depth, season,
vegetation, and soil texture. GPR data were acquired with 450 MHz and 900 MHz antennas,

and measurements of the GPR groundwave were used to estimate soil water content at four

different times. Additional water content estimates were obtained using time domain

reflectometry measurements, and soil texture measurements were also acquired. Variograms

were calculated for each set of measurements, and comparison of these variograms showed that

the horizontal spatial correlation was greater for deeper water content measurements than for

shallower measurements. Precipitation and irrigation were both shown to increase the spatial

variability of water content, while shallowly-rooted vegetation decreased the variability.
Comparison of the variograms of water content and soil texture showed that soil texture

generally had greater small-scale spatial correlation than water content, and that the variability

of water content in deeper soil layers was more closely correlated to soil texture than were

shallower water content measurements. Lastly, cross-variograms of soil texture and water

content were calculated, and co-kriging of water content estimates and soil texture

measurements showed that geophysically-derived estimates of soil water content could be used

to improve spatial estimation of soil texture.

Introduction

Accurate estimates of soil water content are

important for maximizing crop yield, efficiently apply-

ing irrigation, and minimizing the potential environ-

mental impacts of farming. Crop yield is partially

influenced by soil water content; crop yield will decrease

if the soil water content is below a crop-specific range

(van Wijk, 1988; Williams et al., 1990; Dry et al., 2000).

Crop yield is also affected by fertilization, and the soil

must have a favorable water content to allow plants to

fully absorb the nutrients in fertilizers and to achieve

high nutrient efficiency (Fageria, 1992). Thus, crop yield

can be maximized and nutrients can be applied most

efficiently when the soil water content is well character-

ized across a field. In addition to crop yield, the quality
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of some crops, such as wine grapes, partially depends on

soil water content, so this parameter is regulated to

ensure that it remains in the appropriate range.

Monitoring of the soil water content is also needed to

ensure efficient use of irrigation water, where the

scheduling and volume of irrigation must be optimized

to appropriately allocate limited water supplies. Finally,

knowledge of the soil water content can help farmers

reduce the potential negative environmental impacts of

agriculture such as salinization or groundwater degra-

dation (when excess irrigation carries fertilizers, pesti-

cides, and salts into the saturated zone) (Rangeley,

1987).

The spatial and temporal variability of the near-

surface soil water content has been well documented at a

range of scales and using several different methods of

measurement. Measurements of water content have

been acquired at scales ranging from a single field to

several hectares using gravimetric sampling, time

domain reflectometry (TDR), capacitance sensors, and

neutron probes (Bouten et al., 1992; Grayson et al.,

1997; Famiglietti et al., 1998; Western et al., 1998;

Western et al., 1999; Petrone et al., 2004; De Lannoy et

al., 2006). Some studies have used estimates of soil water

content from remote sensing methods to explore water

content variability on a larger scale (Vischel et al., 2008),

while other researchers have used data simultaneously

acquired from ground-based and remote sensing tech-

niques (Famiglietti et al., 1999; Bosch et al., 2006;

Famiglietti et al., 2008). Vertical measurements of soil

water content have also been acquired to observe the

changes in water content variability with depth (Hupet

and Vanclooster, 2002; Bosch et al., 2006; De Lannoy et

al., 2006). Collectively, the many studies of soil water

content variability have shown that near-surface soil

moisture is a function of spatially and sometimes

temporally variable properties such as soil texture, soil

depth, topography, vegetation, precipitation, evapo-

transpiration, and agricultural practices.

The variability of soil water content makes

accurate characterization of this parameter difficult at

large scales (Western and Blöschl, 1999). Conventional

techniques for monitoring the soil water content (i.e.,

gravimetric sampling, neutron probes, TDR, capaci-

tance probes, and tensiometers) are point measure-

ments, and it is often prohibitively expensive to collect

sufficient measurements to accurately image the water

content at large scales (Hillel, 1997; Vischel et al., 2008).

An alternative to conventional techniques is microwave

remote sensing methods, which can rapidly acquire

estimates of water content in the uppermost 0–5 cm of

the subsurface over large areas (Famiglietti et al., 2008).

However, remote sensing techniques cannot provide

water content estimates if significant vegetation is

present (Famiglietti et al., 1999), and the resolution of

remote sensing estimates is typically between tens of

meters to 50 km (Vischel et al., 2008). Also, remote

sensing data often require ground truth measurements

of water content for calibration and validation (Fam-

iglietti et al., 1999).

An alternative to both conventional point mea-

surement techniques and remote sensing is soil water

content estimation using non-invasive geophysical tech-

niques such as ground penetrating radar (GPR). GPR is

a high-frequency electromagnetic technique that has

been used to acquire accurate estimates of soil water

content at a variety of scales (Huisman et al., 2003).

GPR groundwaves are especially useful for rapidly

acquiring very high-resolution estimates of soil water

content in the shallow subsurface over large areas

(Lesmes et al., 1999; Huisman et al., 2001; Hubbard et

al., 2002; Galagedara et al., 2003; Grote et al., 2003;

Huisman et al., 2003; Galagedara et al., 2004; Galage-

dara et al., 2005a; Hubbard et al., 2006). As shown in

Fig. 1, groundwaves are boundary waves that are

confined to the air-ground interface and travel directly

between the transmitting and receiving antennas in the

near subsurface (van Overmeeren et al., 1997; Berktold

et al., 1998). The GPR groundwave travels at the

velocity of an electromagnetic wave in the near-surface

soil, and the groundwave velocity can be determined by

measuring the separation distance between the trans-

mitting and receiving antennas and recording the time

needed for the groundwave to travel between the

antennas (Huisman et al., 2003; Galagedera et al.,

2005a; Hubbard et al., 2006). The electromagnetic

velocity is primarily influenced by the soil water content

(Davis and Annan, 1989), and the velocity can be related
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Figure 1. The GPR groundwave travels in the shallow

subsurface between the transmitting antenna (TX) and

receiving antenna (RX). S is the separation distance

between the GPR antennas, while v1 is the velocity of the

uppermost soil layer.
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to the soil water content using either a site-specific

petrophysical relationship or one of several petrophysi-

cal relationships available in the literature (Topp et al.,

1980; Roth et al., 1990).

GPR groundwave methods can be used to collect

many more water content estimates than could be

obtained using conventional point measurement tech-

niques, because GPR data can be acquired with a

sampling increment as small as 1 cm, although a

sampling increment of ,10 cm is more practical if data

are to be acquired quickly. The large data sets generated

using GPR can be used to more accurately characterize

the soil water content distribution and to analyze the

water content variability with unprecedentedly high

resolution. (The resolution of data sets acquired with

conventional point measurement techniques varies with

the sampling increment, but few studies have been

performed using point measurement techniques with a

sampling increment of less than 5 m.) The improved

statistical characterization possible with these large data

sets can be used as input into stochastic hydrological

and climate models, and could be used to improve water

content characterization by increasing the accuracy of

interpolated estimates between sampling points, to guide

data acquisition campaigns for optimal sample loca-

tions, and to better understand the processes that

influence near-surface soil water content. This research

uses large data sets of soil water content derived from

GPR groundwave data to explore the spatial correlation

of soil water content as a function of sampling depth,

season, vegetation, and soil texture.

Data Acquisition and Water Content Estimation

Data for this analysis were acquired at a three acre

field within the Robert Mondavi vineyard in Napa

Valley, California. The soils at this site range from

sandy loam to clay loam and are primarily flood plain

and alluvial fan deposits. Topographic variations across

the site are negligible, and the water table is 3 to 4 m

beneath the ground surface. Grapevines are planted

across the field with a spacing of 1.2 m between each

plant both perpendicular and parallel to the grapevine

trellises. Winters are typically cool and moist, and

summers are hot and dry, with very little precipitation

between May and October. Irrigation is applied evenly

across the field using a drip irrigation system during the

summer months; the typical irrigation rate is 2.9 L/

grapevine/day.

Near-surface soil water content estimates were

acquired across the field site using GPR groundwave

techniques in the common-offset mode, where the

antennas were kept a set distance apart and moved in

parallel along a traverse. The time needed for the

groundwave to travel from the transmitting to the

receiving antenna was determined for each measure-

ment, and these travel-time data were used to calculate

electromagnetic velocity and then the water content at

each measurement location. A detailed description of

the data acquisition, interpretation, and validation

procedures is given in Grote et al., 2003. At this site,

estimates of volumetric water content calculated from

GPR groundwave data had a root mean squared error

(RMSE) of 0.02 when compared to volumetric water

content estimates obtained from gravimetric measure-

ments, so the water content estimates derived from GPR

data are assumed to be sufficiently accurate to support

geostatistical analysis.

GPR groundwave data were acquired across the

field site at four times, in May, August, and September

of 2001 and in January of 2002. Data were acquired

using a Sensors and Software PulseEkko 1000 GPR

system with 450 MHz and 900 MHz antennas. Traverses

were acquired across the field parallel to the grapevine

trellises at 6 m intervals (each fifth row), and measure-

ments were collected at 10-cm intervals along each

traverse, for a total of approximately 20,000 water

content estimates in each data set. Figure 2 shows the

locations of the GPR traverses overlain on a site map of

normalized difference vegetation index (NDVI) data,

where darker and lighter NDVI colors indicate areas of

weaker and stronger vegetation, respectively. (The

variability in NDVI data was one of the factors used

in selecting this field site, as a site with significant

heterogeneity was desired.) An example of the soil water

content distribution from one data set (900 MHz GPR

data collected in Sept. 2001) is shown in Fig. 3. Each

vertical ‘‘stripe’’ in this figure corresponds to a GPR
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Figure 2. Site map showing GPR traverses (vertical

lines) and time domain reflectometry measurement

locations overlain on the normalized difference vegetation

index data acquired in July 2000.
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traverse; adjacent traverses show similar water content

values in some areas of the field, but adjacent traverses

can also have significantly different water contents in

other portions of the field. The differences in water

content observed in some adjacent traverses are related
to near-surface vegetation, as is discussed in the next

section. Although the absolute values of water content

varied as a function of season and GPR frequency, and

the influence of near-surface vegetation also varied with

these parameters, the general pattern of water content

observed in Fig. 3 (wettest in the northeast corner and

western edge, driest near the south-central portion of the

field) remained constant for all data sets. To supplement

the GPR-derived estimates of water content, 91 mea-

surements of water content from TDR probes were

obtained in an evenly spaced grid across the site in

January 2002 (Fig. 2). TDR measurements were ac-

quired using a SoilMoisture Trase System with two
15 cm waveguides placed 5 cm apart. In addition to the

water content estimates obtained with GPR and TDR,

47 soil texture measurements (percent sand, silt, and

clay) were acquired in the shallow subsurface (top 20 cm)

and were used to characterize the soil texture distribu-

tion across the site. Figure 4 shows the distribution of

soil texture, quantified as the percent sand, across the

site.
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Figure 3. Water content estimates acquired over the three acre field site in Sept. 2001 using 900 MHz GPR groundwave

data. Each vertical ‘‘stripe’’ corresponds to a GPR traverse, where a traverse parallel to the grapevine trellis was collected

every 6 m with sampling every 10 cm along the traverse.

Figure 4. Contour map of soil sand fraction (% sand) in the uppermost 20 cm of the soil column across the site.
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Evaluation of Water Content Variability

The spatial correlations of soil water content from

GPR and TDR data were evaluated by calculating

experimental semi-variograms for each data set using

GSLIB software (Deutsch and Journel, 1998). The

experimental semi-variogram (c) relates the variability

of measurements to the distance between them and is

calculated as follows (Rubin, 2003):

c(h)~
1

2N hð Þ
XN(h)

i~1

v xið Þ{v xizhð Þ½ �2, ð1Þ

where h is the distance between two measurements (the

lag distance), N(h) is the number of pairs of measure-

ments separated by a distance h, and v(xi) is a

measurement taken at location xi. Although Eq. (1) is

correctly referred to as the semi-variogram, common

usage often refers to it simply as the variogram. This

common terminology will be adopted for the remainder

of this discussion. The main parameters used to describe

a variogram are the sill, the correlation length (or

range), the nugget, and the variogram shape (or model

type). The sill is the variogram value (c) at which the

variogram plateaus (c ceases to increase with increasing

h). The correlation length describes the spatial continu-

ity of the property being studied. The correlation length

denotes the average distance over which correlations can

be observed, while the range is the maximum distance

over which correlations are observed. The correlation

length is usually a function of the range and varies for

different variogram models. The nugget measures the

very small-scale variability of the property, or the

variability between measurements acquired at very small

lags. The nugget is often a function of both the property

being measured and the minimum distance between

measurements. The variogram model describes the

shape of the variogram as the variability increases from

the nugget to the sill. Properties with more spatial

correlation at smaller lags are often better described by a

Gaussian variogram model, while exponential or spher-

ical variogram models better describe properties with

less correlation at small lags. Variogram models can be

linearly combined to describe multiple scales of corre-

lation.

For the water content data sets acquired at this

site, variogram models were fit to the experimental

variograms using least squares regression techniques

(Gambolati and Galeati, 1987), and similar variogram

models were found to best describe the experimental

variograms for each data set. The function that best

characterized the water content variability for most of

the data sets was a linear combination of an exponential

model to describe the variability at small lags (less than

,10 m) and a Gaussian model to describe the larger-

scale variability (Appendix A). Since the variogram

model type did not change between different data sets,

the primary focus of this paper is on differences

observed in the experimental variograms as a function

of sampling depth, season, vegetative cover, and soil

texture.

Water Content Variability and Sampling Depth

While the lateral path of the GPR groundwave is

well defined, the groundwave sampling depth is cur-

rently uncertain (Huisman et al., 2003). Several

researchers have used analytical models to estimate the

groundwave sampling depth (Du, 1996; van Overmeeren

et al., 1997; Sperl, 1999; Galagedara et al., 2005b), but

these models vary significantly in their estimations

(Fig. 5). All of the models shown in Fig. 5 are based

upon relationships that correlate wavelength (l) and the

predicted sampling depth. For example, Galagedara et

al. (2005b) estimates the sampling depth (z) as:

z~0:6015lz0:0468: ð2Þ

The wavelength equals the electromagnetic wave veloc-

ity divided by the central frequency, so the sampling

depth is predicted to increase with increasing velocity

and to decrease with increasing frequency. The wave-

length varies with soil moisture, since the electromag-

netic velocity is lower in wetter soils. Thus, the sampling

depth is estimated to be less in wet soil than in relatively

dry soil; if significant variations in water content are

observed along a traverse, the sampling depths may vary

along the traverse as well. Additionally, the central

frequency of the GPR signal may change somewhat with

soil moisture. GPR antennas emit and record energy

Journal of Environmental and Engineering Geophysics eego-15-03-01.3d 12/8/10 11:00:04 97 Cust # 09037

Figure 5. Analytical models predicting the sampling

depth for 450 MHz GPR data over a range of

electromagnetic velocity. The vertical gray lines show
the minimum (vmin) and maximum (vmax) velocities

observed in the 450 MHz data at the Mondavi site.
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over a broad range of frequencies above and below the

central frequency, and the frequencies recorded may

decrease in wetter soils (higher frequency energy is more

attenuated in wetter soil). Thus, the wavelength may not

change as much in wetter soils as would be expected if

the frequency remained constant (as assumed in Fig. 5).

Experimental results from several researchers have

indicated that the sampling depth is a function of GPR

frequency (Du and Rummel, 1994; Chanzy et al., 1996;

Hubbard et al., 2002; Grote et al., 2003), but the exact

relationship between frequency and sampling depth is

again unclear. Comparison of the sampling depths

estimated from experimental results with the sampling

depths predicted using the analytical models shows that

no single model describes the experimental data well, so

the most accurate analytical model is still uncertain. If

the models predicting the smallest sampling depth

(Sperl, 1999) and the largest sampling depth (full

waveform approximation (Du, 1996)) are considered

for the 900 MHz antennas for the driest data set

(August, where average velocity for 900 MHz data is

,0.15 m/ns), the sampling depth estimates range from

6 cm to 16 cm. For the 450 MHz data from August, the

range of predicted sampling depths is 8 cm to 27 cm. For

the wettest data set (January, where the average velocity

for the 900 MHz is ,0.08 m/ns), the predicted sampling

depth ranges from 4 cm to 9 cm for the 900 MHz data

and from 6 cm to 18 cm for the 450 MHz data. The

actual sampling depth probably falls within the range of

predicted depths, but a comparison of gravimetric water

content measurements acquired simultaneously with

GPR estimates of water content at different times at

this site suggests that the deeper sampling depths may be

more likely, especially for the 900 MHz data (Grote et

al., 2003). Gravimetric water content measurements

were acquired simultaneously with the GPR data over

depth intervals of 0 to 10 cm, 10 to 20 cm, and 0 to

20 cm. For both the 450 and 900 MHz data, the best

correlation between GPR-derived and gravimetric esti-

mates of soil water content occurred in the 0 to 20 cm

interval, and the least correlation was observed for the

10 to 20 cm interval. These correlations suggest that the

sampling depth is likely greater than 10 cm for both the

900 MHz and 450 MHz data.

A comparison of water content estimates acquired

with the 450 and 900 MHz antennas showed that the

water content estimates varied with GPR frequency;

these differences are attributed to the different penetra-

tion depths of these frequencies. Measurements of water

content obtained with the 900 MHz antennas had lower

mean water contents during the drier months (Aug. and

Sept.) than estimates from the 450 MHz data, but the

mean water content was approximately equal for both

frequencies during the Jan. campaign, when the soil was

near saturation. A smaller-scale study of water content

measurements obtained using GPR and gravimetric

techniques in Nov. 2001 showed an opposite trend when

data were acquired immediately after precipitation;

these data showed higher water content values in the

900 MHz GPR data than in the 450 MHz data, and the

gravimetric measurements also showed a decrease in

saturation with increasing depth (Grote et al., 2003).

Geostatistical analysis of water content estimates

acquired with multiple GPR frequencies can provide

information on how near-surface soil water content

variability changes with depth. For each of the data sets

acquired in this study, the shallower 900 MHz data

showed less correlation than the deeper 450 MHz data;

the 900 MHz data consistently had higher standard

deviations, and the experimental variograms had higher

sills (Figs. 6 and 7). Also, the 900 MHz variograms

typically had shorter ranges than variograms calculated

from 450 MHz data (Fig. 7 and Table 2). The higher

variability of the 900 MHz data may reflect the spatial

variability of surface processes such as precipitation and
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Figure 6. a) Experimental variograms and variogram

models for water content estimates from GPR and TDR

data acquired in January 2002. b) Normalized experi-
mental variograms of water content estimates from GPR

and TDR data acquired in January 2002. Normalization

was performed by dividing the variogram value by the

variance of the data set.
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irrigation, while lateral redistribution of soil water

(largely controlled by soil texture at this site) may

reduce the effects of these processes on the deeper water

content measurements. The water content in deeper soil

is also less affected by diurnal variations in temperature

and evapotranspiration.

Although the shallower sampling depth of the

900 MHz data may explain the higher variability

observed in this data set, it is important to note that

the sample volume for the 900 MHz data is smaller than

that of the 450 MHz data. The sample volume is

approximately the antenna separation multiplied by the

sampling depth, and the antenna separations for the

900 MHz and 450 MHz data are 17 cm and 25 cm,

respectively. Thus, the 900 MHz antennas have a

smaller lateral sampling distance as well as a probable

shallower sampling depth. The larger sample volume of

the 450 MHz data is expected to result in reduced

variability, so the difference in variability between the

two frequencies could be caused by the different sample

volumes rather than by different sampling depths.

Although the sample volume probably influences the

water content variability, analysis of the water content

estimates from TDR data acquired in Jan. 2002 indicate

that sampling depth probably has a greater impact on

water content variability than does sample volume at

this site. The TDR probes are 15 cm long, so the

sampling depth of the TDR is similar to the estimated

sampling depth of the 450 MHz GPR data. However,

the sample volume for the TDR probes is much less, as

the two TDR prongs are separated by only 5 cm, and

the area between and immediately adjacent to the

prongs has the greatest influence on the TDR response

(Topp et al., 1996). Estimates of soil water content

obtained from the TDR data and the 450 MHz GPR

data are very similar, and the experimental variogram of

water content estimated from TDR data shows vari-

ability between that of the 450 MHz and 900 MHz GPR

data, as shown in Fig. 6(a). If each of these variograms

is normalized by the variance of the water content

estimates, the variograms from the 450 MHz GPR and

TDR data are very similar, while the variogram from

the 900 MHz data shows less spatial correlation

(Fig. 6(b)). Since the TDR data have a sampling depth

that is similar to the estimated sampling depth of the

450 MHz data, these results indicate that variability

decreases with depth regardless of sample volume.

The decrease in variability with depth observed in

this experiment was similar to the findings of other

researchers. Hupet and Vanclooster (2002) found that

total variability decreased with depth, with the greatest

variability occurring in their shallowest sampling

interval (0 to 20 cm). They calculated variograms from

water content measurements acquired at different times

and depths, and they found that for soil water content

measured in intervals from the surface to 75-cm depth,

the variograms showed no spatial correlation (pure

nugget model). Variograms for water content measure-

ments at 100-cm and 125-cm depth showed the expected

trend of the variogram values increasing with lag. The

authors attributed the lack of spatial correlation in the

shallower soils to the effects of vegetation at the site,

where vegetation was believed to be the primary factor

controlling soil moisture patterns. The authors noted

that spatial correlations of shallow water content might

exist at smaller lags than those investigated in this

project (minimum lag was ,15 m). In another study,

Bosch et al. (2006) used much shallower samples, but

also found that the total variability of the soil at 0 to

3 cm depth was greater than that at 3 to 6 cm depth.

These authors attributed the increased variability at

shallow depths to changes in soil texture and micro-

topography. In contrast, De Lannoy et al. (2006)

collected deeper water content measurements (at ap-

proximately 30 cm intervals to a depth of 180 cm) and

found that spatial variability generally increased with

depth; the changes in variability with depth were

attributed to changes in the hydraulic properties of soils
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Figure 7. a) Experimental variograms and variogram

models for water content estimates from 450 MHz GPR

data. b) Experimental variograms and variogram models

for water content estimates from 900 MHz GPR data.
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across the site. The deeper measurements acquired by

De Lannoy et al. (2006) might have been less influenced

by surficial processes than the shallower measurements

acquired in other studies.

Water Content Variability and Seasonal Water

Content Fluctuations

Many studies have shown that water content

variability changes as a function of the mean soil water

content, although a clear relationship between the

variability and the mean has not been defined. In some

studies, the spatial variability of near-surface water

content was found to be greater in drier soils (Fam-
iglietti et al., 1999; Hupet and Vanclooster, 2002; Bosch

et al., 2006), while other studies showed variability to be

greater in wetter soils (Bell et al., 1980; Famiglietti et al.,

1998). De Lannoy et al. (2006) observed that the

relationship between soil water content variability and

the mean water content changed with depth, where

shallower measurements (uppermost 10 cm) exhibited

greater spatial variability at higher moisture contents,
while deeper measurements (50 cm and below) showed

variability increasing at lower moisture contents. Owe et

al. (1982) and Famiglietti et al. (2008) observed

maximum near-surface water content variability in

moderately wet soils, with decreased variability in both

dry and very wet soils. Peters-Lidard and Pan (2002)

suggested that these observations can be explained by

soil texture heterogeneity, where soil moisture variabil-
ity increases as the soil dries out if the mean soil water

content is between the field capacity of the soil and full

saturation (the soil is initially very wet), but the

variability will decrease with drying if the water content

is initially less than the field capacity of the soil.

Other studies of water content variability have

considered variograms calculated using water content

measurements in wet and in dry soils. Western et al.

(1998) found that less correlation was observed in wet

soil (higher sills and correlation lengths of 35 m to 50 m)

than in drier soil (lower sills and correlation lengths of

50 m to 60 m). The changes in the variograms with mean

soil moisture are attributed to lateral redistribution of

water during different seasons. When the soil was dry,
the soil moisture distribution was relatively uniform

(lower sill), because the hydraulic properties of the soil

were limiting evapotranspiration (soil properties were

assumed to be the main factor controlling soil moisture

patterns), and lateral redistribution of water was less

significant. When the soil was wet, lateral redistribution

of water content caused by topographic variations

contributed to higher variability. In another study, De
Lannoy et al. (2006) observed variability that partially

follows the pattern described by Western et al. (1998).

De Lannoy et al. observed that for shallow water

content measurements (uppermost 10 cm), the vario-

gram range and sill both increase with increasing soil

moisture (range varies from 200 m to over 300 m) and

decrease during dry periods. When the soil was very dry,

the variogram shape was best fit by a pure nugget
model, suggesting that either there was very little spatial

structure of water content under these conditions or that

the measurement error was greater than the spatial

variability of water content.

The results of this experiment are different from

those in both of the variogram studies described above.

In this study, GPR data acquired at four different times

were used to calculate variograms of soil water content.

The May (when only 900 MHz data were collected) and
Aug. data sets were acquired during the dry season, and

no irrigation or precipitation had occurred for at least a

week prior to data acquisition; the soil water content

was quite low during these data acquisition campaigns

(Table 1). The Sept. data set was acquired two days

after drip irrigation was applied at the base of each

grapevine, creating a wet zone in the soil immediately

surrounding the vine. January data were acquired
during the wet winter, and light precipitation occurred

the day prior to data acquisition. The experimental

Journal of Environmental and Engineering Geophysics eego-15-03-01.3d 12/8/10 11:00:07 100 Cust # 09037

Table 1. Means and standard deviations of volumetric water content for estimates derived from 450 MHz and 900 MHz

GPR data in rows with and without crop cover for each data campaign. 450 MHz data were not acquired in May 2001.

Campaign

Central

frequency (MHz)

Mean water

content in rows

with crop cover

Mean water

content in rows

without crop cover

Standard deviation

of water content in

rows with crop cover

Standard deviation of

water content in rows

without crop cover

May 2001 900 0.108 0.118 0.012 0.017

August 2001 450 0.095 0.095 0.010 0.013

August 2001 900 0.082 0.090 0.015 0.016

September 2001 450 0.145 0.150 0.010 0.012

September 2001 900 0.104 0.117 0.013 0.020

January 2002 450 0.248 0.250 0.013 0.014

January 2002 900 0.247 0.247 0.018 0.016
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variograms of water content for each of these data

acquisition campaigns are shown in Fig. 7(a) for the

450 MHz data and Fig. 7(b) for the 900 MHz data. For

the 450 MHz data, the variograms for the Aug. and

Sept. data sets are very similar, indicating that the

spatial correlation of water content may be temporally

stable in dry soils. The sills for the drier campaigns

(Aug. and Sept.) are not reached in the experimental

variograms, but the variances of all three data sets are

similar. The estimated ranges of the variograms

calculated from the Aug. and Sept. data sets (,100 m)

are considerably higher than the range of the variogram

calculated from wet soil in Jan. (,70 m). The relatively

small range observed in the wetter soil may reflect

different rates of evaporation or infiltration as a

function of soil texture or may indicate variations in

porosity. (During the dry season, the soil may have

already lost enough moisture that evapotranspiration

was limited, and GPR techniques are not well suited to

detect variations in porosity in more uniformly dry

soils.) Factors other than soil texture are less likely to be

significant at this site, since topography is negligible and

agricultural practices are uniform across the site.

A slightly different pattern of variability is

observed in the water content estimates obtained from

the 900 MHz GPR data. For these data, the estimates

obtained in Sept. had the highest sill and the longest

range (,90 m). The high sill observed in Sept. may be

caused by drip irrigation, which created wet zones

immediately adjacent to the vines and therefore in-

creased the total water content heterogeneity. The

effects of drip irrigation on near-surface water content

appear to be very shallow, since the 900 MHz water

content estimates were significantly influenced by the

additional moisture, but the deeper 450 MHz estimates

were not. Except for the unusually high variability of

the 900 MHz Sept. data, the 450 MHz and 900 MHz

data show similar trends for spatial correlation. The

variograms from the 900 MHz data acquired in Jan.

again have similar sills to variograms calculated from

May and Aug. data, and the range of the Jan. data

(,30 m) is less than the ranges of the drier data sets

(,80 m). A comparison of the 900 MHz variograms

from Sept. and Jan. indicates that both irrigation and

precipitation increase water content variability, but the

variability caused by precipitation that is relatively

evenly distributed across the field is less than the

variability caused by irrigation applied immediately

adjacent to each vine.

If the seasonal variability observed at the Mondavi

site is interpreted using the explanation of Peters-Lidard

and Pan (2002), the relatively high variability of the wet

Jan. soil could indicate that the soil was between the

field capacity and full saturation, but closer to field

capacity. This seems likely, as the mean water content in

Jan. was high. The explanation also seems to describe

the drier data sets (May and Aug.), since it seems likely

that the mean water contents at these times were already

below field capacity, and thus lower variability would be

expected with increased drying.
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Table 2. Variogram model parameters for each campaign. In each entry, a linear combination of an exponential model

(E) and Gaussian model (G) was used. The first parameter listed after the letter representing the model type is the sill for

that model, while the second parameter is the correlation length.

Campaign

Central

Frequency (MHz) All rows Rows without crop cover Rows with crop cover

May 2001 900 E, 0.000316, 6.5 E, 0.0004, 12 E, 0.0002, 15

G, 0.00042, 40 G, 0.000485, 39 G, 0.0003, 85

August 2001 900 E, 0.000348, 6 E, 0.00037, 9.5 E, 0.00028, 9.5

G, 0.00043, 42 G, 0.00043, 30 G, 0.00047, 55

August 2001 450 E, 0.000156, 9 E, 0.0002, 15 E, 0.00011, 4

G, 0.000245, 63 G, 0.00033, 55 G, 0.000215, 95

September 2001 900 E, 0.00042, 7 E, 0.00042, 4 E, 0.00021, 9

G, 0.00065, 53 G, 0.00078, 58 G, 0.00031, 43

September 2001 450 E, 0.00016, 9.5 E, 0.0001, 8.6 E, 0.0001, 7.6

G, 0.00025, 59 G, 0.000245, 35 G, 0.00019, 54

January 2002 900 E, 0.000401, 4 E, 0.00041, 8 E, 0.0004, 6

G, 0.000463, 17 G, 0.00045, 20 G, 0.00051, 25

January 2002 450 E, 0.00017, 6.7 E, 0.0002, 10 E, 0.00018, 6

G, 0.000285, 42.5 G, 0.00033, 50 G, 0.00025, 38
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Water Content Variability and Shallowly-rooted

Vegetation

The effects of transpiration on mean soil water

content are well documented, but the influence of

vegetation on water content variability is not clear.

Hupet and Vanclooster (2002) calculated variograms

from water content measurements acquired in a field of

maize. Analysis of these variograms showed little spatial

correlation of water content at shallow depths, and the

authors attributed the high spatial variability of shallow

water content to the spatially variable vegetation, and

thus variable root water uptake and evapotranspiration

across the field. De Lannoy et al. (2006) also noted that

the high water content variability they observed in wet,

shallow soils may be partially caused by vegetation

which causes variable interception of precipitation.

Wilson et al. (2004) noted that vegetation was probably

responsible for some of the water content heterogeneity

that was not explained by topographic effects. Or and

Rubin (1993) performed a modeling study that showed

that the spatial distribution of water content was greatly

influenced by the behavior of shallow vegetation, even

at depths extending below the root zone.

At the Mondavi site, near-surface vegetation

appears to affect both the mean and the variability of

soil water content. The water content distribution in

Fig. 3 exhibits a striped pattern, where adjacent traverses

sometimes have significantly different water contents. The

traverses were separated by 6 m, and considerable

differences in water content between adjacent traverses

caused by soil heterogeneity over this distance is possible,

but would not explain the striped pattern observed in the

water content data. Instead, the striped pattern probably

reflects the water usage of shallowly-rooted vegetation. At

this site, ‘‘crop cover’’ of zorrow fescue grass was planted

in every other row to reduce erosion and to decrease the

near-surface soil water content to the optimal level for

wine-grape production. The crop cover emerges in

January and begins to go dormant in May. Although

weeds and wild grasses grow in the rows without crop

cover, the effects of the crop cover on near-surface water

content are much more significant than the effects of

incidental vegetation. The rows with crop cover had

slightly lower mean water content values than the rows

without crop cover during the dry months, but crop cover

did not appear to significantly affect the soil water content

when the near-surface soil was close to saturation in Jan.

(Table 1). The influence of crop cover on near-surface

water content also appears to be a function of depth, since

rows with and without crop cover show greater differences

in water content for the shallower 900 MHz data than for

the deeper 450 MHz data.

The effects of crop cover on the near-surface water

content variability at this site seem to be different from

the effects of vegetation observed by other researchers.

Table 1 shows that the standard deviations of water

content in rows with crop cover were less than those in

rows without crop cover for all data sets except the

900 MHz data collected in Jan. To explore the influence

of crop cover on the spatial correlation of water content,

separate experimental variograms were calculated for

rows with and without crop cover. Experimental

variograms for data acquired using both GPR frequen-

cies in Sept. 2001 in rows with and without crop cover

are shown Fig. 8. These variograms show that rows with

crop cover had lower sills than rows without crop cover,

but that crop cover affected the range differently for the

900 MHz and 450 MHz data. For the 900 MHz data,

the ranges with and without crop cover were 75 and

100 m, respectively, while the 450 MHz data showed a

range of 95 m with crop cover and 60 m without. These

variograms also indicate that the effects of crop cover

are most significant on very shallow water content

measurements (900 MHz), as the differences between

variograms calculated from rows with and without crop

cover are much greater for the 900 MHz data than for

the deeper 450 MHz data. Inspection of variograms

calculated with and without crop cover for the other data

sets shows that crop cover has the greatest effect on water

content variability when the soil is dry and the fescue roots

may be actively removing soil water from wetter zones,

causing the near-surface soil to be more uniformly dry

across the field. Data acquired in Jan. under nearly

saturated conditions when the crop cover was emerging

show only minor differences between rows with and

without crop cover (Fig. 9), but water content variability

is slightly higher in rows with crop cover for this data set.

The slight increase in variability in rows with crop cover

may be caused by variable transpiration of the newly

emergent crop cover when the soil water content is high or

by changes in water content caused by alteration of the

soil structure as a result of new root growth.

The effects of vegetation on soil water content

variability are probably determined by the state of

vegetation and the mean soil moisture. For this site,

even fairly dormant vegetation decreased the water

content variability in shallow, dry soils. However,

variability was slightly increased when the soil was wet

and the vegetation was actively undergoing transpira-

tion. This latter state may be more similar to the

experiments performed by other researchers (Hupet and

Vanclooster, 2002; De Lannoy et al., 2006) who

attributed high water content variability to vegetation.

Water Content Variability and Soil Texture

Several researchers have shown that soil water

content variability is partially controlled by the vari-

ability of effective soil properties (Or and Rubin, 1993;
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Rubin and Or, 1993; Entekhabi and Rodriguez-Iturbe,

1994; Hupet and Vanclooster, 2002; Peters-Lidard and

Pan, 2002; Ryu and Famiglietti, 2005; Teuling and

Troch, 2005; De Lannoy et al., 2006; Famiglietti et al.,

2008), but few studies have quantified the variability of

soil texture. In this study, the influence of soil texture on

near-surface soil water content variability was investi-

gated by comparing experimental variograms for both

parameters. Forty-seven soil samples were collected

across the field, and the percents of sand, silt, and clay

were determined for each sample. To analyze the soil

texture variability, the soil texture was quantified as the

percent sand in each sample. The percent sand was

chosen to quantify soil texture as the GPR responses to

silts and clays at this site were very similar, and no

additional information was gained by considering silts
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Figure 9. Experimental variograms of water content estimates from 900 MHz GPR data acquired in Sept. 2001 and Jan.

2002 for rows with and without crop cover.

Figure 8. Experimental variograms of water content estimates from 450 MHz and 900 MHz GPR data acquired in Sept.

2001 for rows with and without crop cover.

103

Grote et al.: Characterizing Water Content Variability with GPR



and clays separately. Thus, the soil could be divided into

the coarse-grained fraction (sand) and the fine-grained

fraction (silt and clay) without loss of information. To

compare the spatial correlations of soil texture and

water content, the experimental variograms were nor-

malized by the variance for each data set (Fig. 10). The

variograms of water content shown in Fig. 10 were

calculated using only data acquired in rows without

crop cover, since the influence of vegetation on near-

surface water content may obscure the relationship

between soil texture and water content variability.

Inspection of the variograms in Fig. 10 shows that soil

texture has greater spatial correlation than water

content for lags up to ,35 m. Also, the variogram

model that best fits the experimental soil texture

variogram is Gaussian, which has greater correlation

at small lags than the exponential model which best

describes the first portion of the water content

variograms. The relatively low spatial correlation of

water content in comparison to soil texture is especially

apparent for the variograms generated from 900 MHz

data (Fig. 10(a)), indicating that shallow water content

measurements are significantly influenced by factors

other than soil texture, even at a site with no significant

topography or changes in agricultural practices. The

variograms calculated using water content estimates

from 450 MHz GPR data (Fig. 10(b)) are more similar

to the soil texture variograms, especially for the data

collected in Jan., when the soil was near saturation.

These results indicate that deeper water content

estimates may be more indicative of soil texture than

very shallow measurements, and that the influence of

soil texture on near-surface water content may be most

significant when the soil is near saturation.

Using Geophysical Measurements of Water Content to

Supplement Soil Texture Measurements

Geophysical techniques can be used to obtain a

large number of water content estimates across a site,

but soil texture measurements are typically more

difficult to obtain. Measurements of soil texture usually

involve collection of the soil sample followed by sieve

analysis to determine the grain size distribution of the

coarse-grained fraction of the soil. Further analysis

using hydrometers or lasers to characterize the fine-

grained fraction of the soil is usually necessary. These

techniques are time consuming, so soil texture is a

relatively expensive parameter to characterize over a

large area.

During this experiment, soil texture measurements

were made in conjunction with gravimetric water

content measurements at three times. The gravimetric

water content measurements were converted to volu-

metric water content estimates, and the soil texture was

quantified as percent sand, silt, and clay. Figure 11

shows that the coarse-grained fraction of the soil

(percent sand) correlates reasonably well with volumet-

ric water content, and the greatest correlation occurs

when the soil is near saturation (Jan.). This correlation

suggests that water content measurements might be used

to improve soil texture estimation.

To determine if the geophysically-derived esti-

mates of water content could be used to improve soil

texture estimation, estimates of the coarse-grained soil

fraction (CGSF) calculated using ordinary kriging of the

CGSF and using co-kriging of the CGSF and water

content were made. To better understand the depen-

dence of water content on soil texture (without

additional variables), only soil samples acquired in rows

without crop cover were used in variogram and kriging

calculations. Thirty-one soil samples were acquired in

these rows (sample locations shown in Fig. 12(a)), and
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Figure 10. a) Normalized experimental variograms of

water content from 900 MHz GPR data acquired in rows

without crop cover and of soil texture, where soil texture is
quantified as the percent sand. Normalization was

performed by dividing the variogram value by the variance

of the data set. b) Normalized experimental variograms of

water content from 450 MHz GPR data acquired in rows

without crop cover and of soil texture.
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these samples were used to calculate an experimental

variogram and a variogram model using GS+software,

which is a geostatistical analysis and mapping program.

The variogram model was used to krige CGSF estimates

across the site (Fig. 12(a)). Next, approximately half of

the CGSF measurements were removed from the data

file; the measurements removed were chosen so that the

remaining measurements would offer the best possible

spatial coverage of the field. Thus, when two samples

were separated by only a small distance, one of the

samples was removed. A new CGSF experimental

variogram was calculated, and kriging was performed

using the variogram model that best fit this new

variogram. Figure 12(b) shows the CGSF estimates

when kriging was performed using a subset of the soil

texture measurements. Finally, a cross-variogram was

calculated using the subset of CGSF measurements

shown in Fig. 12(b) and the volumetric water content

estimates from the 450 MHz GPR data acquired in Jan.

Co-kriging of these two data sets was performed, and

the resulting CGSF estimates are shown in Fig. 12(c).

This analysis was then repeated using only the subset of

data points which were initially removed (those shown

in Fig. 12(a) but not in Fig. 12(b)) as the sampling

points; Fig. 13(a) shows the CGSF estimates from

kriging the second subset of soil texture measurements,

while Fig. 13(b) shows the CGSF estimates from co-

kriging this second soil texture subset with water content

estimates.

Visual comparison of Figs. 12 and 13 shows that

the CGSF maps developed using co-kriging with water

content estimates (Figs. 12(c) and 13(b)) are significant-

ly more similar to the map developed using all the

CGSF measurements (Fig. 12(a)) than are the maps

derived from only a subset of CGSF measurements

(Figs. 12(b) and 13(a)). To quantify the improvement in

CGSF estimation, the error of the kriged and co-kriged

estimates was evaluated by comparing the CGSF values

obtained from estimation to the measured values

omitted from the estimation calculations. When com-

pared to the measured CGSF values, the root mean

squared error (RMSE) of the CGSF estimates derived

from co-kriging water content and a subset of CGSF

values was 10% and 6% for the first and second data

subsets, respectively, while the RMSE of CGSF derived

from kriging only a subset of CGSF values was 12% and

7% for the first and second subsets, respectively. Cross-

validation of the subset of CGSF measurements shown

in Figs. 12 and 13 produced a RMSE of 6% and 7% for

the first and second subsets, respectively, when co-

kriging of CGSF and soil water content was performed,

and a RMSE of 12% and 8% for the first and second

subsets, respectively, when only kriging of the CGSF

was used. The relatively modest reduction in RMSE

obtained by co-kriging CGSF and water content may

indicate that geophysically-derived water content can

only slightly improve soil texture estimation, but may

also reflect the small number of CGSF data points and

the methodology used to choose which points to omit.

When the entire map area is considered (Fig. 12(a)), the

co-kriging of soil texture and water content seems to

significantly improve the accuracy of the soil texture

estimates.

Conclusions

In this study, GPR groundwave techniques were

used to generate very high-resolution estimates of near-

surface soil water content over a three acre field during

four data acquisition campaigns. The large GPR data

sets, combined with the flat topography and the uniform

agricultural practices employed at this site, provided an

unusual opportunity to study water content variability

at the field scale as a function of measurement depth,

season, vegetation, and soil texture. Geostatistical

analyses showed that the spatial correlation changed

with measurement depth, where shallow soils had

greater variability than deeper soils. The higher vari-

ability in the shallower measurements may be caused by

the heterogeneity of surficial processes such as precip-

itation and irrigation. Comparison of variograms of

water content estimates acquired at different times

under conditions of natural precipitation or evapotrans-

piration showed similar sills for dry and wet soil, but

decreased correlation lengths in wet soils, which may

reflect the heterogeneity of soil properties. Irrigation

significantly increased the water content variability of

very shallow soils, but did not notably affect deeper

measurements. Shallowly-rooted vegetation such as

crop cover reduced the mean water content and the

variability of water content when the soil was dry and

Journal of Environmental and Engineering Geophysics eego-15-03-01.3d 12/8/10 11:00:12 105 Cust # 09037

Figure 11. Correlations between volumetric water con-

tent estimates and soil texture measurements for three

sampling campaigns.
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Figure 12. a) Contour map of the percent sand in the uppermost 20 cm developed using kriging of all CGSF
measurements in rows without crop cover. b) Contour map of the percent sand developed using kriging of a subset of CGSF

measurements in rows without crop cover. c) Contour map of the percent sand developed using co-kriging of a subset of

CGSF measurements in rows without crop cover and volumetric water content estimates from 450 MHz GPR data

acquired in Jan.
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crop evapotranspiration was high, but had little effect

when the soil was near saturation and evapotranspira-

tion demand was low. Finally, deeper water content

estimates that were acquired when the soil was near

saturation showed patterns of variability similar to

those of soil texture, but shallower measurements and

measurements acquired during the dry season were

significantly influenced by factors other than soil

texture.

Geophysical data were also used to improve soil

texture estimation. Co-kriging of sparse soil texture

measurements and high-resolution estimates of water

content from GPR showed that GPR measurements

could be used to improve soil texture estimation, but the

improvement (quantified by RMSE) was relatively

modest. Additional studies with a larger set of soil

texture measurements are needed to better understand

how co-kriging may improve soil texture estimation.

The results of this research can be used to more

effectively characterize water content variability for

precision agriculture applications. Analysis of multi-

frequency GPR data acquired at different times showed

that water content variability related to soil texture is

best characterized using deeper (i.e., lower frequency

GPR) measurements acquired when the soil is very wet,

while variability related to irrigation can be better

characterized using shallower (i.e., higher frequency

GPR) measurements. Geostatistical analysis also

showed that crop cover can significantly reduce water

content variability, suggesting that farmers may be able

to use crop cover to make a single irrigation rate more

effective for uniform crop growth. In addition to better
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Figure 13. a) Contour map of the percent sand in the uppermost 20 cm developed using kriging of an alternate subset of

CGSF measurements in rows without crop cover. b) Contour map of the percent sand developed using co-kriging of an

alternate subset of CGSF measurements in rows without crop cover and volumetric water content estimates from 450 MHz

GPR data acquired in Jan.
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characterizing the soil water content variability, GPR

measurements of water content can be used in conjunc-

tion with soil texture measurements to better character-

ize the soil texture distribution across a site, which might

be used to identify sites suitable for potential agricul-

tural development and to guide the planning of new

vineyards or orchards.
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APPENDIX A

A variogram model was fit to each experimental

variogram using least squares regression techniques. A

linear combination of an exponential and Gaussian
model seemed to best fit the experimental variograms, so

this combination was used to determine variogram

model parameters. Table 2 gives the model parameters
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for each variogram. The exponential model is defined as:

c hð Þ~c 1{ exp {
h

l

� �� �
, ðA-1Þ

where c is the sill and l is the correlation length. For the

exponential model, the range is <3l. The Gaussian

model is defined as:

c hð Þ~c 1{ exp {
h2

l2

� �� �
, ðA-2Þ

where the range is <7l/4.
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