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ABSTRACT

We have developed a Bayesian model to invert spectral in-
duced-polarization �SIP� data for Cole-Cole parameters using
Markov-chain Monte Carlo �MCMC� sampling methods. We
compared the performance of the MCMC-based stochastic meth-
od with an iterative Gauss-Newton-based deterministic method
for Cole-Cole parameter estimation through inversion of syn-
thetic and laboratory SIP data. The Gauss-Newton-based method
can provide an optimal solution for given objective functions un-
der constraints, but the obtained optimal solution generally de-
pends on the choice of initial values and the estimated uncertain-
ty information often is inaccurate or insufficient. In contrast, the
MCMC-based inversion method provides extensive global
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nformation on unknown parameters, such as the marginal proba-
ility distribution functions, from which we can obtain better es-
imates and tighter uncertainty bounds of the parameters than
ith the deterministic method. In addition, the results obtained
ith the MCMC method are independent of the choice of initial
alues. Because the MCMC-based method does not explicitly of-
er a single optimal solution for given objective functions, the de-
erministic and stochastic methods can complement each other.
or example, the stochastic method can be used first to obtain the
edians of unknown parameters by starting from an arbitrary set

f initial values. The deterministic method then can be initiated
sing the medians as starting values to obtain the optimal esti-
ates of the Cole-Cole parameters.
INTRODUCTION

The induced-polarization �IP� method has been used increasingly
n environmental investigations because IP measurements are very
ensitive to the low frequency capacitive properties of rocks and
oils. These properties are associated with diffusion-controlled po-
arization processes that occur at the mineral-fluid interface �Slater
nd Lesmes, 2002�. The Cole-Cole model �Cole and Cole, 1941� has
een very useful for interpreting spectral IP �SIP� data in terms of pa-
ameters, such as chargeability and time constant, which are used to
stimate various subsurface properties �Lesmes and Friedman,
005�.Among many studies in which Cole-Cole parameters are esti-
ated from SIP measurements on soils and rocks, the majority use

lassical deterministic inversion methods, specifically the iterative
auss-Newton-based schemes with the Levenberg-Marquardt
amping for stabilization of the inverse solution �Pelton et al., 1984;
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Two popular routines have been developed for Cole-Cole param-
ter estimation according to iterative Gauss-Newton algorithms.
he first, developed by Pelton et al. �1978�, has been demonstrated
xtensively on SIP data from mineralized rock; the second, devel-
ped by Kemna �2000�, has been used widely for inverting SIP data
ssociated with sediments and calibrated materials �Kemna et al.,
000, 2005; Binley et al., 2005; Slater et al., 2005, 2006; Mansoor
nd Slater, 2007�. Although the two routines differ in terms of pa-
ameterization and definition of data, they commonly use deriva-
ives of the forward model with respect to model parameters �i.e.,
acobian matrix� to iteratively update the Cole-Cole parameters
rom a set of initial values.

The main limitation of the Gauss-Newton-based deterministic
ethod is that convergence to the global minimum is not guaranteed,
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F248 Chen et al.
nd estimation results strongly depend on the choice of starting val-
es. Consequently, successful application of the deterministic meth-
d for SIPdata inversion requires considerable familiarity with char-
cteristics of Cole-Cole model responses and with sensitivity to the
nderlying Cole-Cole parameters.Amultiple Cole-Cole model typi-
ally is used for describing SIP responses when multiple relaxation
echanisms are superimposed. In such cases, it often is difficult to

hoose suitable sets of initial values to obtain an optimal solution of
he Cole-Cole parameters.

Other types of inversion approaches have been suggested to re-
uce the dependence of the optimal solution on initial values. Exam-
les include a direct scheme by Xiang et al. �2001�, which consists of
multifold least-squares estimation combined with an optimal

earching technique, a genetic algorithm by Cao et al. �2005�, and a
obust Gauss-Newton-based method with adaptive regularization by
oy �1999�. The main disadvantage of these methods is that they
rovide inaccurate or insufficient information on uncertainty in the
arameter estimation.

Ghorbani et al. �2007� develop a Bayesian model to invert time-
nd frequency-domain IP data for parameters in a single Cole-Cole
odel. They use a numerical integration technique over regular

rids to obtain a marginal posterior probability density function
pdf� of each Cole-Cole parameter from the joint posterior probabili-
y distribution function. Through case studies based on synthetic and
aboratory data sets, they demonstrate that the Bayesian model could
rovide the estimates of the marginal probability density function of
ach unknown parameter and of each pair of unknown parameters.
owever, their method for obtaining many samples from the joint
osterior distribution is very difficult to apply in practice because of
he high dimensionality of the unknown parameter space, which
ommonly occurs with a multiple Cole-Cole model. As described in
he next section, a multiple Cole-Cole model is a more general and

able 1. Nomenclature.

ymbol Meaning

, �obs Complex resistivity

, �k Angular frequency

fk Frequency

0, �0
�0�, �0

�t� Zero-frequency resistivity

, ml, m1, m2, mL Chargeability

, � l, � 1, � 2, � L Time constant

, cl, c1, c2, cL Cole-Cole exponent

Re, uRe
�0�, uRe

�t�1�, uRe
�t� Inverse variance of errors in real part of d

Im, uIm
�0�, uIm

�t�1�, uIm
�t� Inverse variance of errors in imaginary pa

e� �, Im� � Real and imaginary part of complex resist

, m�0�, m�t�1�, m�t� Base 10 logarithmic chargeability vector

, b�0�, b�t�1�, b�t� Base 10 logarithmic time-constant vector

, c�0�, c�t�1�, c�t� Dependence-factor vector

k
r Relative error

��
�
*,u

�
*� Normal distribution with mean �

�
* and inv

nd� � Indicator function

��,�� Gamma distribution with shape parameter
scale parameter �
roper model than a single Cole-Cole model for describing IP data
ith various dispersion ranges, caused either by multiple-length

cales in sediments or by coupling effects in the IP measurements.
We begin with a review of the Cole-Cole model. This is followed

y development of a Bayesian model to invert SIP data for Cole-
ole parameters using Markov-chain Monte Carlo �MCMC� sam-
ling methods �Gilks et al., 1996�. MCMC methods are effective for
rawing samples from complex and high-dimensional joint proba-
ility distribution functions; they have been used increasingly to in-
ert complex geophysical data �Bosch, 1999; Buland and Omre,
003; Gunning and Glinsky, 2004; Chen et al., 2004, 2006�. Our goal
s to develop an inversion approach that is insensitive to initial val-
es and that provides sufficient uncertainty information on the esti-
ation when we invert SIP data for parameters in a multiple Cole-
ole model. We evaluate the performance of the sampling-based
ayesian model by applying it to synthetic and laboratory SIP data

ets and comparing the inversion results with those obtained from
he Gauss-Newton-based deterministic method developed by
emna �2000�.

COLE-COLE MODEL

We interpret spectral induced polarization data using the Cole-
ole model �Cole and Cole, 1941; Pelton et al., 1978�, which is an
mpirical extension of the classic Debye relaxation model. For com-
lex resistivity, describing the electric-voltage response to an elec-
ric-current excitation in the frequency domain, the Cole-Cole mod-
l can be written as

���� � �0�1 � m�1 �
1

1 � �j�� �c�� , �1�

where �0 is the asymptotic resistivity value to-
ward zero frequency, m is the chargeability that
describes the magnitude of electric polarization
giving rise to the phase shift between voltage and
current �i.e., the complex nature of ��, � is the
characteristic time constant of the relaxation pro-
cess, and c is the Cole-Cole exponent that de-
scribes the degree of frequency dependence of �.

In the equation, � and j are the angular fre-
quency and ��1, respectively. For c � 1, the
Cole-Cole model is reduced to the Debye model.
Table 1 lists variables and symbols used in this
paper. Note that both Cole-Cole and Debye mod-
els are characterized by a single peak in the com-
plex resistivity phase spectrum; the location of
the peak along the frequency axis is related di-
rectly to the relaxation time constant � .

Pelton et al. �1978� introduced the Cole-Cole
model to describe electrical properties in mineral-
ized rock, in which polarization occurs at inter-
faces between electronically conducting mineral
grains and fluid-filled pores with electrolytic con-
duction. Over the last decade, the model has been
adopted to describe the observed complex resis-
tivity response of sedimentary rock that does not
include electronically conducting components
�Vanhala, 1997; Binley et al., 2005; Kemna et al.,

ata

ariance u
�
*

inverse
ata

rt of d

ivity

erse v
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005� and that normally exhibits a much weaker phase response than
oes mineralized rock. In that case, polarization is a result of the in-
eraction of the pore fluid �electrolyte� with electrically charged min-
ral surfaces, on which the so-called electric double layer is formed
e.g., Leroy et al., 2008�.

Importantly for both polarization mechanisms, the observed time
cale of relaxation, as quantified by the Cole-Cole time constant � , is
elated directly to the length scale determined by the size of electron-
cally conducting grains in mineralized rock �Pelton et al., 1978� or
y the length scale characteristic of the pore space in sedimentary
ock �e.g., Titov et al., 2002; Scott and Barker, 2003; Binley et al.,
005; Slater, 2007�. In this sense, the measured complex resistivity
pectrum represents an integrated response over all length scales
resented in the rock �e.g., Leroy et al., 2008�. For rock with a uni-
odal distribution of length scales �i.e., a unimodal grain or pore-

ize distribution�, a phase spectrum with a single peak, as reported
epeatedly in the literature, can be expected. However, for more
omplex distributions of length scales such as bimodal distributions,
hase spectra with more than one phase peak can be observed �Leroy
t al., 2008�. The different peaks reflect relaxation processes at dif-
erent scales. Such behavior also is observed in time-domain mea-
urements of induced polarization �Tong et al., 2006; Tarasov and
itov, 2007�.
An additional frequency dependence in the measured complex re-

istivity spectrum typically is generated by inductive and/or capaci-
ive coupling effects associated with instrumentation and cable lay-
ut. These coupling effects can be described phenomenologically
lso by a Cole-Cole dispersion term �e.g., Pelton et al., 1978; Kemna
t al., 1999, 2005�. In this case, however, the Cole-Cole parameters
hemselves normally are not of interest, but only the response of the
arameter set with an objective of removing it from the measured
ata.

We adopt a multiple Cole-Cole model as used by Kemna �2000� to
llow for analysis of phase spectra with more than one dispersion
ange caused either by the multiple modality of the rock or by cou-
ling effects in the measurements. Such a model represents a dis-
rete integration over different relaxation scales and is given by

���� � �0�1 � �
l�1

L

ml�1 �
1

1 � �j�� l�cl
�� , �2�

here L is the number of Cole-Cole models that we fit for a given
omplex resistivity data set.A typical value for L is between 1 and 3,
epending on the number of present relaxation scales and whether
he inversion procedure is applied to remove coupling effects from
he measured data or to extract intrinsic Cole-Cole parameters from
omplex resistivity imaging results �Kemna et al., 2000�. The sym-
ols ml, � l, and cl represent chargeability, time constant, and depen-
ence factor for the lth dispersion term in the multiple Cole-Cole
odel, respectively.
The Cole-Cole model given in equation 2 can be rewritten in the

orm of real and imaginary components of complex resistivity as
iven by Cao et al. �2005�,

Re	���k�
 � �0�1 � �
l�1

L

ml�1 �
Rl

Rl
2 � Il

2�� , �3�
nd

Im	���k�
 � ��0�
l�1

L

ml
Il

Rl
2 � Il

2 , �4�

here �k � 2� fk, k � 1,2, . . . ,n �fk is the kth frequency, and n is the
otal number of frequencies at which the IP measurements are col-
ected�, Rl � ��k� l�cl cos�cl� /2� � 1, and Il � ��k� l�cl sin�cl� /2�.

STOCHASTIC METHOD

ayesian framework

We develop a Bayesian model to estimate parameters in the Cole-
ole model given by equations 3 and 4. The SIP data used for this
odel are the real and imaginary components �i.e., Re	�obs��k�
 and

m	�obs��k�
� of the complex resistivity collected at frequency �k �k
1,2, . . . ,n�. The unknown parameters are the zero-frequency re-

istivity �0, the base 10 logarithmic chargeability m � �log�m1�,
og�m2�, . . . , log�mL��T, the base 10 logarithmic time constant b

�log�� 1�, log�� 2�, . . . , log�� L��T, and the dependence factor c
�c1,c2, . . . ,cL�T. To account for unknown measurement errors in

he real and imaginary components, we include two additional pa-
ameters uRe and uIm, which are the inverse variances of measure-
ent errors in the real and imaginary parts of complex resistivity.
As a result, we can write the Bayesian model as

f��0,m,b,c,uRe,uIm�Re	�obs��k�
,Im	�obs��k�
,

k � 1,2, . . . ,n��

	 �
k�1

n

f�Re	�obs��k�
�0,m,b,c,uRe�


 �
i�1

n

f�Im	�obs��k�
�0,m,b,c,uIm�


 f��0,m,b,c,uRe,uIm� . �5�

he first and second terms on the right side of equation 5 are likeli-
ood functions of the real and imaginary components of complex re-
istivity data, respectively; the third term is the prior distribution
unction of unknown Cole-Cole parameters. Because we assume
hat errors in the real and imaginary parts of complex resistivity at
ifferent frequencies are independent of each other, we can write the
xpression in the form of the product of individual likelihood func-
ions as shown in equation 5. Below, we define the likelihood func-
ions and prior distributions that are included in the equation.

ikelihood functions

To define the likelihood function of the real components of com-
lex resistivity, we assume that relative errors between the observed
ata and the output of the forward Cole-Cole model have a normal
istribution with zero mean and unknown inverse variance, that is,

ek
r �

Re	�obs��k�
 � Re	���k�

Re	�obs��k�


� N�0,uRe� . �6�

e choose this likelihood model partly because errors in IP data of-
en have a distribution close to the normal distribution, and partly be-
ause the maximum likelihood estimates of such types of likelihood
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F250 Chen et al.
unctions are equal to the estimates of the deterministic method �i.e.,
he least-squares estimation�.

With this error distribution, the likelihood function of the real
omponents is given by

f�Re	�obs��k�
�0,m,b,c,uRe�

��uRe

2�
exp��

uRe

2
�Re	�obs��k�
 � Re	���k�


Re	�obs��k�

�2� .

�7�

imilarly, we can define the likelihood function of the imaginary
omponents of complex resistivity as

f�Im	�obs��k�
�0,m,b,c,uIm�

��uIm

2�
exp��

uIm

2
� Im	�obs��k�
 � Im	���k�


Im	�obs��k�

�2� .

�8�

rior models

The prior distribution of Cole-Cole parameters is determined
rom prior knowledge or other information about the parameters,
hich might be subjective and site-specific. Because we assume that

ach parameter is independent of others, we can write the joint prior
istribution given in equation 5 as the product of prior distributions
f each individual parameter,

f��0,m,b,c,uRe,uIm� � f��0�f�m�f�b�f�c�f�uRe�f�uIm� .

�9�

o minimize subjectivity, we assume in this study that the parame-
ers �0, m, b, and c have uniform distributions over given ranges. For
xample, for synthetic case studies presented in the section of syn-
hetic studies, the prior ranges of parameters �0, m, b, and c are given
s �1, 1000� �in �m�, ��5,0�, ��5,5� �log � , � in s�, and �0, 1�, re-
pectively.

We similarly use proper noninformative prior distributions for in-
erse variances uRe and uIm as done in the software of the Bayesian
nference using Gibbs sampling �BUGS� �Spiegelhalter et al., 1994�,
hich are the gamma distribution with shape and inverse scale pa-

ameters of 1e-3. The above prior models are quite noninformative.
s a result, the estimates of Cole-Cole parameters obtained from the

tochastic method primarily depend on the data and thus are compa-
able to those obtained from the Gauss-Newton-based deterministic
ethod.

SAMPLING METHODS

We obtain estimates of unknown parameters by drawing many
amples from the joint posterior pdf defined in equation 5 using

CMC methods. MCMC methods provide a powerful approach for
ampling multivariate variables from a complex joint probability
istribution. They are superior over conventional Monte Carlo
ethods because the conventional methods draw independent sam-

les and are prohibitive for drawing samples from high-dimensional
oint distribution functions. As opposed to deterministic methods,
hich seek a single optimal solution of unknown parameters,
CMC sampling-based stochastic methods draw many samples
rom the joint posterior pdf. The obtained samples then can be used
o infer statistics of each parameter, such as its mean, variance, and
redictive intervals. As described in the following subsections, we
se different methods to draw samples from the joint posterior distri-
ution for Cole-Cole parameters, for zero-frequency resistivity, and
or inverse variances of data.

onditional probability distributions of Cole-Cole
odel parameters

We first derive the conditional pdfs of Cole-Cole parameters m, b,
nd c. Because the conditional distribution of each of those parame-
ers is similar, we describe only the method for obtaining the condi-
ional distribution of chargeability vector m, given all other un-
nown parameters and SIPdata. Because MCMC sampling methods
oncern only the quantities that are functions of vector m, we can ob-
ain the conditional f�m · � by keeping those terms that are related to
ector m. The result is given by

f�m · � 	 Ind�m � Dm��
k�1

n

f�Re	�obs��k�


�0,m,b,c,uRe��
k�1

n

f�Im	�obs��k�
�0,m,b,c,uIm� .

�10�

he first term on the right side of equation 10 is an indicator variable
hat accounts for the constraint from the prior distribution of vector

, where Dm is the given prior range of chargeability. Similarly, we
an obtain conditional pdfs of Cole-Cole parameters b and c.

onditional probability distribution
f zero-frequency resistivity

We can obtain the analytical form of the conditional pdf of the ze-
o-frequency resistivity because the real and imaginary components
f SIPdata are linear functions of it. We simplify equations 3 and 4 as
e	���k�
 � �0A��k� and Im	���k�
 � �0B��k� by letting

A��k� � 1 � �
l�1

L

ml�1 �
Rl

Rl
2 � Il

2�
nd

B��k� � ��
l�1

L

ml
Il

Rl
2 � Il

2

onsequently, the conditional pdf has a truncated normal distribu-
ion �seeAppendix A�,

f��0 · � 	 Ind��0 � D��N��
�
*,u

�
*� , �11�

here D� is the given prior range of zero-frequency resistivity;

u
�
* � uRe�

k�1

n � A��k�
Re	�obs��k�


�2

� uIm�
k�1

n � B��k�
Im	�obs��k�


�2

,

nd

�* � �u

n
A��k�

� u

n
B��k� � 1

.

� Re�

k�1 Re	�obs��k�

Im�

k�1 Im	�obs��k�
 u
�
*
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onditional probability distributions of the inverse
ariances of measurement errors

Because prior distributions of the inverse variances of measure-
ent errors are conjugate priors for the likelihood models defined in

quations 7 and 8, we also can obtain the analytic forms of their con-
itional distributions, which are gamma distributions �seeAppendix
�, as follows,

f�uRe · � 	 f�uRe��
k�1

n

f�Re	�obs��k�
�0,m,b,c,uRe�

	 � �� � 0.5n,� � 0.5SRe� , �12�
nd

f�uIm · � 	 f�uIm��
k�1

n

f�Im	�obs��k�
�0,m,b,c,uIm�

	 � �� � 0.5n,� � 0.5SIm� , �13�

here � � � � 1e � 3,

SRe � �
k�1

n �Re	�obs��k�
 � Re	���k�

Re	�obs��k�


�2

,

nd

SIm � �
k�1

n � Im	�obs��k�
 � Im	���k�

Im	�obs��k�


�2

.

ampling algorithm and monitoring convergence

We use the Gibbs sampler �Geman and Geman, 1984� to draw
amples from the joint posterior distribution defined in equation 5.
he main steps are listed below:

� Assign initial values to �0, m, b, c, uRe, and uIm; refer to them as
�0

�0�, m�0�, b�0�, c�0�, uRe
�0�, and uIm

�0�, respectively. Let t � 1.
� Draw a sample from f��0 · � given m�t�1�, b�t�1�, c�t�1�, uRe

�t�1�,
and uIm

�t�1�; refer to it as �0
�t�.

� Draw a sample from f�m · � given �0
�t�, b�t�1�, c�t�1�, uRe

�t�1�, and
uIm

�t�1�; refer to it as m�t�.

able 2. True Cole-Cole parameters of the synthetic dual mod
nd the initial values of the deterministic method for invertin

Sto

ole-Cole
arameters

True
values Prior ranges Init

0 ��m� 25.00 �1,1000�

1 0.50 �1e � 5,1�

og�� 1� �� 1 in s� 1.00 ��5,5� �

1 0.40 �0,1�

2 0.01 �1e � 5,1�

og�� 2� �� 2 in s� 0.00 ��5,5� �

2 0.98 �0,1�
� Draw a sample from f�b · � given �0
�t�, m�t�, c�t�1�, uRe

�t�1�, and
uIm

�t�1�; refer to it as b�t�.
� Draw a sample from f�c · � given �0

�t�, m�t�, b�t�, uRe
�t�1�, and uIm

�t�1�;
refer to it as c�t�.

� Draw a sample from f�uRe · � given �0
�t�, m�t�, b�t�, c�t�, and uIm

�t�1�;
refer to it as uRe

�t� .
� Draw a sample from f�uIm · � given �0

�t�, m�t�, b�t�, c�t�, and uRe
�t�; re-

fer to it as uIm
�t� .

� Let t � t � 1. If t�T, where T is the maximum number of iter-
ations allowed, stop; otherwise, go to step 2.

We can obtain many samples of unknown Cole-Cole parameters
nd inverse variances of measurement errors, i.e., ��0

�t�,m�t�,b�t�,c�t�,
uRe

�t� ,uIm
�t� ,t � 1,2, . . . ,T�, by following the aforementioned algorithm.

heoretically, after a sufficiently long run �e.g., t0 iterations, referred
o as burn-in by Gilks et al., 1996�, the drawn samples are approxi-

ately the samples drawn from the true joint pdf given in equation 5.
any methods can be used to find the burn-in number and to monitor

he convergence of the obtained Markov chains, such as the methods
eveloped by Gelman and Rubin �1992�, Geweke �1992�, and Raf-
ery and Lewis �1992�; we use the Gelman and Rubin �1992� method
n this study.

We run three chains by starting from different sets of initial values
or the total number of T iterations.As the samples drawn early in the
rocess could depend on the starting values, we throw away the first
.5T number of samples for each chain and consider them as the
urn-in. We calculate a criterion, referred to as the scale reduction
core in Gelman and Rubin �1992�, based on the three Markov
hains. With that approach, if the scale reduction score is less than
.2, the Markov chain is considered to be converged; otherwise,
ore runs are needed.

SYNTHETIC STUDIES

We first demonstrate the use of the sampling-based Bayesian
odel for Cole-Cole parameter estimation using a synthetic SIPdata

et. We then compare the results obtained from the stochastic ap-
roach with those obtained from the deterministic method devel-
ped by Kemna �2000�. We choose a synthetic case with a dual Cole-
ole model because this case often is encountered in practice, either

o describe an SIP response with two relaxation domains or to de-
cribe a single-relaxation SIP response contaminated by capacitive

prior ranges and initial values of the stochastic method,
ynthetic SIP data.

inversion

Initial-2 Initial-3
Deterministic inversion

initial values �Init0�

50.0 500.0 20.0

0.4 0.6 0.1

�1.0 1.0 1.0

0.4 0.6 0.5

0.4 0.6 0.1

�1.0 1.0 �1.0

0.4 0.6 0.5
el, the
g the s
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ial-1

5.0
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4.0
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nd/or inductive coupling associated with the measurement layout
Pelton et al., 1978; Kemna et al., 1999�.

rue Cole-Cole model parameters
nd synthetic IP data

The synthetic Cole-Cole model parameters are listed in the sec-
nd column of Table 2. These values are the same as those used by
ao et al. �2005�, except for the zero-frequency resistivity whose
alue was not provided. The dual Cole-Cole model is separated
ainly by the two chargeabilities, which have a ratio of 50. We gen-

rated synthetic SIP data using frequencies ranging from 1 mHz
hrough 10 kHz as is typical of SIP measurements, and added 1%
elative random noise to the real and imaginary components of the
enerated resistivity data. This level of noise is reasonable based on
he noise distributions estimated from the laboratory SIP data pre-
ented in the section of laboratory studies.

nversion procedure of the MCMC-based stochastic
ethod

We start to invert the SIP data using common and wide �i.e., non-
nformative� prior ranges, specifically �1, 1000� �in �m� for the ze-
o-frequency resistivity �0, �1e-5, 1� for chargeabilities m1 and m2,

able 3. Comparison of estimates from inversion of the SIP d
ethods.

ole-Cole
arameters

True
values

Stochastic
inversion
medians

0 ��m� 25.00 25.01

1 0.50 0.496

og�� 1� �� 1 in s� 1.00 1.009

1 0.40 0.398

2 0.01 0.015

og�� 2� �� 2 in s� 0.00 0.147

0.0 0.2 0.4 0.6 0.8

1

2
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4

P
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bi
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ity

Chargeability

igure 1. Estimated chargeability �m1� for synthetic dual Cole-Cole
odel data using the common prior ranges.
0, 1� for dependence factors c1 and c2, and ��5,5� �in seconds� for
ase 10 logarithmic time constants log�� 1� and log�� 2� �see column
of Table 2�. We run three Markov chains using three sets of initial
alues given by the fourth, fifth, and sixth columns of Table 2. We
un each chain by beginning with one of the three sets of initial val-
es for 20,000 iterations and use the latter half to estimate the mar-
inal posterior pdf of each Cole-Cole parameter. The CPU time for
he sampling is on the order of minutes using a personal computer
ith 1.8 GHz speed.
Figure 1 shows the estimated marginal pdf of chargeability m1,

btained stochastically using the synthetic SIP data with 1% relative
oise. Two modes appear in the pdf: One is close to 0.0 and the other
s about 0.5. This is because if we switch the values between the
ole-Cole parameters �m1,� 1,c1� and �m2,� 2,c2�, the IP responses
alculated from equations 3 and 4 do not change. To avoid the bimo-
ality, we rerun the Markov chains by modifying the prior ranges of
hargeability as follows, �0.25, 1� for m1 and �1e-5, 0.25� for m2. Us-
ng such a two-step procedure, we obtain the marginal posterior pdfs
f all Cole-Cole parameters with a unique mode.

omparison between the stochastic and deterministic
nversion methods

In this subsection, we explore how the choice of initial values im-
acts the deterministic and stochastic estimation results, and we as-
ess the uncertainty information provided by these inversion meth-
ds.

ependence on the choice of initial values

The choice of initial values is not critical for the stochastic inver-
ion method because it affects only the speed of convergence of Mar-
ov chains to the target probability distribution being sampled, but
ot the inversion results. In fact, it is essential for the MCMC-based
ethods to run multiple chains with very different sets of initial val-

es to avoid possible local convergence. Although the stochastic
ethod provides extensive information about each unknown param-

ter, we use only the medians as the best estimates and compare them
ith the estimates obtained from the deterministic method. In the

hird column of Table 3, we show the estimated medians of unknown
ole-Cole parameters based on all three Markov chains obtained us-

ng the three initial sets given in Table 2, because the estimated medi-
ns from each chain are almost identical. From the comparison be-

th 1% relative noise using stochastic and deterministic

Deterministic inversion

ates
Init0�

Estimates
�using true values�

Estimates
�using medians�

.92 25.01 25.02

10 0.490 0.490

78 1.009 1.012

16 0.398 0.397

00 0.016 0.017

18 0.137 0.145
ata wi

Estim
�using
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Stochastic inversion of spectral IP data F253
ween the estimated medians and their corresponding true values,
hich are given in the second column of Table 3, we can see that

ven if we start from very different initial values, the MCMC-based
ethod can provide good estimates of unknown parameters.
The choice of initial values is critical for the deterministic inver-

ion, especially when considering a multiple Cole-Cole model. We
ound that the method often cannot converge given an arbitrary
hoice of initial values. For example, when we applied the initial val-
es given in Table 2 for the stochastic inversion to the deterministic
nversion method, none could converge to a solution that was close
o the true values.Amain problem caused by the dependence of esti-

ates on initial values is that if differences between resultant data
isfits for estimates obtained from different sets of initial values are

ubtle, it is difficult to decide which solution should be preferred
ithout knowing the probability of the parameter sets.
Table 3 shows the estimates of Cole-Cole parameters obtained de-

erministically using different sets of initial values. The first one is
isted in the last column of Table 2, obtained after several tries by ob-
erving the SIP data fits without knowing the true values; the second
ne uses the true values of the synthetic model. Figure 2 shows the
ts to synthetic SIP data with 1% relative noise using the determinis-

ic approach with these two sets of initial values, along with the fit
btained from the stochastic method.

If we did not know the true model parameters, given 1% relative
oise in the data, we might be satisfied with the estimates obtained
rom the first set of initial values. However, comparison with the true
ole-Cole parameters shows that the results in column 4 of Table 3,
aving the root mean square �rms� of errors of 0.57, is clearly worse
han the results in column 3 of the same table, having the rms of
.084 and obtained from the stochastic inversion method. The esti-
ates found from the second set of initial values �column 5 in Table
� are best �rms � 0.065� and represent the global solution of the in-
erse problem because we started from the true Cole-Cole parame-
ers. These estimates are comparable with those �column 3 in Table
� obtained from the stochastic inversion method.

In practice, we rarely have enough a priori information about SIP
echanisms to choose good initial values that are close enough to

he true values to lead to a global optimal solution using the deter-
inistic approach. However, we might desire a single parameter es-

imate rather than a pdf. We can achieve this goal by using a combi-
ation of the stochastic and deterministic approaches, whereby we
nitialize the deterministic method using the medians of the stochas-
ically obtained marginal posterior pdfs. The sixth column of Table 3
llustrates this approach, and indicates that the obtained estimates
re indeed very close �rms � 0.072� to the true Cole-Cole parame-
ers, which are just slightly worse than the results obtained by start-
ng from the true values �rms � 0.065�.

stimated uncertainty information

The stochastic method can provide the entire estimated posterior
dfs and hence extensive information of the unknown parameters.
o compare the stochastic estimation results with those obtained us-

ng the deterministic method, we use only the 95% highest probabil-
ty domains �HPDs� of unknown parameters as a measure of uncer-
ainty, which is equivalent to the 95% confidence intervals �CIs� in
he deterministic inversion method. Table 4 shows the 95% HPDs of
ole-Cole parameters obtained from the stochastic method and the
5% CIs of estimated parameters from the deterministic inversion
ethod. Note that the upper bound of the possible c range also was
2
et to 1 in the deterministic approach. This table suggests that the sto-
hastic method provides very high precision for all unknown vari-
bles; all true values are within the 95% HPDs.

The quality of uncertainty information obtained from the deter-
inistic method varies, depending on the obtained optimal solu-

ions. For initial values given in the last column of Table 2, the result-
nt estimates do not represent a global solution, as shown in Table 3
nd Figure 3. Their 95% CIs are very wide; some do not include the
rue values. For example, the deterministically obtained time con-
tant � 2 and dependence factor c2 shown in Figure 3 vary significant-
y from the true value. However, when initial values are well chosen
i.e., close to the true values�, the deterministic method provides
ood uncertainty information. For example, when initial values for
he deterministic approach are the true values or medians of the sto-
hastic results, the resultant 95% CIs are comparable to those ob-
ained from the stochastic method �except for the zero-frequency re-
istivity �0�.

The uncertainty information obtained from the stochastic method
iffers from that obtained from the deterministic method by defini-
ion. The uncertainty information of the stochastic method depends
n the measurement errors in the data and prior distributions, where-
s the uncertainty information of the deterministic method is a func-
ion of measurement errors in the data and is related to the obtained
olution. If the estimated values are close to the true values, the 95%
Is are tight; otherwise, they are inaccurate, as shown in Table 4. For
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igure 2. Synthetic SIP data with 1% relative noise and obtained fits
sing the stochastic method �green curves� and the deterministic
ethod for two sets of initial values �blue curves represent true val-

es, and red curves represent Init0 values in Table 2� for a dual Cole-
ole model.



t
c
k

S

s
a
fi
h
m
t
1
N
q
t
w
h
c
s
p
h

w
i
d
m
t
t
T
d
m
p
a
l

I

u
t
s
C
a
C
r
t
w

T
s

C
p

�

m

l

c

m

l

c

F
m
i
v
r
s
m

F254 Chen et al.
he stochastic method, as long as the Markov chains converge, we
an get good estimates of uncertainty information about the un-
nown parameters.

LABORATORY STUDIES

pectral IP laboratory measurements

We use two laboratory SIP data sets measured on unconsolidated

able 4. Comparison of uncertainty information obtained fro
tochastic and deterministic methods.

ole-Cole
arameters

True
values

Stochastic
inversion
95% HPD

0 ��m� 25.00 �24.89,25.15�

1 0.50 �0.475,0.504�

og�� 1� �� 1 in s� 1.00 �0.974,1.066�

1 0.40 �0.390,0.402�

2 0.01 �0.007,0.037�

og�� 2� �� 2 in s� 0.00 ��0.008,0.337�

2 0.98 �0.635,1.0�
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igure 3. Comparison between estimated pdfs from the stochastic
ethod �black curves� and estimated parameters from the determin-

stic method for three sets of initial values �blue lines represent true
alues, green lines represent medians of the stochastic results, and
ed lines represent estimates using Init0 values in Table 2� for the
ynthetic SIP data with 1% relative noise using a dual Cole-Cole
odel.
ediment samples to compare the performance of the deterministic
nd stochastic methods for Cole-Cole parameter estimation. The
rst data set �Figure 4� was measured on a silica-sand sample that
ad grain size of 125–250 �m and was saturated with a 3
10�4

olar KCl solution �Kemna et al., 2005�. The data show a Cole-Cole
ype behavior in the low-to-moderate frequency range �i.e., below
00 Hz� at relatively low polarizability, as is typical of silica sands.
ote that the decrease of the real part of resistivity toward lowest fre-
uencies �i.e., below 30 mHz� results from ions being detached from
he matrix and going into solution during data acquisition time,
hich is on the order of two hours for this frequency range. Toward
igher frequencies �i.e., above 100 Hz�, the data are dominated in-
reasingly by capacitive coupling effects associated with the mea-
urement setup, as is typical in impedance spectroscopy. These cou-
ling effects might be described by the low-frequency branch of a
igher-frequency Cole-Cole dispersion term �Kemna et al., 2000�.

The second data set �Figure 5� was collected from a sample that
as extracted from a sand/gravel aquifer at the Krauthausen test site

n Germany �Kemna et al., 2002; Hördt et al., 2007�, using the same
evice and experimental setup used for the first set of laboratory
easurements. The sample was saturated with water having an elec-

rical conductivity of approximately 0.05 S/m. The fluvial aquifer at
he site partly exhibits a strongly nonuniform grain-size distribution.
his is reflected in the selected data set, in which two Cole-Cole type
ispersion regions can be identified with phase peaks at approxi-
ately 0.1 Hz and 100 Hz, again superimposed by a continuous

hase shift increasing toward higher frequencies �i.e., above 1 kHz�
s a result of capacitive coupling associated with the measurement
ayout.

nversion of the SIP data from the silica-sand sample

We first inverted the SIPdata obtained from the silica-sand sample
sing the deterministic method for a dual Cole-Cole model. After
rying several sets of initial values, we chose the values given in the
econd column of Table 5. The corresponding estimates of the Cole-
ole parameters and their associated 95% CIs are listed in the third
nd fourth columns of the same table, respectively. The estimated
ole-Cole parameters seem to fit the SIP data well, as shown by the

ed curves in Figure 4. For ease of comparison, we calculate the rela-
ive half-width �RHW� of 95% CIs by normalizing each actual half-
idth by the absolute value of its corresponding optimal estimate.

rsion of the synthetic SIP data with 1% relative noise using

Deterministic inversion

5% CI
ng Init0�

95% CI
�using true values�

95% CI
�using medians�

94,26.90� �23.04,26.97� �23.05,26.98�

,0.869� �0.484,0.496� �0.483,0.497�

38,1.218� �0.983,1.034� �0.986,1.038�

52,0.480� �0.395,0.401� �0.393,0.401�

,0.567� �0.013,0.019� �0.014,0.020�

49,2.387� ��0.092,0.366� ��0.087,0.377�
14,0.508� �0.738,1.0� �0.726,1.0�
m inve
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Stochastic inversion of spectral IP data F255
e can see that the obtained CIs of the estimates overall are tight
RHW�6%�, except for those of m2 �RHW � 101%�, log�� 1�
RHW � 10%�, and log�� 2� �RHW � 25%�. Note that the lower
ound of the possible m2 range is set to 0.
We also inverted the same SIP data set for a dual model using the

tochastic method. We used common prior ranges for the two sets of
ole-Cole model parameters, i.e., �1, 1000� �in �m� for zero-fre-
uency resistivity, ��5, 0� �log�m�� for chargeability, ��10, 10�

able 5. Comparison of inversion results using deterministic a

Deterministic meth

arameters Initial values Estimates

0 ��m� 770.77 773.40

1 1e � 3 6.94e � 3

og�� 1� �� 1 in s� �1.0 �0.992

1 0.5 0.418

2 1e � 1 1.29e � 1

og�� 2� �� 2 in s� �6.0 �6.406

2 1.0 0.765
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igure 4. Silica-sand SIP data and fits obtained using the stochastic
ethod �blue curves� and deterministic method �red curves� for a

ual Cole-Cole model.
log�� �, � in seconds� for time constant, and �0, 1� for dependence
actor. Following the two-step procedure described in the section of
ynthetic studies, we obtained the estimated marginal posterior pdfs
f the Cole-Cole parameters. For comparison with the deterministic
esults, we list the medians and their corresponding 95% HPDs in
able 5. Except for chargeability m2 and time constant log�� 2�,
hich are poorly constrained by the data, the medians of the estimat-

d posterior pdfs of the Cole-Cole parameters are very close to those

chastic methods for silica-sand SIP data.

Stochastic method

95% CI Medians 95%HPD

52.96,794.39� 773.33 �772.38,774.37�

� 3,7.11e � 3� 6.90e � 3 �6.7e � 3,7e � 3�

1.095,�0.889� �0.972 ��1.005,�0.933�
0.406,0.429� 0.423 �0.413,0.433�

0,2.62e � 1� 6.71e � 1 �3.05e � 1,1�

7.989,�4.823� �7.462 ��7.734,�6.948�
0.725,0.804� 0.736 �0.719,0.754�
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igure 5. Krauthausen SIP data and fits obtained using the stochastic
ethod �blue curves� and deterministic method �red curves� for a tri-

le Cole-Cole model.
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F256 Chen et al.
btained from the deterministic method. However, the stochastic
ethod provides much tighter uncertainty bounds for those esti-
ates; all relative half-widths of 95% HPDs are less than 3%, except

or those of m2 �RHW � 52%�, log�� 1� �RHW � 4%�, and log�� 2�
RHW � 5%�.

Figure 6 compares the estimated pdfs of Cole-Cole parameters
btained from the stochastic method with the optimal estimates ob-
ained from the deterministic method. Except for the time constant
og�� 2� and the dependence factor c2, all estimates obtained from the
eterministic method are within the HPDs of the posterior pdfs. To
emonstrate the effect of initial values, we inverted the same data set
sing the deterministic method starting from the medians of the pos-
erior pdfs. The corresponding new estimates also are shown in Fig-
re 6. Note that all estimated Cole-Cole parameters now are very
lose to the medians of the estimated marginal posterior pdfs. The
ew estimates represent a better solution in terms of the chi-square
isfit, which is 0.44 for the original initial values and 0.37 for the

ew initial values.
Table 6 compares the correlation coefficients of Cole-Cole pa-

ameters obtained from the deterministic �above slashes� and sto-
hastic �below slashes� methods. These methods give us very small
alues of crosscorrelation between the zero-frequency resistivity
nd other parameters. In addition, we can see that the stochastic
ethod provides very similar but slightly smaller values of crosscor-

elation among the parameters �m1, log�� 1�, c1�, which are reason-
bly constrained by the data, than does the deterministic method.
owever, the differences in crosscorrelations between parameters

nvolving m2, log�� 2�, or c2 are quite large, which might have con-
ributed to the poor resolvability of particularly m2 and log�� 2�.

nversion of SIP data from the Krauthausen
and/gravel sample

We also inverted SIP data obtained from the sand and gravel sam-
le from the Krauthausen site using the deterministic and stochastic
ethods. For the deterministic method, we fitted the data with a tri-

le Cole-Cole model after several tries with different initial values.
able 7 shows the initial values, obtained estimates, and 95% CIs of

he estimates.As shown in Figure 5, the estimated Cole-Cole param-
ters seem to fit the complex resistivity data very well. As in the sili-
a-sand example before, chargeability and time constant of the high-
st-frequency Cole-Cole terms �i.e., m3 and log�� 3�� are not effec-
ively resolved �i.e., exhibit huge 95% CIs; for m3, the CI actually is
iven by the preset lower and upper bounds of the allowed range�, as
xpected from the spectral behavior of the data �Figure 5�.

ministic (above slashes) and stochastic (below slashes)

c1 m2 log�� 2� c2

1

0.39/0.10 1

�0.40/�0.16 �0.99/�0.97 1

�0.53/�0.50 �0.89/�0.33 0.91/0.46 1
able 6. Comparison of correlation coefficients obtained from deter
ethods for silica-sand SIP data.

arameters �0 m1 log�� 1�

0 1

1 0.01/�0.04 1

og�� 1� 0.00/0.01 �0.69/� 0.62 1

1 0.00/�0.02 �0.67/�0.63 0.64/0.60

2 �0.01/�0.01 �0.51/�0.12 0.51/0.13

og�� 2� 0.01/0.01 0.52/0.19 �0.52/�0.20

2 0.01/0.00 0.66/0.59 �0.67/�0.60
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igure 6. Comparison between estimated pdfs from the stochastic
ethod �black curves� and estimated parameters from the determin-

stic method for two sets of initial parameters �blue lines represent
edians of the stochastic results, and red lines represent values

ound from test tries� for the silica-sand SIP data using a dual Cole-
ole model.
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Stochastic inversion of spectral IP data F257
For the stochastic method, we also inverted for the triple Cole-
ole model parameters using common prior ranges. The medians
nd 95% HPDs of the Cole-Cole parameters are given in the fifth and
ixth columns of Table 7. Similar to the silica-sand example, the me-
ians of the estimated pdfs are very close to the optimal solution ob-
ained from the deterministic inversion method, except for m3 and
og�� 3�. As shown in Figure 7, all estimates of the Cole-Cole param-
ters from the deterministic approach are very close to the median of
he estimated marginal pdfs. This means that the optimal estimates
ound by the deterministic method likely represent a global solution
or the triple Cole-Cole model. Again, the uncertainty bounds esti-
ated from the deterministic method are much wider than those ob-

ained from the stochastic method, as shown in Table 7. If we assume
hat the true model indeed is a triple model, the estimated relative er-
ors in real and imaginary components of the SIP data are 0.5% and
.9%, respectively, which are quite small.

CONCLUSIONS

We developed an MCMC-based Bayesian model to invert for
ole-Cole parameters from SIP data and compared its performance
ith the commonly used deterministic �Gauss-Newton� method

hrough inversion of synthetic and laboratory data. The Bayesian
ethod estimates marginal posterior pdfs of Cole-Cole parameters

sing samples obtained from the joint posterior pdf defined by the
ikelihood functions of SIP data and prior distributions of unknown
arameters, whereas the deterministic method seeks the optimal so-
ution by minimizing the squared misfit of the model response with
he SIP data. We use noninformative priors in the stochastic method;
he estimates of Cole-Cole parameters obtained from the stochastic

ethod primarily depend on the data and thus can be compared to
hose obtained from the deterministic method. Through detailed
omparison between the stochastic and deterministic inversion
ethods for inverting synthetic and laboratory SIP data, we found

hat the sampling-based stochastic method has two key advantages
ver the deterministic method.

The first advantage is that the stochastic method provides a global
pproach for inverting SIP data for Cole-Cole parameters; the ob-
ained estimates are independent of initial values. The deterministic

ethod is a localized approach for inverting SIP data by finding an
ptimal solution that fits the SIP data through iteratively updating
he model from a starting model of initial values, which typically

chastic methods for Krauthausen SIP data.

Stochastic method

% CI Medians 95% HPD

8,101.05� 98.37 �98.25,98.50�

3,4.07e � 3� 3.4e � 3 �3.2e � 3,3.6e � 3�
24,0.590� 0.285 �0.239,0.329�
7,0.633� 0.580 �0.562,0.599�
2,2.83e � 2� 1.97e � 2 �1.82e � 2,2.12e � 2�
6,�2.384� �3.134 ��3.201,�3.067�
5,0.558� 0.491 �0.474,0.510�
0,1� 5.318e � 1 �1.753e � 1,9.96e � 1�
18,44.322� �8.325 ��8.988,�7.263�
5,0.558� 0.551 �0.504,0.604�
able 7. Comparison of inversion results using deterministic and sto

arameters

Deterministic method

Initial values Estimates 95

0 ��m� 98.49 98.38 �95.7

1 5e � 3 3.38e � 3 �2.69e �

og�� 1� �� 1 in s� 0.0 0.283 ��0.0
1 0.5 0.58 �0.52
2 2e � 2 1.97e � 2 �1.10e �

og�� 2� �� 2 in s� �3.0 �3.13 ��3.87
2 0.5 0.492 �0.42
3 2e � 1 3.66e � 1 �

og�� 3� �� 3 in s� �7.0 �7.998 ��60.3
3 1.0 0.551 �0.42
98.1 98.3 98.5 98.7
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igure 7. Comparison between estimated pdfs from the stochastic
ethod �black curves� and the estimated parameters from the deter-
inistic method �red lines� for Krauthausen SIP data using a triple
ole-Cole model.
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ust be very close to the true model parameters. Because of the non-
inearity of the forward Cole-Cole modeling and the general nonu-
iqueness and ill-posed nature of the inverse problem, many local
ptimal solutions might exist. Consequently, as demonstrated in the
ynthetic and laboratory data analyses, different initial values can
ield different solutions with similar misfit criteria. The MCMC
ampling-based stochastic method virtually can start from a wide
ange of initial values; the obtained Markov chains converge to the
arget probability distribution. Indeed, it is good to run Markov
hains from several very different sets of initial values to detect pos-
ible local convergence.

The second advantage is that the stochastic method provides a bet-
er way to quantify uncertainty in the inverse problem. The deter-

inistic method estimates the uncertainty of unknown parameters
rom the diagonal terms of the covariance matrix that is determined
y both the regularization and Jacobian matrices evaluated at a pre-
umed optimal solution. The precision of such estimation depends
n whether the found minimum is a local or a global minimum and
he local characteristics �e.g., nonlinearity and nonuniqueness� of
he solution. If the minimum indeed is a local minimum, the estimat-
d uncertainties of the parameters are misleading.

In contrast, the stochastic method estimates the uncertainty of un-
nown parameters using Monte Carlo approaches. We use MCMC
ampling methods to draw many samples of unknown parameters
rom the joint posterior pdf. As long as those Markov chains con-
erge to the target pdf, the obtained uncertainty information about
he unknown parameter is global information, independent of the
hoice of initial values and the local characteristics of specific solu-
ions.

The MCMC-based inversion method compared to the Gauss-
ewton-based inversion methods potentially has two downsides.
he first one is that the computation time for the MCMC method is a
ouple of orders larger than that of the deterministic method. But for
P data inversion, it is not an issue because the running time for the
eterministic method is in the order of seconds and that of the sto-
hastic method is in the order of minutes on a PC or laptop, which is
cceptable. The second possible limitation of the stochastic method
s that it provides marginal probability distribution but not optimal
olutions similar to the deterministic method. The users might pick
he mean, median, or mode of the marginal probability distribution
s the optimal estimate of the unknown parameter. The two methods
an complement each other; for example, we can use the stochastic
ethod to find the distribution and use the medians or modes as ini-

ial values for the Gauss-Newton method to find one set of optimal
olution.
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DERIVATION OF CONDITIONAL DISTRIBUTION
OF THE ZERO-FREQUENCY RESISTIVITY

The derivation of equation 11 is given as

f��0 · � 	 Ind��0 � D��


 exp��0.5�
k�1

n �uRe�1 �
A��k�

Re	�obs��k�

�0�2

� uIm�1 �
B��k�

Im	�obs��k�

�0�2��

	 Ind��0 � D��exp��0.5�uRe�
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Re	�obs��k�
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APPENDIX B

DERIVATION OF CONDITIONAL DISTRIBUTIONS
OF THE INVERSE VARIANCES

The gamma distribution is a conjugate prior for the multivariate
ormal likelihood function defined in equations 7 and 8; hence pos-
erior distributions of the inverse variances of measurement errors
lso are gamma distributions as given below,

f�uRe · � 	 f�uRe��
k�1

n

f�Re	�obs��k�
�0,m,b,c,uRe�

	 �uRe
��1 exp�� �uRe���uRe

0.5n exp��0.5uRe


�
k�1

n �Re	�obs��k�
 � Re	���k�

Re	�obs��k�


�2��
	 uRe

���0.5n��1 exp�� �� � 0.5SRe�uRe�

	 � �� � 0.5n,� � 0.5SRe� . �B-1�

Similarly,
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f�uIm · � 	 f�uIm��
k�1

n

f�Im	�obs��k�
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