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Abstract A stochastic model is developed to integrate multiscale geophysical and point data sets for
characterizing coupled subsurface physiochemical properties over plume-relevant scales, which is desired
for parameterizing reactive transport models. We utilize the concept of reactive facies, which is based on
the hypothesis that subsurface units can be identified that have distinct reactive-transport-property distri-
butions. To estimate and spatially distribute reactive facies and their associated properties over plume-
relevant scales, we need to (1) document the physiochemical controls on plume behavior and the corre-
spondence between geochemical, hydrogeological, and geophysical measurements; and (2) integrate multi-
source, multiscale data sets in a consistent manner. To tackle these cross-scale challenges, we develop a
hierarchical Bayesian model to jointly invert various wellbore and geophysical data sets that have different
resolutions and spatial coverage. We use Markov-chain Monte-Carlo sampling methods to draw many sam-
ples from the joint posterior distribution and subsequently estimate the marginal posterior distribution of
reactive-facies field and their associated reactive transport properties. Synthetic studies demonstrate that
our method can successfully integrate different types of data sets. We tested the framework using the data
sets collected at the uranium-contaminated Savannah River Site F-Area, including wellbore lithology, cone
penetrometer testing, and crosshole and surface seismic data. Results show that the method can estimate
the spatial distribution of reactive facies and their associated reactive-transport properties along a 300 m
plume centerline traverse with high resolution (1.2 m by 0.305 m).

1. Introduction

Understanding and predicting subsurface contaminant-plume evolution and natural attenuation require
characterization of heterogeneous flow and reactive transport properties in high resolution over plume-
relevant scales. Although numerical modeling of flow, geochemical, and microbial processes have greatly
advanced in the last decade [e.g., Hammond et al., 2011; Yabusaki et al., 2011], the difficulty in characterizing
flow and reactive transport properties in high resolution and over large scales has hindered the ability to
accurately predict plume evolution and to design optimal remediation strategies [e.g., Scheibe and Chien,
2003; Scheibe et al., 2006; Li et al., 2010].

Geophysical methods hold great potential for improving the subsurface characterization of both physical
and geochemical properties [e.g., Chen et al., 2004; Scheibe et al., 2006]. Although there has been a signifi-
cant advance in hydrogeophysical characterization [e.g., Hubbard and Rubin, 2005; Vereecken et al., 2006],
many studies have been limited to field experiments having a domain smaller than �100 m. Recent studies
have recognized the need to advance methods that can be used to characterize subsurface properties over
large spatial regions, as are needed to assist with the management of water resources, agrosystems, ecosys-
tems, and remediation of large subsurface plumes [e.g., Hubbard and Linde, 2011].

Recently, Sassen et al. [2012] documented the utility of a reactive facies concept—a concept based on the
hypothesis that subsurface units exist with distinct distributions of coupled physiochemical properties influ-
encing reactive transport, such as effective surface area, mineralogy, and hydraulic conductivity. Because
geophysical techniques can also be used to identify such subsurface units having different physical and
geochemical properties that often covary, this concept allows us to take advantage of both geophysical and
lithological data sets for estimating spatially distributed reactive transport parameters. The reactive facies
concept builds upon previous hydrofacies and lithofacies approaches [e.g., Fogg et al., 1998; Klingbeil et al.,
1999; Weissmann et al., 2002; Heinz et al., 2003; Yabusaki et al., 2011] to include consideration of
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geochemical properties that play a significant role in reactive transport. An extensive review of zonation-
based approaches for characterizing the subsurface was provided by Sassen et al. [2012]. Sassen et al. [2012]
developed a Bayesian method for spatially distributing reactive facies and their associated physiochemical
properties over local scales (�10 m) and tested it using wellbore and crosshole geophysical data sets at the
Savannah River Site (SRS) F-Area, where this study is carried out.

Through data mining and analysis, Sassen et al. [2012] identified the presence of two reactive facies at the
SRS F-Area site, which were coincident with two depositional facies: a Barrier Beach and a Lagoonal facies
[Jean et al., 2002, 2004]. The Barrier Beach reactive facies had lower fines, higher hydraulic conductivity, and
lower Al: Fe ratio (i.e., proxy for the mineral ratio between kaolinite and goethite) compared to the Lagoonal
reactive facies. Laboratory analysis confirmed that the physiochemical differences exhibited by the two dep-
ositional facies were important for uranium flow and transport in the groundwater at the F-Area [Dong
et al., 2012], and thus could be considered reactive facies. Sassen et al. [2012] also documented the geo-
physical identifiability of the facies: the Barrier Beach reactive facies had higher seismic and radar crosshole
velocities and lower radar attenuation than the Lagoonal reactive facies. With this information, and using a
Bayesian approach, they were able to estimate the spatial distribution of reactive facies over the local scale
(or the extent of the crosshole data set, �10 m) and their associated flow and transport properties. The esti-
mated properties were used to parameterize a local-scale reactive transport model. Simulations were per-
formed to document uranium transport in the presence of this coupled physiochemical heterogeneity, and
to explore how it is compared to domains where the physical or chemical heterogeneity (or both) were uni-
form over the domain. The simulation results showed the value of the reactive facies for improving predic-
tions of plume mobility at the local scale.

This study builds on Sassen et al. [2012] with a focus on estimating the spatial distribution of reactive facies
over large scales at high resolution, using both hydrogeological and geophysical data sets. Extension to
large scales is needed to improve reactive transport simulations at scales where large contaminant plumes,
ecosystems, and watersheds are managed. In this study, we refer to two spatial scales: local (or small) scale
(�10 s of m) and large scale (�100 s of m). We define fine (or high) resolution and coarse (or low) resolution
to represent the resolution of the data sets based on their measurement support scale or inversion discreti-
zation [Gotway and Young, 2002; Hubbard et al., 1999]. Fine resolution refers to data sets with resolutions of
�10 cm to 1 m (e.g., core and crosshole geophysical data), while coarse resolution refers to data sets with
resolutions larger than 1 m (e.g., surface seismic data).

Fine-resolution characterization over large regions is typically hindered by the simultaneous lack of spatial
coverage and resolution of the available data sets. Datasets that provide fine resolution are typically represen-
tative of only a small spatial region. Datasets that provide good spatial coverage (such as surface seismic
data) usually provide coarse-resolution information, where each pixel in a coarse grid field represents effective
or averaged properties. The challenge is to develop effective methods for combining the multiscale data sets
(e.g., wellbore, crosshole data, and surface geophysical data) in a consistent manner. Previous studies have
proposed several methods for integrating multiscale data sets [e.g.,Wikle et al., 2001; Gotway and Young,
2002; Ines and Mohanty, 2009], some of which have also considered geophysical data [Chen and Hoversten,
2012].Wikle et al. [2001] integrated multiscale meteorological data sets to estimate the surface wind field
using a Bayesian hierarchical model. Ines and Mohanty [2009] integrated remote sensing data and in situ
measurements for estimating soil hydraulic parameters using a genetic algorithm approach. Chen and Hovers-
ten [2012] developed a Bayesian model to jointly invert seismic AVA and CSEM data for estimating reservoir
parameters based on data-driven correlations. Gotway and Young [2002] reviewed multiple methods for com-
bining spatial data with different support volume (i.e., different resolution), such as block kriging, tree models
[e.g.,Willsky, 2002; Ferreira and Lee, 2007], and hierarchical Bayesian models.

Among those, we have adopted a Bayesian hierarchical model to estimate reactive facies and associated
transport properties over plume-relevant scales, since it is flexible and extensible to include multiple com-
plex processes, and also to take into account different scales of data sets explicitly. The model consists of
three statistical submodels: a data model, a process model, and a prior model, which are expressed follow-
ing the notation of Wikle et al. [2001]:

1. The data model provides a probabilistic linkage between the multiple geophysical data sets and the spa-
tially distributed geophysical attributes through linear or nonlinear forward models.
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2. The process model describes the spatial distribution of reactive facies and geophysical attributes as spa-
tial random processes (or fields) described by geostatistical and petrophysical parameters.

3. The prior model is constructed for geostatistical and model parameters based on the information from
geologically similar sites.

Once each submodel is properly defined, Markov-chain Monte-Carlo (MCMC) sampling methods can be
used to compute the marginal posterior distribution of the reactive facies field and associated parameters
for stochastic reactive transport simulations.

We apply our framework to data sets collected at the Savannah River Site (SRS), a former nuclear weapons
production site in South Carolina, U.S.A. The SRS F-Area basin was used to dispose of plutonium production
waste, which has led to nitric acid and uranium U(VI) plumes in the groundwater that extend several hun-
dred meters downstream from the basins (see Figure 1a). Since sorption of U(VI) is a function of pH, pH-
based remediation strategies are now under way at the site to immobilize the contaminant. Although this
approach is effective, it is also expensive to maintain for long durations. As such, monitored natural attenua-
tion is the desired closure strategy for the site. This strategy is based on a conceptual model that rainwater
will eventually neutralize the lingering mineral surface acidity, causing an increase in pH, which will lead to
sorption of U(VI) and thus natural immobilization at the trailing end of the plume. Understanding the long-
term H1 and U(VI) sorption behavior at the site in the presence of natural heterogeneity is critical for assess-
ing the long-term viability of any active or natural remediation strategy [Denham and Vangelas, 2008; Wan
et al., 2012]. Dong et al. [2012] performed laboratory studies on site sediments and documented the con-
trols of kaolinite and goethite on pH-dependent U(VI) sorption at the F-Area. Their study suggested that
characterization of kaolinite, goethite, and fine content is critical for understanding sorption, and thus long-
term plume behavior. Their findings motivate our field-scale estimation challenge: to estimate these con-
trolling parameters on reactive transport, or reactive facies, which are described by unique distributions
of transport parameters—in high resolution yet over large scales. The key reactive facies transport parame-
ters that we estimate include fine content, hydraulic conductivity, and Al:Fe ratio, which serves as a proxy
for the relative percent of kaolinite to goethite.

Because the SRS F-Area site has been under active remediation for the last 20 years, extensive historic
hydrogeological and geochemical data sets are available for this estimation study. Our project has

Figure 1. (a) SRS F-Area site map and interpolated U(VI)2238 concentration map over the area in 2008 and (b) data locations data sur-
rounding the F-Area Seepage Basins (shown in blue rectangles).
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augmented this historical database with recently acquired geochemical [Dong et al., 2012; Wan et al., 2012],
crosshole geophysical [Sassen et al., 2012], and surface geophysical data. Our subsurface characterization
objective is to systematically combine these new geochemical and geophysical data sets with the abundant
historical data sets, including wellbore lithology data and cone penetrometer testing (CPT) data.

In section 2, we describe a general multiscale estimation methodology that can be applied to many differ-
ent sites. We describe the SRS F-Area data sets and the site-specific geophysical forward models in sections
3 and 4, respectively. In section 5, we test our estimation method using a synthetic study, followed by appli-
cation of the method to the SRS F-Area field data sets.

2. Methodology

In this section, we first introduce the overall model structure and then describe each component of the
model in the later subsections. Since we use a Bayesian hierarchical model, we first formulate the probabilis-
tic forward models in sections 2.2 and 2.3, and then explain the MCMC sampling methods for inversion in
section 2.4. In this section, we describe a general model, which is applicable to many other sites and differ-
ent types of geophysical data sets. The site-specific geophysical forward models and petrophysical relation-
ships at the Savannah River Site are discussed in section 4.

2.1. Model Structure
As described earlier, a typical Bayesian hierarchical model consists of three main statistical submodels: (1) a
data model: p(data|field, /), (2) a process model: p(field|h), and (3) a prior model: p(/,h), in which the random
vectors / and h represent model parameters that will be specified later [Wikle et al., 2001]. In our case, the
process model describes the spatial distribution of reactive facies and geophysical attributes (referred to
hereafter as the reactive-facies field and geophysical-attribute field, respectively) conditioned on the pro-
cess model parameters h, which includes both geostatistical parameters and petrophysical correlation
parameters. The data model links the actual data to the reactive-facies field and geophysical-attribute field
for given model parameters /. The overall model, decoupled into a series of conditional models, is flexible
enough to include complex physical processes or observations. Once all the conditional models are speci-
fied, we can estimate the marginal posterior distribution for the reactive facies field p(field|data), using
MCMC sampling methods.

Figure 2 shows a graphical model representation of the overall model. Without losing generality, we con-
sider two different levels of scales in terms of data resolution and spatial coverage. We define three random
vectors, each of which is a random field: (1) a reactive-facies field {fi, i5 1,. . ., n}, (2) a coarse-resolution field
of geophysical attributes {uj, j5 1, . . ., m} (e.g., surface-seismic P-wave velocity, seismic slowness or acoustic
impedance), and (3) a fine-resolution field of geophysical attributes {vi, i5 1, . . ., n} (e.g., crosshole-seismic
P-wave velocity, seismic slowness, or acoustic impedance). Each pixel of the reactive facies field {fi} is an
indicator variable representing the presence or absence of a particular facies. Data used in the estimation
include crosshole geophysical data zt (e.g., first arrival time in crosshole tomography) depending on the
fine-resolution geophysical-attribute field {vi}, surface geophysical data zs (e.g., seismic full waveform
responses) as a function of the coarse-resolution geophysical-attribute field {uj}, and facies data zc as point
measurements of the facies along boreholes.

As shown in Figure 2a, each pixel of the coarse-resolution field is connected to several pixels of the fine-
resolution fields, which represents multiple resolutions of geophysical attributes. FollowingWillsky [2002]
and Ferreira and Lee [2007], we call the coarse-resolution pixel in this connection the parent pixel, and the
fine-resolution pixel the child pixel. We define a vector of indices a(j) to represent the child pixels of Pixel j,
and define a scalar index c(i) to represent the parent pixel of Pixel i.

Figure 2b is a graphical model describing a series of conditional relationships. Each connection represents a
state of conditional dependency—Markovian in the sense that the two nodes are conditionally independ-
ent if they are not connected directly, given their intermediate nodes. For example, {fi} and {uj} are condi-
tionally independent given {vi}. The process model parameters h include (1) geostatistical parameters hf,
which describe the spatial correlation structure of the reactive-facies field {fi}, (2) petrophysical parameters
hp, which describe the relationship between the reactive-facies field {fi} and fine-resolution geophysical-
attribute field {vi}, and (3) upscaling parameters hu, which are part of an upscaling function from {vi} to {uj}.
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The data model parameters / include (1) the crosshole data parameters /t, which describe the distributions
of crosshole data zt conditioned on a given {vi}, and (2) the surface data parameters /s, which describe the
distributions of surface geophysical data zs conditioned on given {uj}. Each component of h and / can have
a probabilistic distribution to represent parameter uncertainty, or they can be fixed (equivalent to having a
Dirac delta function for a distribution), depending on information available at the site. In sections 2.2 and
2.3, we define conditional models of those connections shown in Figure 2b.

2.2. Data Models
The data model connects geophysical data sets to the underlying geophysical attributes. We denote the
surface geophysical data zs as a function of the coarse-resolution geophysical-attribute field {ui}, surface
data parameters /s, and measurement-error vector es:

zs5fsð uj
� �

;/sÞ1es: (1)

Here we assume that es has a zero-mean multivariate normal (MVN) distribution with a given
covariance matrix Ds: es � MVN(0, Ds). For independent and identically distributed errors, Ds is a diagonal
matrix with the measurement error variance of r2s. The function fs(•) represents a forward geophysical
model. For example, fs (•) may describe seismic amplitude as a function of acoustic impedance and incident
waveform obtained at each trace using a convolution model [Aki and Richards, 1980; Bosch et al., 2007].
According to the normality assumption of the measurement errors, we have the following conditional distri-
bution for zs:

pðzsj uj
� �

;/sÞ5MVNðfsð uj
� �

;/sÞ;DsÞ: (2)

Similarly, we can define the crosshole data in terms of the fine-resolution geophysical attributes {vi}, cross-
hole model parameters /t, and measurement error vector et:
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Figure 2. Multiscale estimation diagram; (a) conceptual model and (b) graphical model. In Figure 2a, the areas outlined by black represent
the pixels in each field, and the areas outlined by red represent the pixels that are associated with each measurement type (i.e., the pixels
are at the point measurement locations or within the coverage of geophysical data sets).
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zt5ftð vif g;/tÞ1et; (3)

where ft(•) represents the forward model (such as a straight-ray model [Peterson et al., 1985] or Fresnel
zone-based model [Johnson et al., 2005]). Again, we assume that et has a zero-mean multivariate normal dis-
tribution with a given covariance matrix: et � N(0, Dt). For independent and identically distributed errors, Dt

is a diagonal matrix with the measurement error variance of r2t . The conditional distribution for zt given the
fine-resolution geophysical attributes thus becomes:

pðztj vif g;/tÞ5MVNðftð vif g;/tÞ;DtÞ: (4)

The facies data, denoted by zc, are the direct point measurements of facies, which are a subset of {fi}.

2.3. Process Models
2.3.1. Reactive Facies Field
We follow the approach developed by Chen et al. [2006] to formulate the reactive facies field {fi}. Here {fi} is
an indicator field such that the facies at each element fi has a Bernoulli distribution given by:

pðfi51jffk ; k 6¼ ig; hf Þ5Bernoulli pið Þ; (5)

where pi can be determined by indicator kriging:

pi5l 1
X

k 6¼ikkðfk–lÞ; (6)

where m is the overall mean. Note that pi is truncated within [0, 1]. The kriging coefficients kk are a function
of the correlation length and sill, and the distance between Pixel k and Pixel i. The model parameter vector
hf includes the overall mean m, and correlation length and sill.

2.3.2. Petrophysical Relationship
The petrophysical model connects the fine-resolution geophysical-attribute field {vi} with the reactive facies
field {fi}. Following Sassen et al. [2012] and Chen et al. [2006], we assume that the fine-resolution geophysical
attribute at Pixel i vi has a distribution in each facies described as:

vi5a11a2fi1ev ; (7)

where a1 and a2 are the coefficients that can be obtained from fitting colocated borehole data, and ev repre-
sents the variability within each facies defined by the variance sv (ev ~ N(0, sv)). Although we may consider a
nonlinear function within the petrophysical model, equation (7) is fairly general for a two facies case, since
equation (7) signifies that the two facies have two distributions of geophysical attributes with mean a1 and
a11 a2, and variance sv. We denote all the petrophysical parameters by hp5 {a1, a2, sv}. Although the var-
iance sv is currently the same for both facies, the model can be modified to have two different variances
[Chen et al., 2006]. We write the conditional distribution for vi as follows:

pðvijfi ; hpÞ5Nða11a2fi; svÞ: (8)

2.3.3. Upscaling of Geophysical Attributes
To integrate data sets with different resolutions, we must aggregate fine-resolution geophysical attributes
to a coarse grid. Geophysical data analysis routinely uses filtering to combine small-scale and large-scale
data (for example, simple or Backus averaging in the seismic data analysis [Bosch et al., 2007; Tiwary et al.,
2009]). Although we follow this approach, we include this averaging process directly into the inversion, so
that we can address upscaling uncertainty associated with the estimation process. We consider the coarse-
resolution geophysical attributes at each pixel uj as a function of the fine-resolution geophysical attributes
at their child pixels {vk, k�a(j)} and an additive random variability eu:

Water Resources Research 10.1002/2013WR013842

WAINWRIGHT ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4569



uj5gðfvk ; k 2 a jð ÞgÞ1eu; (9)

where we assume that eu � N(0, su) and g(•) is an upscaling function, such as simple averaging or Backus
averaging. The variance su represents random variability. We denote the upscaling parameter vector by
hu5 {sv}. We can then write the conditional distribution as:

pðujj vif g; huÞ5Nðgðfvk ; k 2 a jð ÞgÞ; suÞ: (10)

2.4. Joint Probability Distribution
The goal is to determine the posterior distribution of the reactive-facies field {fi} given the available data
sets (zs, zt, zc) at the two different scales p({fi}|zs, zt, zc), which is the marginal distribution of the joint poste-
rior distribution p({fi},{uj},{vi}, /, h|zs, zt, zc). The data-model parameters are /5 {/s, /t} (defined in section
2.2) and the process-model parameters are h5 {hf, hp, hu} (defined in section 2.3). Bayes’ rule yields:

pð fif g; uj
� �

; vif g;/; hjzs; zt; zcÞ
apðzsj uj

� �
;/sÞpðztj vif g;/tÞpð uj

� �j vif g; huÞpð vif gj fif g; hpÞpð fif gjhf ; zcÞpð/; hÞ:

apðzsj uj
� �

;/sÞpðztj vif g;/tÞP
m

j51
pðujj vif g; huÞP

n

i51
pðvijfi ; hpÞpð fif gjhf ; zcÞpð/; hÞ:

(11)

In the previous sections, we have defined all the conditional distributions on the right-hand sides of equa-
tions (2), (4), (5), (8), and (10) except for the prior distribution p(/, h).

Samplingmethods are invoked to sample from the joint probability distribution in equation (11), which can then
be used to obtain posterior probability distributions and associated confidence intervals of the desired proper-
ties (in this case, reactive facies). MCMC samplingmethods [e.g., Andreu et al., 2003; Gamerman and Lopes, 2006]
have been used in Bayesian estimation of hydrological properties [e.g.,Michalak and Kitanidis, 2003; Chen et al.,
2004, 2006; Vrugt et al., 2005, 2006]. MCMC sampling requires formulation of the probability distribution of each
parameter conditioned on the other parameters and all data sets. For this study, we use twoMCMC sampling
methods: Gibbs sampling for the parameters with distributions fromwhich sampling is straightforward (e.g., nor-
mal andmultivariate normal), andMetropolis-Hasting (MH) sampling for all other parameters. When the forward
model is linear and the priormodel is normal ormultivariate, for example, the posterior distribution is multivari-
ate normal, which allows us to use the Gibbs sampler. We sequentially sample each parameter defined in equa-
tion (11) (i.e., {fi},{uj},{vi},/, h) according to their corresponding conditional distributions given below.

2.4.1. Sampling of Coarse-Resolution Geophysical Attributes
Let p({uj}| •) denote the conditional distribution of the coarse-resolution geophysical-attribute field {uj} con-
ditioned on all the other variables and data sets. Based on the conditional independence shown in the dia-
gram in Figure 2b and equation (11), we have:

p uj
� �j•� �

apðzsj uj
� �

;/sÞpð uj
� �j vif g; huÞ: (12)

Equation (12) implies that sampling {uj} only involves the likelihood function of the surface geophysical data
p(zs|{uj}, /s), and the upscaling model p({uj}|{vi}, hu) that is the probability of {uj} given the fine-resolution
geophysical attributes at the child pixels.

2.4.2. Sampling of Fine-Resolution Geophysical Attributes
To sample the fine-resolution geophysical attribute from p({vi}| •), we need to separate the locations contain-
ing crosshole data from other locations. We define crosshole-data locations as the pixels involved in a for-
ward geophysical process (e.g., pixels along the ray-paths or within Fresnel zones). At the crosshole-data
locations, we have the following conditional distribution:

p vif gj•ð Þapðztj vif g;/tÞpð uj
� �j vif g; huÞpð vif gj fif g; hpÞ: (13)

Sampling {vi} requires the likelihood function of crosshole data p(zt|{vi}, /t), the upscaling model of the geo-
physical attributes p({uj}|{vi}, hu), and the petrophysical relationship p({vi}|{fi}, hp).
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At the locations where crosshole data are not available, the data model is not needed, and the conditional
distribution includes only two components:

p vif gj•ð Þapð uj
� �j vif g; huÞpð vif gj fif g; hpÞ: (14)

2.4.3. Sampling of Reactive Facies Field
The conditional distribution of the reactive facies field is written by p({fi}| •)5 p({fi}|{vi}, hp, hf, zc). Following
Chen et al. [2006], we use the Gibbs sampler to draw samples at each pixel from p(fi| •). Bayes’ rule yields:

p fi j•ð Þapðvijfi; hpÞpðfij fk ; k 6¼ if g; hf ; zcÞ: (15)

The petrophysical relationship p(vi| fi, hp) and the conditional facies at each pixel p(fi|{fk, k 6¼i}, hf, zc) are
defined by equations (8) and (5), respectively. The conditional distribution p(fi| •) is the Bernoulli distribution
with probability pi

*:

pi
�5

piqi
12pi1piqi

; (16)

where qi5 exp[sv
21a2(vi2 a12 0.5a2)].

3. Site and Data Descriptions

3.1. Site Description
The hydrologeology of the F-Area, described in several previous studies [Jean et al., 2002, 2004; Flach, 2004;
Phifer et al., 2006; Sassen et al., 2012], is briefly summarized here. The Savannah River Site (SRS) is located
within the Atlantic Coastal Plain physiographic province, which is characterized by subhorizontal sedimen-
tary layers. The water table is �5–20 m below ground surface, depending on location and elevation. The
uranium plume from the F-Area basins mostly exists in one geologic unit called the Barnwell Group [Jean
et al., 2002, 2004]. The Barnwell Group was deposited in a shallow marginal marine environment and con-
sists of two depositional facies: a sandy Barrier Beach facies and a silty Lagoonal facies. Sassen et al. [2012]
established that these depositional facies were equivalent to reactive facies, and also established the geo-
physical identifiability of these facies using wellbore and crosshole local-scale data sets. From a hydro-
stratigraphic perspective, the Barnwell Group is divided by the Tan Clay Zone (TCZ) into two groundwater
aquifers: the Upper and Lower Upper Three Runs Aquifers. The TCZ has a high occurrence of Lagoonal
facies, although it is discontinuous and multilayered at some locations rather than a single continuous layer.
The site data suggest that the two aquifers are hydrologically connected, because there is little difference in
the piezometric data and the uranium plume exists in both aquifers. Characterizing the continuity of the
Lagoonal Facies in the Tan Clay Zone is of great interest for simulating the long-term behavior of the sub-
surface plumes.

3.2. Point-Scale Data Sets
Several decades of intensive site characterization has resulted in the accumulation of rich historical data
sets, including core sample analysis, cone penetrometer testing (CPT), and groundwater monitoring data
sets at many locations. The analysis of cores (every 0.3048 m) along more than 10 wells (Figure 1b) includes
soil texture analysis, visual inspection of color, and classification of depositional facies [Jean et al., 2002,
2004]. The abundance of analyzed cores provides a unique opportunity for characterizing subsurface varia-
tions in lithology and depositional facies.

CPT, an in situ soil exploration tool routinely used for environmental and geotechnical applications in shal-
low unconsolidated environments [Lunne et al., 1997], is also available for characterizing lithological (or dep-
ositional facies) variability. With CPT, a cone on the end of a series of rods is pushed into the ground at a
constant rate, which provides continuous measurements of resistance and friction against the cone pene-
trating through the soil. The piezocone penetrometer can also simultaneously measure pore pressure
behind the cone. The pore pressure and friction ratio (i.e., the ratio between the cone resistance and sleeve
friction) can be used to characterize geologic interfaces and soil types. Empirical relations are often used to

Water Resources Research 10.1002/2013WR013842

WAINWRIGHT ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4571



link CPT and other properties; one example of this is the relationship between cone resistance and acoustic
impedance [e.g., Lunne et al., 1997]. Site-specific CPT-based petrophysical relationships can also be developed.
At the F-Area, most of the CPT data are located at the southern portion of the site (Figure 1b), where fewer
cores are available. Consequently, in this study, we use the CPT data to augment the point-scale data sets for
characterizing the subsurface environment. Although the CPT measurements were done during several cam-
paigns, we assume that all the CPT data sets have the same quality. We note that all the CPT sites were sur-
veyed and all the data sets have been carefully archived in the data management system at the SRS.

To relate the CPT and wellbore information, we compared nearby data sets and performed a cluster analysis
of CPT-associated facies interpretation. Figure 3 shows a comparison of the CPT data with the adjacent well
data (6.7 m separation distance) that had been interpreted in terms of depositional facies [Jean et al., 2002,
2004]. It suggests that CPT can identify interfaces between Lagoonal and Barrier Beach facies better than
gamma-ray logs, which are traditionally used to characterize clay content [Keys, 1989]. In Figure 4, the CPT fric-
tion ratio and pore pressure has two Gaussian-like distributions in the Barnwell Group, which correspond to
the two depositional facies. To estimate depositional facies using the CPT friction ratio and pore pressure
without subjective picking of the interfaces between the two facies, we used the expectation maximization
(EM) algorithm [Hastie et al., 2001] to cluster the CPT responses into the Lagoonal and Barrier Beach facies. Fig-
ure 3e shows a reasonable agreement between the facies based on the CPT data and the actual depositional
facies in Figure 3a, although an exact match is not expected due to the separation distance between the CPT
and wellbore. In this study, we assume that the errors in the CPT-determined facies are insignificant.

3.3. Geophysical Data Sets
Surface seismic reflection data were acquired at the SRS F-Area in 2010. Common midpoint (CMP) data
were acquired by Rick Miller (Kansas Geological Survey) using a minivibrator source and a 392 channel Geo-
metric Geode distributed seismograph. Vertical seismic profiling along one borehole and normal moveout

Figure 3. Comparison between the well data (FSB79A) and CPT data (FCPT14) located 6.7 m away; (a) % mud at the well, with the Lagoonal Facies identified by the red box (interpreted
by Jean et al. [2002, 2004]), (b) Well-based gamma-ray log data, (c) CPT friction ratio, (d) CPT pore pressure, and (e) depositional facies based on the CPT data cluster analysis shown in
Figure 4 (the white region is the Barrier Beach facies, and the black region is the Lagoonal facies).
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velocities at 16 locations provided estimates of depth-discrete seismic velocities. These normal moveout
velocities did not show significant lateral change along this line. The acquired tenfold CMP data were fil-
tered, migrated, and stacked [Miller et al., 1990; Steeples and Miller, 1990; Miller, 1992; Miller et al., 2010]. As is

Figure 4. Clustered CPT responses: (a) histogram of friction ratio, (b) cross plot of pore pressure and friction ratio, and (c) histogram of
pore pressure. The red color is the interpreted Barrier Beach facies and the black color is the Lagoonal facies.

Figure 5. Stacked and migrated surface seismic data displayed as function of (a) two-way travel time and (b) elevation. The red lines are
the CPT data used in this study, and the blue rectangle represents the estimation domain. The NMO velocity estimates were used to con-
vert the two-way time section shown in Figure 5a to the depth section shown in Figure 5b.
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shown in Figure 5, the migrated sec-
tion displays good reflection coher-
ency and high signal-to-noise ratio
over our domain of interest (blue rec-
tangle in Figure 5). Figure 5 also shows
the interface of the Tan Clay Zone top
and the bottom of the Barnwell Group,
interpolated based on the deep well-
bore data nearby, although it is diffi-
cult to tell the thickness and
continuity of the Tan Clay Zone.

Multioffset seismic crosshole data
were collected in the saturated section
of Upper Three Runs Aquifers using an
LBNL piezoelectric source, and a
hydrophone sensor string. The central
frequency of the pulse was 4000 Hz,
with a bandwidth from �1000 to 7000
Hz. Source and geophone spacing in
the boreholes was 0.25 m, and travel
times were picked for all source-
receiver pairs. Picking and inversion of
the crosshole seismic data were
described by Sassen et al. [2012].

4. Site Specific Model

Our objective is to estimate the spatial distribution of the two reactive facies and associated trans-
port parameters (percent fines, hydraulic conductivity, and Al:Fe ratio) along a 300 m traverse that is
approximately aligned with the plume centerline. We demonstrate our approach along the two-
dimensional (2-D) domain transect shown in Figure 1b, which corresponds both to the surface seis-
mic data line (Figure 5) and to the 2-D domain used for reactive transport simulations [Bea et al.,
2013]. The domain and pixel sizes are shown in Table 1. We used four CPT profiles and one set of
crosshole seismic data along this line for conditioning. We focus on characterizing a vertical rectan-
gular domain in the saturated and contaminated portion of the Barnwell Group, where we are confi-
dent in the seismic data coverage and quality.

Following the model structure described in section 2.1, we used the reactive-facies field {fi}, the fine-
resolution seismic-slowness field {vi}, and coarse-resolution seismic-slowness field {uj}, where slowness is the
inverse of velocity in the estimation procedure. As described in Figure 2a and section 2.1, the crosshole
data zt is a function of {vi}, and the surface seismic data zs is a function of {uj}. The point measurements of
reactive facies zc are the CPT-based facies data. We chose the fine-resolution pixel size as 1.20 m and 0.305
in the horizontal and vertical directions, respectively, which is approximately the scale of cores as well as
the resolution of the crosshole tomography data. For the coarse-resolution pixel, we averaged every five
pixels in the horizontal direction and three pixels in the vertical direction, since the surface seismic data
resolution is approximately several meters in the horizontal direction and 1 m in the vertical direction.

The site-specific geophysical data models (following section 2.2) were formulated as follows. The data
model parameters (/s, /t) and measurement error variance (rs, rt) are shown in Table 1. For the surface
seismic data, we used the same forward model as Bosch et al. [2007]. Each trace was simulated as one-
dimensional zero-offset seismic data reflected in a horizontally layered medium, assuming horizontal
homogeneity within the region surrounding each trace. The forward model for the likelihood function
p(zs|/s,{uj}) is a convolution model as a function of acoustic impedance along each trace, which is the
coarse-resolution seismic velocity (i.e., the inverse of {uj}) multiplied by the bulk density. We assumed
that the noise had an independent Gaussian distribution with a standard deviation of 5% of the ampli-
tude range, following Bosch et al. [2007]. In addition, the surface geophysical model parameters /s

Table 1. Parameters Used in the Estimation

Domain and pixel sizes
Domain size {horizontal, vertical}, m {300, 25.6}
Fine pixel size {horizontal, vertical}, m {1.20, 0.305}
Coarse pixel size {horizontal, vertical}, m {6.00, 0.915}
Surface seismic data model
Data error variance rs
Standard deviation 5% of the amplitude range
Data parameters /s

Vadose zone seismic velocity, m/s 7.01 3 102

Saturated zone homogeneous velocity, m/s 1.25 3 103

Mean frequency, Hz {mean, standard deviation} {69.2, 11.5}
Source amplitude {mean, standard deviation} {234.0, 87.5}
Crosshole seismic data model
Data error variance rt
Standard deviation 5% of the arrival time range
Data parameters /t

None
Process models
Geostatistical model parameters hf
Overall mean m 0.322
Sill 0.201
Horizontal correlation length, m 15.1
Vertical correlation length, m 1.5
Petrophysical model parameters hp
a1, s/m 5.78 3 1021

a2, s/m 1.13 3 1022

sv, (s/m)2 4.50 3 1025

Upscaling model parameters hu
su, (s/m)2 3.00 3 1026
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include the vadose-zone and
saturated-zone (above the esti-
mation domain) seismic velocity,
and the source amplitude and
frequency. We also assumed
that the seismic velocity in the
unsaturated zone and saturated
zone above the domain is con-
stant and laterally homogene-
ous, based on the NMO velocity
profiles. We estimated the
source amplitude and frequency,
assuming the Ricker waveform,
based on the known facies at
the traces corresponding to the
CPT locations by the least-
square fitting. The estimates
were quite uncertain, so we
assumed a normal distribution
for both the amplitude and fre-
quency, with the mean and
standard deviation shown in
Table 1. We used the Hann win-
dow function to create a win-
dow for our domain of interest
within the Barnwell Group. We
also applied Metropolis-Hastings
methods to draw samples from
the probability distribution func-
tion (Appendix A), since surface
seismic data are nonlinear func-
tions of seismic slowness {uj},
and we cannot obtain analytical
forms for the likelihood function
p(zs|/s,{uj}).

The crosshole seismic data zt is the first-arrival time at every transmitter-receiver combination, which is a
function of fine-resolution seismic slowness {vi}. We used a straight-ray approximation [Peterson et al., 1985],
so that the model is linear with respect to slowness. Since the arrival time is a function of the grid size and
seismic slowness only, we do not need any other parameters (/t is an empty vector). The data noise is
assumed to be an independent Gaussian distribution, with a standard deviation of 5% of the range for the
first arrival time. For this MCMC estimation, we used the same procedure for sampling fine-resolution seis-
mic velocities as the one described in Chen et al. [2006] (Appendix B), who inverted crosshole seismic data
sets jointly with wellbore data sets.

The process models (described in section 2.3) include the geostatistical model for the reactive-facies
field, petrophysical relationship, and upscaling model. Table 1 shows all the parameters (hf, hp, hu). The
geostatistical parameters hf were estimated based on the variogram analysis of core-based facies and
CPT-based facies data. Figure 6 shows the empirical indicator variogram fitted by the exponential covari-
ance model based on the facies data from the 105 CPT and 12 wells at the site. Although Jean et al.
[2002, 2004] used nested variograms, we used a variogram with single correlation length, since it was
found to be sufficient for this inversion. We fixed the geostatistical parameters during the multiscale
estimation to avoid numerical instability, although theoretically we could estimate the geostatistical
parameters simultaneously if we have sufficient information. The petrophysical relationship hp is identi-
fied by the same data sets used in Sassen et al. [2012]. For upscaling from the fine-resolution to coarse-

Figure 6. Indicator variogram of Lagoonal Facies (a) in the horizontal direction and (b) in
the vertical direction.
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resolution seismic slowness, we used arithmetic averaging [Tiwary et al. 2009], given by uj5n jð Þ21X
k2a jð Þvk1eu following equation (10), where n(j) is the number of child pixels of Pixel j in the coarse-

resolution field. We assumed that the variance of the upscaling process (su) in equation (10) represents
the uncertainty in averaging, so that the variance is that of fine-resolution seismic slowness (sv) divided
by the number of averaged cells (15).

5. Results and Discussion

We first perform a synthetic study using a domain and data sets that mimic those of the F-Area, followed by
an application of our new methodology to real F-Area field data sets.

5.1. Synthetic Study
For the synthetic study, we used the domain, data locations, and data types representative of the actual F-
Area field data sets—except for the domain of the crosshole seismic data set, which we expanded for this
synthetic study to facilitate visualization and understanding of the estimation results. We used the same
geophysical forward models for the synthetic data sets (including the noise) described in section 4 and
Appendices.

Figure 7 shows a synthetic ‘‘true’’ reactive-facies field generated using the GSTAT package [Pebesma,
2004] in R [R Development Core Team, 2007]. We used the geostatistical parameters identified at the site
shown in Table 1 and Figure 6. The surface seismic data (Figure 5) shows that the large Lagoonal Facies
within the TCZ is likely to have a curved feature in the geophysical-inversion domain. Such local feature
is difficult to capture in the variogram analysis, since there are few point measurements within this
domain (only four CPT logs). The previous study at the site also used a variogram in the horizontal and
vertical directions [Jean et al., 2002, 2004]. In the hydrogeophysical inversion, a geostatistical model—
developed based on the data sets from a much wider region than the geophysical-inversion domain—
serves as prior information before integrating geophysical data sets. Previous studies have shown that
geophysical inversion can capture such curved features despite using horizontal and vertical variograms
thanks to the strong conditioning effects of geophysical data sets [Chen et al., 2004, 2006]. In this syn-
thetic example, we mimic such a realistic situation by generating a large field with the horizontal and ver-
tical variogram (Figure 7a), and including a local curved feature (around a blue rectangle in Figure 7a).
We extracted a small domain (a blue rectangle in Figure 7a) and used it as a domain for synthetic geo-
physical inversion (Figure 7b).

Using the MCMC approach, we generated 80,000 samples of the reactive-facies field, the convergence of
which was confirmed by Geweke’s convergence diagnostic [Geweke, 1992]. The first 10,000 samples were

Figure 7. (a) Reactive-facies field with the local curvature generated for the synthetic study (site-scale) and (b) reactive-facies field in the
geophysical-inversion domain. In these figures, the white regions are the Barrier Beach facies, and the red regions are the Lagoonal facies.
In Figure 7b, the blue lines represent the crosshole geophysical data wellbore locations, and the black lines are the CPT data locations. The
image shown in Figure 7b is an enlargement of the area shown by the blue rectangle in Figure 7a.
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discarded, since the data misfit of the surface
seismic data (the square sum of the difference
between the observed and simulated data)
were reduced in the first several thousand sam-
ples. For each sampled field, we defined the
number of misidentified pixels divided by the
total number of pixels as the misclassified frac-
tion. To quantify the performance of the esti-

mation, we calculated the average of the misclassified fraction of the resulting fields sampled in MCMC
(Table 2). The average misclassified fraction was calculated for the entire domain and for the crosshole data
domain (the blue rectangle in Figure 7a).

Figure 8a shows the prior probability field of reactive facies conditioned only on the point measurements
(CPT-based facies data) created by simple kriging. Although the prior field captures the true field at and
near the CPT locations, the regions far from the CPT locations have a probability close to the overall mean
(0.322). The average misclassified fraction is about 42.7% in the entire domain and 37.8% in the crosshole
domain.

Figure 8b shows the posterior probability field of facies obtained using the new method and the multiscale
data. This is the mean field of the all the sampled fields from MCMC. Compared to the true field in Figure
7a, the posterior probability field shows good agreement with the true field. The average misclassified frac-
tion (Table 2) was reduced to about a half of the prior field (24.7%) in the entire domain, and to about a
forth in the crosshole domain (9.53%). The posterior field in Figure 8b captures the curved structure despite
the fact that the horizontal and vertical correlation structure was used thanks to the information from the
geophysical data sets. Near the crosshole region especially, the interfaces are sharp and the small-scale het-
erogeneity is well defined. Even in the regions away from the crosshole data and point measurements, the
surface seismic data provide fairly detailed information about facies distribution. The estimates obtained
using the new method are greatly improved over the ones obtained using standard geostatistical
approaches (Figure 8a) and are expected to be greatly improved over what one could qualitatively interpret
from conventional seismic data displays (such as Figure 5).

Figure 9 shows the confidence interval of the facies estimation associated with the borehole locations indi-
cated by the two green lines in Figure 8b. Figure 9a shows the location far from the point or crosshole data
sets; Figure 9b shows the location within the crosshole domain. In both figures (Figures 9a and 9b), the true

Table 2. Average Misclassified Fraction in the Entire Domain and in
the Crosshole Domain for the Prior Field (‘‘Prior’’: Corresponding to
Figure 8a), the Posterior Field (‘‘Posterior’’: Figure 8b), and the Result
Without Crosshole Data (‘‘No Crosshole’’: Figure 10)

Cases Prior Posterior No Crosshole

Entire domain 0.427 0.247 0.257
Crosshole domain 0.378 0.0953 0.226

Figure 8. Synthetic study results: (a) prior probability field of Lagoonal facies and (b) posterior probability field of Lagoonal facies. The
white lines represent the crosshole geophysical data wellbore locations, and the black lines are the CPT data locations. The green lines are
wellbores where confidence intervals are calculated (Figure 9). A probability of 0 indicates the Barrier Beach facies, while a probability of 1
indicates the Lagoonal facies.
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facies is mostly contained by the confidence intervals, and the mean curves follow the true field. The confi-
dence interval is narrower in the crosshole location in general, which is consistent with the sharp interfaces
observed in Figure 8b. Figure 9b indicates that there are some locations that miss the true facies even in
the crosshole region (depth approximately 19 and 24 m), which is caused by the presence of the small
Lagoonal Facies (see Figure 8b) near the edge of the domain.

We examined a scenario without the crosshole data to assess the value of crosshole data to the estimation
result. Figure 10 shows that when crosshole data are not available, the region close to the crosshole data
becomes smoother, but that the lack of crosshole data has little impact on the estimation in other regions. Table
2 indicates that, compared to the full data set, the averagemisclassified fraction does not increase significantly
over the entire domain (from 24.7% to 25.7%), although it is more than double in the crosshole domain (from
9.53% to 22.6%). Based on this result, onemay conclude that the crosshole data have only a local impact on the
large-scale subsurface characterization using this framework. However, we note that the crosshole data were
essential in this framework for determining the distribution of seismic velocity in each facies [Sassen et al.,
2012]. The crosshole data can also potentially be used to identify the spatial correlation [Hubbard et al., 1999],
although smearing and inversion artifacts may hinder such estimation [Day-Lewis and Lane, 2004].

5.2. Site Application
After testing the developed methodology through a synthetic study, we applied it to the actual data sets
from the F-Area. Since the true reactive-facies field is unknown, we evaluated the performance of the inver-
sion by predicting the facies profile at one CPT location that was not used in the estimation, and then com-
paring the estimation results with the CPT-based facies data at that location.

Figure 11 shows the prior and posterior probability field of the Lagoonal facies obtained using the estima-
tion methodology developed here. Figure 11a shows that the prior field has nearly horizontal and smooth

Figure 9. Synthetic study results: Estimated mean and confidence interval obtained using the estimation methodology compared with
the true field at Distance (a) 47 m and (b) 150 m in Figure 8b. The red dots represent the true facies, the blue line is the mean probability,
and the yellow region represents the 95% confidence interval based on the standard deviation (STD) multiplied by two. A probability of 0
indicates the Barrier Beach facies, while a probability of 1 indicates the Lagoonal facies.
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layers of the Lagoonal facies in the Tan Clay Zone, although the multilayered Lagoonal facies in the Tan
Clay Zone was captured locally at the CPT locations. In Figure 11b, the posterior facies probability field
shows the large-scale curved structure of the Lagoonal facies. It is nearly continuous in this domain,
although some bifurcations and isolated lenses exist. There are several discontinuous lenses of the Lagoonal
facies in the lower aquifer, which is consistent with the findings of Sassen et al. [2012] and borehole data
sets at the sites. Although the low-permeability Lagoonal facies in the Tan Clay zone is continuous in our
domain, changing the depth and thickness of the Lagoonal facies in the Tan Clay zone would have a signifi-
cant impact on the plume mobility and distribution, since it controls the groundwater flow rate into the
lower aquifer. The discontinuous lenses of the Lagoonal facies would affect sorption as well as other geo-
chemical reactions.

The continuity and curved structure of the Lagoonal facies in the Tan Clay zone (TCZ) found in Figure 11b
might raise a question of the prior information such that we could have included stronger prior information
imposing the continuous and curved layer of the Lagoonal facies in the TCZ based on the surface seismic
data set (Figure 5). The surface seismic data, however, contains uncertainty, and there exist multiple layers
of Lagoonal facies at some locations in TCZ. In addition, as is mentioned in section 3.1, it is known that the
Lagoonal facies in the TCZ is not perfectly continuous over the site, and there exist discontinuous features
of Lagoonal facies. Having a stronger prior would have caused a strong bias in our estimation.

Figure 10. Posterior reactive-facies probability field obtained without using the crosshole data set. The white rectangle represents the
crosshole geophysical data location, and the black lines are the CPT data locations. A probability of 0 indicates the Barrier Beach facies,
while a probability of 1 indicates the Lagoonal facies.

Figure 11. F-Area estimation results: (a) prior reactive-facies probability field and (b) posterior reactive-facies probability field. The black
vertical lines represent the CPT data locations, the green line represents the CPT data used for validation, and the white box represents the
crosshole data location. The underlying formation (lower white region) was excluded in the estimation. A probability of 0 indicates the Bar-
rier Beach facies, while a probability of 1 indicates the Lagoonal facies.
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In the Bayesian method to invert geophysi-
cal data [e.g., Chen et al., 2004, 2006; Bosch
et al., 2007], the geostatistical (or vario-
gram) model serves as prior information
before conditioning on geophysical data
sets. The geostatistical model is developed
based on the data sets not only in the
geophysical-data domain but also in the
surrounding larger domain, which provides
general information on heterogeneity at
the site. The geophysical data provide the
domain-specific conditional information
such as the location and extent of particu-
lar geological units. The Bayesian method
combines both geostatistical and geophys-
ical information to identify the location
and the extent of particular geological
units with uncertainty quantified. Our
method successfully identified both the
continuous layer and curved feature with-
out explicitly assuming them in the prior
information, which suggests that our
method can successfully honor the infor-
mation of the surface seismic data.

For validation, Figure 12 shows a compari-
son of the estimated facies mean value
and confidence interval, with facies inter-
pretation from the CPT that was not used
in the estimation procedure. The figure
shows that the true facies profile at the val-
idation points are close to the mean field
curves and mostly within the 95% confi-
dence interval. The comparison suggests
that our method has estimated the facies
variability in the vertical direction success-

fully, although it was not successful at estimating thin zones that were below the resolution of the seismic
data and thus smaller than the estimation discretization (i.e., the thin Barrier Beach facies layer embedded
within the Lagoonal facies at elevation around 50 m).

As a final step in our estimation, we generated reactive transport parameters based on the estimated
reactive-facies field and petrophysical relationships developed by Sassen et al. [2012] Within each reactive
facies, three properties were randomly generated without considering spatial correlation (i.e., each property
at each pixel was sampled independently from the distribution shown in Sassen et al. [2012, Figure 8]),
depending on the reactive facies present at the pixel. We did not consider the spatial correlation and cross-
correlation among the three properties in this sampling process, since we assume that the heterogeneity
and cross-correlation is captured by the reactive facies.

Figure 13 shows the fields of percent of fine, hydraulic conductivity, and Al:Fe ratio, based on one realiza-
tion of the reactive facies field. The figure highlights the coupled physiochemical nature of the reactive
facies: the Lagoonal facies always has a higher percent of fine, lower hydraulic conductivity, and higher
Al:Fe ratio. The figure also still clearly identifies a two-facies structure, which suggests that the transport-
property heterogeneity represented by the reactive facies could potentially be sufficient information for
informing reactive transport simulators [e.g., Sassen et al., 2012; Bea et al., 2013]. It is worth emphasizing
that in this 2-D domain, there are no direct measurements of the reactive transport properties; only CPT
and geophysical data sets along with petrophysical relationships were used.

Figure 12. Estimated mean and confidence interval obtained using the esti-
mation methodology compared with the interpretations from the CPT data
not used in the estimation. The red dots represent CPT-based facies, the blue
line is the mean probability, and the yellow region represents the 95% confi-
dence interval based on the standard deviation (STD) multiplied by two. A
probability of 0 indicates the Barrier Beach facies, while a probability of 1
indicates the Lagoonal facies.
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6. Summary and Conclusion

In this study, we have developed a multiscale Bayesian method for integrating multiple geophysical data
sets and wellbore/point data sets over large spatial extents to estimate the spatial distribution of reactive
facies and associated flow and reactive transport properties. Our approach is based on the previous local-
scale study by Sassen et al. [2012], which identified two reactive facies at the Savannah River F-Area that
have unique distributions of reactive transport properties and geophysical attributes. Through synthetic
and real data studies associated with the same site, we found that the hierarchical Bayesian model can
effectively integrate multiple types and scales of data, providing an approach for distributing heterogene-
ous properties that control flow and transport over the scales needed for simulating plume migration and
guiding the development of remediation strategies. Importantly, our approach permits the use of surface
seismic-reflection data, which provides large spatial coverage in a noninvasive manner, but is often difficult
to interpret in terms of transport parameters.

The developed approach was tested using both synthetic and real data sets. Synthetic studies demon-
strated that the estimation method worked well, providing high-resolution estimates of reactive facies in
the vicinity of point-scale and crosshole data, and providing lower resolution but acceptable estimates in
the region where only surface seismic data were available. Application of the new methodology to real site
data (including CPT, crosshole seismic, and surface seismic data) highlighted the use of this approach for
characterizing reactive facies and associated transport parameters along a plume centerline. The surface
seismic data were useful for estimating the continuity and multiple layers of Lagoonal facies in the Tan Clay
Zone, as well as discontinuous lenses in the upper and lower aquifer. Although the crosshole seismic data
set had a small spatial coverage in this site, such data were useful in identifying the differences in seismic
velocity between the two facies. The newly developed approach yielded multiple random fields of reactive

Figure 13. Reactive facies-based transport properties estimated along the plume centerline (refer to Figure 1b for location): (a) percent of fines, (b) hydraulic conductivity (log10) in cm/
s, and (c) Al:Fe ratio. The black lines are the point measurement locations at the CPT locations.
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transport parameters along a 2-D, 300 m traverse and with a pixel resolution of 0.305 m (vertical) by 1.2 m
(horizontal). These estimates can be directly used to parameterize stochastic simulations of reactive trans-
port models, which can in turn be used to simulate long-term plume behavior and to develop science-
based remediation strategies.

Although demonstrated here along a 2-D transect, the developed framework can be extended to the 3-D
domain to provide input to 3-D reactive transport models. The computational cost associated with the
increased number of pixels will be a challenge, but parallel computing can be used. In this framework, sam-
pling of each field (except reactive facies) can be parallelized, since each pixel is independent of all other
pixels. Another challenge of extending the method to 3-D is the availability of data appropriate for a 3-D
estimation, including geophysical data collected using 3-D or pseudo-3-D geometries as well as conven-
tional (borehole) data sets having a reasonably dense and azimuthal distribution [e.g., Hyndman and Gore-
lick, 1996; Doetsch et al., 2010; Dafflon et al., 2011; Dafflon and Barrash, 2012]. Although our study was
conducted using 2-D geophysical data sets, it would be possible to generate 3-D reactive facies field using
conditional realizations by regarding all the pixels in the vicinity of the transects as point measurements.

Although facies-based approaches have been used in the past, the multiscale-estimation reactive-facies
approach developed here is a new formal methodology that quantifies the uncertainty of reactive-facies
properties, as well as the uncertainty in the spatial distribution of reactive facies, using multiscale data sets.
Also in contrast to previous methods, our approach includes both the joint inversion of geophysical data
sets and random field generation. This study further suggests that the reactive facies concept and estima-
tion approach used here are effective for transferring information on reactive transport parameters from
direct measurements to indirect measurements (including geophysical data, lithology data and CPT), and
for maximizing the value of data sets for parameterizing reactive transport models at large scales.

Appendix A: Sampling of Coarse-Resolution Seismic Slowness {uj}
in the Site-Specific Model

According to equation (12), sampling of {uj} requires the surface seismic forward model p(zs|{uj} /s), and
upscaling model p({uj}|{vi}, hu). The forward model is a convolution model specified in section 4. Since
upscaling involves simple averaging of the child elements such that uj5n jð Þ21 P

k2a jð Þ vk1eu, the distribu-
tion p(uj|{va(j)}, hu) is a Gaussian distribution with the mean n jð Þ21 P

k2a jð Þ vk and variance su. According to
equation (12), we sample each element by:

p ujj•
� �

apðzsjuj ;/sÞNðn jð Þ21
X
k2a jð Þ

vk ; suÞ: (A1)

We use the MH sampler with the proposal distribution N(n jð Þ21 P
k2a jð Þ vk, su), and the decision criteria

based on the likelihood p(zs|uj, /s).

Appendix B: Sampling of Fine-Resolution Seismic Slowness {vi} in the Site-Specific
Model

We assume that the first arrival time in the crosshole data is the sum of seismic slowness along the straight
ray path, multiplied by the ray path length in each pixel, following Chen et al. [2006]. For Pixel i, the first
arrival time passing through Pixel i (zt,i) has a Gaussian distribution with the mean

P
k2rðiÞ dkvk and variance

rt, where r(i) represents the pixels along the ray path passing through Pixel i, dk is the ray path length in
Pixel i, and rt is the measurement error variance. At the crosshole data location, we sample the seismic
slowness at each pixel based on equation (13):

p vij•ð ÞaNð
X
k2rðiÞ

dkvk ; rtÞNðn c ið Þð Þ21
X

k2a c ið Þð Þ
vk ; suÞNða11a2fi ; svÞ: (B1)

Since the three distributions on the right-hand side of equation (18) are all Gaussian, we can use a conju-
gate prior such that the posterior distribution p(vi| •) is also a Gaussian distribution with mean A1 and var-
iance B1, where:
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A15B21
1

zt;i2
X

k2rðiÞ;k 6¼idkvk
rt

1
nðcðiÞÞucðiÞ2

X
k2aðcðiÞÞ;k 6¼ivk

nðcðiÞÞ2su
1
a11a2fi

sv

( )
B15

1
rt

1
1

n c ið Þð Þ2su
1

1
sv

( )21

(B2)

At the noncrosshole locations, we sample each element based on equation (14):

p við j•Þ / N n c ið Þð Þ21
X

k2a c ið Þð Þvk; su
� �

N a11a2fi; svð Þ: (B3)

In the same manner as the crosshole locations, the posterior distribution p(vi| •) is also a Gaussian distribu-
tion with mean A2 and variance B2, where:

A25B21
2

nðcðiÞÞucðiÞ2
X

k2aðcðiÞÞ;k 6¼ivk

nðcðiÞÞ2su
1

a11a2fi
sv

( )
; B25

1

nðcðiÞÞ2su
1

1
sv

( )21

: (B4)
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