
INTRODUCTION 
Recent findings suggest that warming climate has a significant 
impact on the Arctic ecosystems, which could in turn cause 
feedback to the climate system. A new Department of Energy 
project, called the Next-Generation Ecosystem Experiments 
(NGEE Arctic; http://ngee.ornl.gov/), has been initiated to ad-
dress how permafrost thaw and degradation– and the associated 
changes in landscape evolution, hydrology, soil biogeochemi-
stry and plant community dynamics– affect this feedback.  

Developing a predictive understanding of this feedback sys-
tem requires characterization of various subsurface properties, 
such as active layer thickness (ALT), soil moisture, tempera-
ture and geochemical parameters. Such characterization is chal-
lenging due to the need to sample over large spatial areas in 
high resolution, and the spatial heterogeneity influenced by mi-
crotopography, soil texture and vegetation [Zona et al., 2011]. 

This work presents a multiscale data fusion method to esti-
mate subsurface hydrogeochemical properties and state distri-
butions, using datasets that sample different properties over 
various measurement support scales, such as point measure-
ments, surface geophysical data and remote sensing data. The 
proposed method, based on a hierarchical Bayesian model, al-
lows us to integrate multiscale, multi-type datasets consistently 
to quantify uncertainty associated with the estimates. We dem-
onstrate our approach using co-located datasets collected at the 
Barrow Environmental Observatory, Barrow, Alaska. 

 
METHODOLOGY 

Data Collection Strategy 
To improve predictive capabilities and process understanding, 
NGEE Arctic includes intensive subsurface-surface characteri-
zation efforts that involve various types of point, geophysical 
and remote-sensing data. At the Barrow site our datasets in-
clude (a) airborne high-resolution LiDAR data; (b) surface-
based ground penetrating radar (GPR), electrical resistivity to-
mography, spectral induced polarization, and electromagnetic 
data; and (c) point-based soil temperature, moisture, geochemi-
stry, texture and ALT measurements along and in the vicinity 
of several ~500m transects across the polygonal ground. 

Each dataset offers both advantages and limitations; togeth-
er, the datasets offer the possibility of providing high-
resolution information over large spatial extents. The point-
based measurements are invasive and typically sparse, yet they 
provide direct information about the subsurface properties and 

states. They are also used to establish the correlations among 
subsurface properties, geophysical attributes and surface fea-
tures for calibrating geophysical and remote sensing data. The 
high-resolution surface geophysical datasets are non-invasive 
and spatially extensive; integration of these datasets increases 
the spatial coverage and potentially reveals the fine-scale prop-
erty variability and spatial correlation structure. The remote-
sensing data can further increase the spatial coverage and im-
prove the estimation over a large area through the subsurface-
surface correlations. Integration of these disparate datasets re-
quires an understanding of relationships among different hy-
drogeochemical-geophysical-physical variables and a frame-
work that can honor all datasets and their interdependencies.  

 
Bayesian hierarchical model 
The Bayesian hierarchical model consists of three main statis-
tical models; (1) data model: p(data|process,β), (2) process 
model: p(process|α) and (3) prior model: p(α,β), where α and 
β are the model parameters [Wikle et al., 2001]. The process 
model describes the spatial-temporal patterns of the subsurface 
properties, conditioned on α. Although it is usually not feasible 
to develop a complete physical model to create such patterns 
(e.g., depositional processes, polygonal-ground evolution), we 
can often approximate the patterns using simple functions such 
as polynomial and cosine functions. The data model connects 
the patterns created by the process model and the actual data 
for given β and measurement errors. The data can be a direct 
measurement or a function of the subsurface properties; for ex-
ample, spatial averaging for low-resolution datasets. 

The overall model – a series of conditional models – is 
flexible and expandable to include complex physical processes 
or observations. For example, the process model can include 
multiscale physical processes by having additional hierarchical 
structures [Ferreira et al., 2007]. Once all the conditional mod-
els are developed, we can estimate the joint posterior distribu-
tion of the parameters and process p(process,α,β|data), using 
Bayesian estimation algorithms such as the Markov-chain 
Monte-Carlo (MCMC) method. 

 
DEMONSTRATION  

ALT Estimation 
Here we show one example of our data integration; ALT 

estimation based on the point probe, surface GPR and LiDAR 
elevation data. For the GPR data, the arrival time of the signal 
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reflected at the bottom of active layer was converted to ALT 
using the velocity estimated by the common-midpoint surveys. 

First, we developed a process model for ALT (m): 
ALT = f(dh, w) + εa,       (1) 

where f is a function, dh is the microtopography (i.e., devia-
tion of elevation from the trend), w is the indicator for the pres-
ence of surface water, and εa is the residual random component 
representing additional spatial variability. Although the LiDAR 
data provides the elevation, we included it as an explanatory 
variable, since the topography is a dominant control over the 
subsurface properties [Zona et al., 2011], and also the elevation 
is quite accurate and spatially exhaustive in the domain of in-
terest. The same argument can be applied for the surface water. 

We define the data model for each point data zp as: 
zp = ALT + εp,        (2) 

where εp is the measurement error. The data model for each 
GPR data point zg is: 

zg = g(ALT) + εg,       (3) 
where εg is the measurement error, and g is a function con-

necting the actual ALT to the one from the surface GPR.  
Based on the exploratory data analysis, we assumed a 2nd-

order polynomial for f(dh,w): f(dh,w)=[dh2 dh 1 w]•[α2 α1 α0 
αw]T, and a linear model for g(ALT): g(ALT)=0.94ALT+0.04. 
We also assumed that εa is a multivariate Gaussian distribution 
with exponentially decaying spatial correlation (correlation 
length 11.0m, standard deviation (STD) 0.19m and nugget 
fraction 0.56). Table 1 shows the other fixed parameters.  

Using MCMC-Gibbs sampling, we computed the posterior 
distribution of α={α2 α1 α0 αw} and ALT at the prediction lo-
cations; p({ALT},α{zp},{zg}) (the curly bracket denotes ALT 
and data at multiple locations). Although the current model is 
fairly simple, we can extend it by adding more explanatory va-
riables (e.g., surface vegetation), considering spatially variable 
α, and jointly estimating the currently fixed parameters. 
 
 Table 1. Assumed distributions and parameters. ___________________________________________________ 

          Value               Unit   ___________________________________________________ 
Distribution of {εp, εg} Independent normal  
STD of {εp, εg}            {0.01, 0.07}                  {m, m} 
Prior distribution of α Independent normal 
Prior mean of α        {0.88,-0.25,0.26,0.10}  {m-1, , m, m} 
Prior STD of α         {0.10,0.10,0.10,0.10}   {m-1, , m, m} ___________________________________________________ 
 
Results 
Figure 1(a) shows the ALT data from the point probe and the 
surface GPR. Along this 100m transect, we had point data 
every 3m and GPR data every 0.2 to 0.4m. The surface GPR 
not only provides fairly accurate ALT but also captures the 
fine-scale heterogeneity missed by the point data. The multiple 
peaks of the ALT profile correspond to trough locations on the 
surface in the moderately high-centered polygons.  

In Figure 1(b), the estimated ALT and uncertainty bounds 
from our estimation method are compared with the point data. 
Although the estimate is a simple function of microtopography 
and surface ponding, it shows good agreement to the point da-
ta. Figure 1(c) shows the estimated ALT in the 2-D domain in-
cluding the point and GPR data, based on the estimated α and 
LiDAR elevation data. It suggests that, by collecting sparse 
point and geophysical ALT data, this method can estimate ALT 

over a large area based on topography. We can see the poly-
gonal-ground feature by large ALT at the troughs.  

 
SUMMARY AND FUTURE WORK 

In this paper, we described a multiscale hierarchical Baye-
sian method for integrating multiscale, multi-type datasets. As 
the first example, we illustrated how the method can be used 
with the GPR and LiDAR data to estimate ALT over a large 
area. Although the current example model is still simple, the 
results suggested that effective combination of point, geophysi-
cal and remote-sensing data can provide high-resolution infor-
mation about important subsurface properties needed to para-
meterize both 2D/3D landscape and reactive transport models. 
As future work, we will improve the ALT estimation and ex-
tend the methodology to estimate other subsurface properties 
including ground ice using various combinations of datasets. 

 
Figure 1. (a) ALT from the point probe (dots) and from the sur-
face GPR (bold line), (b) Estimated ALT (black line), 99% 
confidence interval (gray lines) and point data (dots), and (c) 
Estimated ALT in the 2-D domain. The white dots in (b) are 
the point data locations, and the GPR line. 
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