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P
recision viticulture strategies
that focus on promoting uni-
formly high winegrape qual-
ity throughout vineyard

blocks require information about the
distribution of elements that can
impact grape quality, such as microm-
eteorological and soil properties.
Although airborne remote sensing

and surface-based geophysical datasets
are now available to provide informa-
tion about vegetation and soil variabil-
ity, the industry is still at an early stage
in using these advanced datasets to
guide development of new vineyards
or management of existing vineyards.
One of the reasons for the lag

between the availability of the technol-
ogy and its adaptation is the difficultly
involved in interpreting the remote
datasets in terms of parameters that
are meaningful for guiding vineyard
development and management.
Although the airborne and surface-
based geophysical datasets provide
spatially extensive information in a
non-invasive manner, they provide
only indirect information about the
parameters that control wine grape
growth.
Interpretation of the remote datasets

in terms of meaningful parameters
requires comparison with direct mea-
surements obtained using conven-
tional approaches, such as from well
borings, backhoe pits, or meteorologi-
cal stations. This comparison is exacer-
bated by the scale disparity between
spatially extensive yet indirect mea-
surements and sparse, yet direct mea-
surements of vegetation vigor, soil tex-
ture, and soil moisture, for example.
In this study of a potential 28-acre

Sonoma County vineyard site in Cali-

fornia, a variety of airborne, surface
geophysical, wellbore, and land surface
methods were used to characterize the
site. Conventional characterization
approaches were used (soil pits, time
domain reflectometer, digital eleva-
tion, micrometeorology), and analysis

was performed on soil samples or neu-
tron probe readings that were collected
through vertical access tubes (well-
bores installed in the ground). Less
conventional approaches included
cone penetrometer, surface ground
penetrating radar, surface electromag-
netic induction, and Normalized Dif-
ference Vegetation Difference [NDVI]
remote sensing information. Many of
these datasets were collected several
times over 1.5 years to capture natural
temporal and spatial trends prior to
determining potential vineyard blocks.
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Advanced datasets guide
vineyard development

465

445

445

3636003330

295

28

285

292 5

N

0 100 200

Feet

400

Figure 1: Topography of the developing vineyard
site (in feet), which illustrates the wide variations in
slope and aspect at the site. Superimposed on the
topography are vineyard block delineations
described in this study, which were based on:
1) cluster analysis of diverse soil, plant, and
micro-meteorological datasets; 2) spatial
variability of some properties as
identified using the surface geophysical
and remote sensing data; and
3) farming considerations.
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The study consisted of four key
components:
1) data acquisition and interpretation
of the datasets in terms of key soil, veg-
etation, or micrometeorological prop-
erties;
2) cluster analysis to define vineyard
zones that are characterized by a
unique combination of soil, vegetation,
and topographic elements;
3) delineation of vineyard blocks
based on natural site variability, with
an objective to identify blocks that have
fairly uniform soil, vegetation, and
micrometeorological parameters; and
4) use of obtained mean block-specific
parameters within water balance
numerical models to develop block-
specific irrigation strategies.
This study highlights how straight-

forward statistical and analysis
approaches can be used with advanced
datasets to optimize block layout and
to develop precision irrigation strate-
gies that respect natural site variability.

Such approaches are expected to lead
to more uniform vegetation and wine-
grape characteristics within vineyard
blocks while potentially reducing
water and energy use.

Sonoma County vineyard study
site
The site in Alexander Valley is

approximately five miles northeast of
Healdsburg, CA. The mean January
temperature at the site is 39ºF and
annual precipitation can be up to 40
inches with most precipitation occur-
ring during the winter.
The center of the site is delineated

by an access road and is situated on a
hilltop. The elevation varies from 465
feet down to 375 feet. Slopes range
from 0 to 40% (average of 10%), with
predominant slopes to the northeast
and southwest.
Many of the elements that control

wine grape growth, such as soil depth,
drainage characteristics, and solar

aspect ratio vary substantially over the
site due to the variable site topogra-
phy.

Characterization approach
Several different airborne, point,

wellbore, and surface geophysical
datasets were collected at the nascent
vineyard site to assess spatial and tem-
poral variations of site properties.
Many of the approaches that were

employed are relatively new for use
within vineyards. For example, a Cone
Penetrometer (CPT), which is com-
monly used in civil engineering to
characterize soil strength as needed for
construction was used to assess soil
texture variability and to identify the
location of resistive layers. Surface-
based Ground Penetrating Radar
(GPR; Figure 2), and electromagnetic
(EM) induction geophysical tech-
niques have been tested for use in viti-
culture, but have not yet been widely
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Table I. Different datasets collected at study site to characterize soil, vegetation,
and micrometerological parameters that influence wine grape growth.

Spatial Distribution
Method of Measurements Characterization Objective Reference
Digital Elevation data and 2D measurements of land surface Elevation and property locators *1

cultural boundary outlines and extraction of slope and aspect.
Soil Pit data Point samples to depths of 2 meters Soil Chemistry (Mg, Ca), qualitative *2

soil texture and moisture descriptions
Borehole soil samples 1D vertical series of point Gravimetric and soil textural analysis, Lunt et al., 2005

measurements to 4 meters development of site-specific neutron
probe calibration curve

Borehole neutron probe logs 1D vertical series of point Soil water content Lunt et al., 2005
measurements to 4 meters

Cone Penetrometer (CPT) 1D vertical series of point Soil behavior type and depth Lunne et al., 1997
measurements to 4 meters to resistive layer

Time Domain Reflectometer (TDR) Point samples in upper 15 cm Soil water content estimated from Topp et al., 1980
electromagnetic wave velocity

Ground Penetrating Radar (GPR) Integrated point measurements Soil water content estimated from Grote et al., 2003;
using sensors and software interpreted in term of 3D property electromagnetic wave velocity Lunt et al., 2005
900MHz groundwave distribution in upper ~20 cm of soil layer
Surface Electromagnetic (EM) Integrated point measurements interpreted Soil property (texture/moisture variations) Lamb et al., 2004
Induction using in terms of 3D property distributions in estimated from electrical conductivity
Geonix EM-38 meter upper 0.5 meters (horizontal dipole orientation)

and 1.25 meters (vertical orientation) of soil layer
NDVI 2D vegetation canopy measurements Vegetation density *3

at 1m x 1m resolution. Johnson et al., 1996
Weather station Point micrometeorological measurements Precipitation, ETo CIMIS Santa Rosa

station #42
*1 Digital Elevation Data provided by Erickson Engineering
*2 Soil pit data provided by Bryan Rahn, Coastalvit
*3 NDVI data provided by Jay Hutton, Grayhawk
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adopted nor jointly used for site char-
acterization.
The locations of 29 soil pits (up to 4

feet in depth) were chosen based on
the variability observed in the surface
geophysical and remote sensing
imagery.
Table I lists the different types of

data collected at the site, the spatial
sampling and characterization approach
associated with different measure-
ments, and references for details on data
acquisition and inversion approaches.
Figure 3 illustrates the dates of four
different rounds of data collection
(field campaigns) that were performed
seasonally prior to block delineation as
the site was wetting up and drying
down.
The combined datasets (Table I)

revealed spatial and temporal varia-
tions in soil and vegetation properties
across the site. Figure 4 is an example
of co-located wellbore datasets: volu-
metric water content (measured using
neutron probe datasets collected over
time and a site-specific calibration
curve) is shown on the top and soil tex-
ture (inferred using CPT datasets col-
lected directly adjacent to the neutron
probe access tube) is shown on the bot-
tom. At this location, the CPT dataset
suggests the presence of a restrictive
layer at about 3.75 meters below
ground surface.
The soil moisture curves obtained

from the neutron probe data reveal
that the moisture content varies sea-
sonally above this restrictive layer, but
is constant below it. This suggests that
the restrictive layer, identified using
CPT data, is likely acting as a
hydraulic control.

Dense surface geophysical and
remote sensing datasets were used to
assess property variations over space
and time. Figure 5 (left and center)
illustrates variations in electrical con-
ductivity in the top ~1.25 meters of the
soil during two different seasons,
obtained using the surface-based elec-
tromagnetic method. Electrical con-
ductivity measurements often respond
to various elements: saturated, clay-
rich soils will lead to higher values of
electrical conductivity relative to dryer,
sandier soils. Soils with saline-pore
waters are more conductive than simi-
lar soils with fresh pore waters.
Because some soil properties (such

as texture and possibly salinity) do not
change over short periods of time, use
of time-lapse measurements helps to
reduce some ambiguity associated
with interpretation of geophysical
measurements that are sensitive to dif-
ferent properties. For example, by
examining spatial variations in sea-
sonal differences in electrical conduc-
tivity (Figure 5 right), we can investi-

gate areas that tend to preferentially
retain moisture or drain more readily
over time.
Time-lapse NDVI data were also

used to explore spatiotemporal varia-
tions in natural vegetative growth. By
examining the NDVI data over time
we were able to assess the influence of
aspect on vegetative growth. For
example, the time-lapse NDVI data
suggested that the south- and south-
west-facing slopes experience an
increase in vegetation relative to other
areas during the early part of the grow-
ing season where as north-facing
slopes experienced a later increase in
vegetation.

Optimal block delineation using
cluster analysis and spatially-exten-
sive datasets — Several elements var-
ied significantly over space and time at
the site, and there are interdependen-
cies between elements. Examples
include: soil texture and associated soil
moisture; topography and associated
slope and aspect; propensity toward
vigorous vegetation; rooting depth

3

G R A P E G R O W I N G

Figure 2: Obtaining data with ground-
penetrating radar (GPR).
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Figure 3: Timetable of four major field measurement campaigns at the vineyard site as a
function of precipitation (top) and reference evapotranspiration (bottom).
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and associated depth to the restrictive
layer.
Ideally, our extensive database

could be used to parameterize numeri-
cal models that could, in turn, be used
to simulate the cycling of water and
nutrients through the soil, grapevines,
and atmosphere.
However, accurate simulation of

these dynamic biophysical-hydrologi-
cal interactions is still at a very early
research stage and would require
model development, biophysical mea-
surements, process investigations, and
model calibration that are beyond the
scope of most practical vineyard devel-
opment efforts.
Instead, a cluster analysis approach

was utilized to delineate statistically
significant regions within the develop-
ing vineyard site that had a unique and
meaningful combinations of soil, plant,
and micrometerological parameters
that are expected to influence grape-
vine growth (and eventually, fruit
quality).
We relied on a relatively new hybrid

clustering algorithm developed at
University of California, Berkeley by
M. van der Laan and K.S. Pollard in
2003. This procedure optimizes the
number of parameter groupings such
that they are distinct from one another
and so that the parameter values
within the groups are relatively homo-
geneous.
The dataset for the cluster analysis

consisted of 14 variables, including the
key soil, vegetation, and elevation-
related parameters shown in Table I
and changes in some of those variables
as a function of season. The dataset
was compiled by extracting measure-
ments from the dense geophysical,
vegetation, remote-sensing microme-
terological, and soil-based datasets at
the locations of soil pits and wellbores.
Dots in Figure 1 indicate the location of
the soil pits and wellbores that were
used for the cluster analysis.
The cluster analysis indicated that

there were six distinct clusters, each of
which were constrained to a particular
geographic region and could be
described by a unique combination of
soil, vegetation, and micrometeorolog-
ical-based parameters (or change in
those parameters over time).

Cluster distribution was used
together with the spatially distributed
(2D or 3D) datasets and site cultural
features (existing roads, natural gul-
leys, extreme topography) to delineate
vineyard blocks in Figure 1. These
blocks represent delineation of regions
that have a unique combination of ele-
ments that influence grapevine growth
and that are practical to manage from a
farming perspective.
For example, the northern-most

delineated block is characterized as
being primarily north-facing with a
rooting depth of about 35 inches and
relatively low vegetation, and com-
posed of sandy, gravelly loam soils
that were subject to drainage above but
were consistently moist below a 4-foot
deep restrictive layer. In addition to
using these gross characteristics to
define the block, the higher resolution
remote sensing datasets can be used to
explore more subtle within-block vari-
ability, which can be used to guide
vineyard planting.

Development of precision irriga-
tion schedules using block-specific
information — Once the vineyard
blocks were delineated, the associated
soil, vegetation, and climate-based
parameters of the individual blocks
can be used to guide further vineyard
development or management strate-
gies, such as choice of rootstocks,
grape variety scions, spacing, and ori-
entation of vine rows, and irrigation
scheduling.
Such zonal-based management

strategies can be developed using
expert viticulture knowledge or with
the help of numerical modeling
approaches that take into account sev-
eral identified block-specific elements.
An example of the potential use of

the obtained information for guiding
block-specific management strategies
is the use of a simple water balance
model to simulate irrigation needs for
each block based on obtained mean
values of key parameters associated
with that block (such as soil depth and
texture, elevation and aspect ratio, etc.)
and as a function of tractor row and
vine spacing.
For this simulation, the Vineyard

Soil Irrigation Model (VSIM: Pierce,
2006) was used. This simple Excel
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Figure 4: (a) Neutron probe measurements
of volumetric water content as a function of
season and (b) CPT estimates of lithology at
the same location. These datasets illustrate
seasonal shallow soil moisture variations and
the control of a resistive unit on water
content. Such wellbore-based datasets
complement the spatially extensive datasets
(obtained using surface geophysical and
remote sensing methods) because they
provide detailed information about
subsurface variability at one location as a
function of depth.

Hubbard_VnyrdDev:PWV Sept/Oct2007 final  4/5/10  2:07 PM  Page 4



MAY/JUNE 2010

spreadsheet-based simulation tool can
be used to calculate water balance over
the entire root zone of the plant using
∆S = P + I – ET – R, where ∆S is the
change in soil water storage over the
root zone, P is precipitation, ET is the
evapotranspiration of the soil-plant
system, R is the surface water runoff,
and I represents irrigation water input
to the system.
Evapotranspiration is based on ref-

erence evapotranspiration (ETo) and a
crop coefficient (kc), where crop ET
(ETc) = ETo * kc. VSIM utilizes the
California Irrigation Management
Information System (CIMIS) meteoro-
logical station network to quantify
daily and seasonal variations in cli-
mate, and these “average” ET0 values
can be modified to account for
expected changes in micrometeorology
of different blocks as a function of lati-
tude, slope, and aspect.
In VSIM, daily ETc and runoff are

subtracted from soil moisture, while
irrigation and rainfall (if any) are
added to soil moisture to keep a daily
running calculation of soil moisture.
The soil/leaf water potential is then
obtained from the calculated soil mois-
ture using relationships based on site-
specific soil texture and depth.
Figure 6 is an example of a block-

specific irrigation simulation, which
was simulated using VSIM with: 2004

meteorological data from the Santa
Rosa CIMIS station; ETo values cor-
rected for block-specific latitude, mean
slope and mean aspect; initial soil
moisture at beginning of growing sea-
son calculated based on block-specific
soil texture; regional growing degree
day values for bud break; and peak
leaf area index.
Parameters that can be varied

within the simulation include crop
cover, target midday stem water
potential, and tractor row and vine
row spacing. For choices of 75% crop
cover, a mid-day stem water potential
target for developing vines during the
growing season of –9 bars, and four
feet by four feet vine and tractor row
spacing, Figure 6 shows that this par-
ticular block should be given 10 mm of
irrigation water every two weeks.

Summary
Precision viticulture strategies that

focus on promoting uniformly high
wine grape quality throughout vine-
yard blocks require information about
the distribution of elements that can
impact grape quality. Although
advanced remote sensing and surface
geophysical datasets can provide indi-
rect information about such elements,
they are not routinely used to guide
vineyard development because of the
cost and effort involved in acquisition

and challenges involved in interpreta-
tion.
This study illustrated how

advanced characterization datasets can
be used to guide block delineation and
irrigation scheduling. In particular, we
found that:
• Statistical clustering approaches
facilitated the interpretation of multi-
scale and multi-variable vineyard
characterization datasets in terms of
vineyard regions that have fairly
unique and uniform properties. The
clustering and spatially extensive
datasets were useful in delineating
vineyard blocks.
• The obtained cluster properties
within each block could then be used
to develop zonal vineyard manage-
ment strategies that honor natural site
variability, such as block-specific irri-
gation schedules.
In addition to illustration of a char-

acterization strategy for delineating
vineyard blocks and associated man-
agement strategies, we found that:
• Time-lapse NDVI and surface geo-
physical datasets (collected prior to
planting), provided good information
about soil drainage and propensity for
vigorous vegetation growth over space
and time;
• Although the GPR dataset provided
a more unique signature of soil mois-
ture variation than did the surface EM
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between those datasets (right).
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dataset, the surface EM geophysical
datasets were easier to collect and
process than surface GPR datasets and
thus offered more a more cost-effective
characterization approach.
CPT datasets were useful for delin-

eating the distribution of a resistive
layer that prohibited root growth, but
provided only marginally useful infor-
mation about other soil properties that
influence drainage. Neutron probe
data, combined with surface geophysi-
cal datasets, were most useful for
understanding spatial and temporal
soil water dynamics.
Although we focus here on devel-

oping vineyard blocks that should lead
to uniform within-block vegetation,
we anticipate that zonal-based vine-
yard development and management
strategies should also lead to more uni-

form winegrape characteristics that
reflect natural site conditions.
However, because the vineyard is still
in the planing stage, we leave assess-
ment of the impact of advanced char-
acterization on fruit quality for future
studies.
We recognize it would be impracti-

cal to undertake the effort described
here in the development of many vine-
yards. However, we provide a reason-
able strategy for using multiple
datasets and simple analysis
approaches, which we feel renders
vineyard characterization effort quite
useful.
As available land and water

resources continue to decrease, as
advanced datasets become less costly
to collect and interpret, and as the pub-
lic demand for high-quality wine

increases, we anticipate that strategies
and datasets such as the one presented
herein will become cost-effective for
wineries targeting balanced vineyards
and high-quality winegrapes. �
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Figure 6: Example of an irrigation schedule obtained using CIMIS and block-specific
parameters within a simple water balance numerical model.
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