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Electrical Conductivity Imaging 
of Active Layer and Permafrost 
in an Arctic Ecosystem, through 
Advanced Inversion of 
Electromagnetic Induction Data
Characterizing the spatial variability of active layer and permafrost properties is critical for 
parameterizing process-rich models that simulate feedbacks from Arctic ecosystem to a 
changing climate. Because of the sensitivity of electrical conductivity (EC) measurements 
to moisture content, salinity, and freeze state and the ease of collecting electromagnetic 
induction (EMI) data with portable tools (e.g., EM38, GEM2, or DUALEM) over large regions, 
EMI surveys hold great potential for Arctic ecosystem characterization. However, estima-
tion of subsurface EC distribution from such data is challenging because of the insufficient 
amount of information such data provide towards finding a unique solution. The non-
uniqueness problem is often approached by fixing inversion constraints and initial models 
without a clear understanding of their possible effects on the obtained results. Here we 
developed a direct search method, which involves a grid-based evaluation of one-dimen-
sional layered model parameters, to estimate EC distribution from EMI data and evaluate 
the influence of prior constraints, data information content, and solution non-uniqueness. 
We applied the new method to EMI data acquired in Barrow, AK, as part of the Depart-
ment of Energy Next-Generation Ecosystem Experiments (DOE NGEE–Arctic). Results dem-
onstrate the success of the developed approach for estimating models that reproduce 
recorded data within a specified range of uncertainty at each measurement location, as 
well as the value of different types of constraints. Importantly, the method can be used to 
quickly investigate the need for and effects of different priors at numerous measurement 
locations, since the time-consuming simulation of the EMI signals from the multidimen-
sional search grid is performed only once.

Abbreviations: DOE NGEE–Arctic, Department of Energy Next-Generation Ecosystem Experiments; EC, 
electrical conductivity; EMI, electromagnetic induction; ERT, electrical resistance tomography; MCMC, 
Markov chain Monte Carlo.

The spatial distribution of soil EC is important in the earth sciences 
because of its relation to soil properties such as porosity, mineralogy, moisture, and fluid 
ionic strength (e.g., Archie, 1945; Revil et al., 1998; Friedman, 2005). Electromagnetic 
induction responses are generated by EC variations (e.g., Everett and Meju, 2005), and thus 
EMI is widely used for subsurface investigations (e.g., Pellerin, 2002; Auken et al., 2006; 
Everett, 2012). In comparison to electrical methods, EMI methods do not require contact 
with the ground and thus can be acquired relatively quickly using airborne or ground 
survey modes. In summary, with the EMI method, the response of the EC distribution in 
the subsurface is measured using a combination of two coils. The transmitter coil is ener-
gized with alternating current, creating a magnetic field that induces electric currents in 
the subsurface conductive layers. The currents create a secondary magnetic field, which is 
shifted in phase with respect to the primary field; both the primary and secondary fields 
are measured by the receiver coil. Different depth sensitivity functions are obtained using 
multiconfigurations of the instrument that vary coil spacing, orientation, elevation above 
ground surface, and signal frequency.

For near-surface investigations, one-person-operated frequency domain EMI instruments 
(such as EM38, GEM2, and DUALEM) are commonly used for mapping the apparent 
EC and for estimating soil salinity (e.g., Lesch et al., 1995; Corwin and Lesch, 2005; 
Quinn et al., 2010), extent of groundwater contamination (e.g., Triantafilis et al., 2011), 
soil water content (e.g., Reedy and Scanlon, 2003; Robinson et al., 2012), clay content 
(e.g., Triantafilis and Lesch, 2005), soil characterization (e.g., Abdu et al., 2008; André et 
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al., 2012; Heil and Schmidhalter, 2012), and wedge locations in 
polygonal networks (e.g., Cockx et al., 2006; Singleton et al., 2010). 
Several field studies involving electrical and/or electromagnetic 
measurements have shown the potential for characterizing the EC 
distribution within a permafrost system (e.g., Hoekstra et al., 1975; 
Yoshikawa et al., 2004; Hauck and Kneisel, 2008; Minsley et al., 
2012a; Overduin et al., 2012).

Several studies have reported EC values of permafrost systems 
using electrical or EMI methods. Unconsolidated deposits (such 
as, e.g., silty sand or fluvial gravel) that are partly or fully saturated 
with fresh water have been generally reported with EC values above 
2 mS/m (<500 Wm) in unfrozen states and below ~2.9 mS/m 
(>350 Wm) in frozen states (e.g., Hoekstra et al., 1975; Hauck and 
Kneisel, 2008; Minsley et al., 2012a). An exception to this occurs 
with the presence of clays, which can lead to values as high as 100 
mS/m (as low as about 10 Wm) when unfrozen (e.g., Minsley et al., 
2012a) and as high as 20 mS/m (as low as 50 Wm) when frozen. 
The presence of saline water, which strongly increases the EC of 
the sediments and lowers its freezing point, can lead to EC values 
ranging between 50 and 125 mS/m (8 and 20 Wm), as observed 
near Barrow, AK (Yoshikawa et al., 2004), or even as high as 1000 
mS/m (1 Wm) (Overduin et al., 2012). When frozen, saline perma-
frost regions have led to EC values as high as 50 mS/m (as low as 20 
Wm, e.g., Overduin et al., 2012). The EC values discussed here are 
only indicative and should not be considered as fixed boundaries 
between different permafrost lithologies or fluid states.

One reason for the extensive and successful use of portable EMI 
tools for permafrost and other near-surface investigations is that 
the coil spacing is much smaller than the skin depth (e.g., McNeill, 
1980). As such, the tools are assumed to operate at a low induc-
tion number, which permits approximations and simplifications 
(e.g., McNeill, 1980) in Maxwell’s equations that govern electro-
magnetic theory (e.g., Keller and Frischknecht, 1966). On the 
basis of this, the apparent EC value can be directly inferred from 
the measured ratio between the amplitude of the out-of-phase 
(quadrature) component and the in-phase component of the signal, 
which is assumed to be equal to the primary field. This apparent 
EC is defined by the average EC associated with variable subsur-
face layers included in the EMI measurement support volume, 
weighted by their relative thickness and their contribution to the 
signal, which depends on the tool and acquisition configuration 
(e.g., McNeill, 1980; Everett and Meju, 2005). High EC values and 
their variations have a stronger influence on EMI measurements 
compared with low values. Under conditions of low induction 
number and for simple evaluations, the above approximations are 
very useful. However, a Maxwell-based full solution is preferable 
for inversion purposes because it is more reliable, especially when 
EMI data are being used to characterize heterogeneous environ-
ments in the presence of high EC material (e.g., Callegary et al., 
2007; Lavoue et al., 2010).

Various approaches have recently been developed to estimate 
EC from EMI data, including a smooth one-dimensional inver-
sion approach (e.g., Farquharson, 2000; Hendrickx et al., 2002; 
Huang and Won, 2003; Minsley et al., 2012b), a similar approach 
that uses lateral constraints along a two-dimensional profile (e.g., 
Monteiro Santos, 2004; Triantafilis and Monteiro Santos, 2009; 
Monteiro Santos et al., 2011), and smooth two-dimensional inver-
sion approaches (e.g., Mitsuhata et al., 2006). Recent developments 
have also trended toward exploring multiple solutions of EC from 
EMI data instead of only a single best fitting model. Examples 
include a two-layer, one-dimensional inversion method based on a 
direct search approach that couples a global and local optimization 
(Mester et al., 2011) and a one-dimensional layered model estima-
tion based on a Markov chain Monte Carlo (MCMC) approach 
(e.g., Minsley, 2011; Minsley et al., 2012a).

A common but critical issue with near-surface EMI imaging using 
data collected with portable tools is the strong non-uniqueness 
in the solution that is caused by many factors. First, the limited 
number of measurements can lead to an underdetermined problem, 
where a unique estimation of the multiple parameters is not pos-
sible. Second, the sensitivity function of each of the measurements 
to the subsurface EC distribution may be not diverse enough to 
ideally constrain the domain of solution. Finally, EMI and elec-
trical methods face the equivalence problem, meaning that vari-
ous combinations of layers having different thicknesses and EC 
values can lead to the same response or measurement (e.g., Keller 
and Frischknecht, 1966; Koefoed, 1979; Sharma and Kaikkonen, 
1999). As a result, the use of various priors, such as inversion con-
straints and start models, can significantly influence the inversion 
results (e.g., Hubbard et al., 2013). In summary, although priors 
and their influence on the inversion process greatly affect the inver-
sion results, because of the limited data information content and 
the equivalence concern they are rarely quantified (e.g., Sharma 
and Kaikkonen, 1999; Kafri and Goldman, 2005; Minsley, 2011).

The non-uniqueness limitations described above motivated 
our study. In particular, we developed a parameter-estimation 
approach that permits investigation of the information contained 
in EMI data, the diverse models that reproduce the measured data 
within a specific range of uncertainty, and the influence of priors 
on the inversion result. This development is particularly important 
because inversion of EMI data potentially contains valuable infor-
mation about the subsurface even if the solution is non-unique. In 
addition, the obtained information can be used to guide choices 
about additional measurements and/or prior information needed 
to improve subsurface characterization or process understanding.

Here we invoked a grid-based direct search parameter-estima-
tion approach, which was a simple method that was particularly 
adapted to meet our stated objectives. Our study is described as 
follows: In Section 2, we introduce the grid-search-based approach, 
and in Section 3, we apply it to datasets collected near Barrow, 
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AK. The investigations at this site are part of the DOE NGEE–
Arctic project that aims to develop a process-rich ecosystem model 
to simulate the evolution of the Arctic ecosystem in a changing 
climate. This effort requires the characterization and monitoring 
of properties and processes from the bedrock to the top of the 
vegetative canopy—ideally in high resolution, over large spatial 
scales, and in a minimally invasive manner. The EMI measure-
ments that have been acquired at our study site using a portable 
tool (as described in Hubbard et al., 2013) require inversion to 
characterize the EC of the active layer. Inversion of these mea-
surements using a one-dimensional regularized least-squares-based 
inversion code EM1DFM (Farquharson, 2000) also requires the 
use of a specific initial model to obtain a realistic result, as will 
be discussed in Section 3. The parameter-estimation method 
described here enables investigation of the information content 
of such data, the non-uniqueness in models reproducing the data, 
and the influence of prior constraints. In Sections 4 and 5, we dis-
cuss the implementation and results, respectively, of our developed 
method to improve the inversion, and in Section 6 we summarize 
the findings of our study.

66 �Grid-Search-Based Parameter-
Estimation Approach

Grid-search-based approaches involve setting up a multidimen-
sional parameter grid, computing the forward simulation for each 
combination of parameter values, and evaluating a misfit function 
to assess how each of them reproduces the measurements (e.g., Sen 
and Stoffa, 1995; Tarantola, 2005). The grid-search-based work-
flow of the approach used in this study is shown in Fig. 1. The first 
step consists of defining a range of EC and thickness values for 
each of the layers defining a one-dimensional subsurface model 
and simulating the EMI signals corresponding to the used tool 
configurations for each combination of parameter values. Because 
the method simulates the entire search domain without optimiza-
tion, it is generally considered a computationally intensive param-
eter-estimation method (e.g., Sen and Stoffa, 1995; Tarantola, 
2005) and a viable approach only for the investigation of a lim-
ited number of parameters. In this study, the evaluation of several 
one-dimensional three-layered models was performed by sampling 
various EC values for each layer and variable thicknesses for the 
top and middle layer, while the bottom layer was considered to be 
infinitely thick. The second step of our approach consists of apply-
ing prior constraints and discarding a subset of models, both based 
on site-specific knowledge. Finally, the third and last step involves 
an evaluation of the misfit between each simulated and measured 
data pair and the selection of the corresponding models that repro-
duce the measured data within a given range of uncertainty. These 
data are then subject to further statistical analysis.

One main advantage of this approach is that the second and third 
steps are computationally inexpensive, and thus many factors 
can be considered with minimal computational effort, including 

numerous locations (even at various sites), multiple priors, different 
data uncertainty, and multiple misfit functions. This computation-
ally efficient characteristic of this new approach distinguishes it 
from other parameter-estimation methods that also seek to explore 
multiple models, including the direct search approach that cou-
ples global and local optimization (Mester et al., 2011) and the 
MCMC-based approach (Minsley, 2011), both of which require 
complete or partial simulations at each new measurement location 
because of their iterative optimization processes. Other character-
istics of the method described here include (i) the absence of critical 
issues that often plague inversion approaches, such as convergence, 
optimization, regularization, or linearization; (ii) the ability to 
detect several minimum in the domain of solution, and (iii) the 
requirement of a simple parallelization on a computer network or 
cluster to simulate the initial EMI forward simulations (the first 
step in the procedure).

66Field Data
Study Site and Measurements
The study site is located within the Barrow Environmental Obser-
vatory (BEO) near the village of Barrow on the Alaskan Arctic 
Coastal Plain, which is bordered on the north by the Arctic Ocean 
and on the south by the foothills of the Brooks Range. The land-
scape of the region has low topographic relief, includes a mosaic of 
thaw lakes and drained basins (Sellmann et al., 1975; Hinkel et 
al., 2003; Frohn et al., 2005), and is dominated by different types 
of polygons (e.g., Hinkel et al., 2001; Hubbard et al., 2013). The 
shallow subsurface consists of a thin (<1 m) active layer (e.g., Shik-
lomanov et al., 2010; Goswami et al., 2011) underlain by a perma-
frost containing frozen soil, ice wedges, and ground ice (e.g., Leff-
ingwell, 1915). The presence of high salinity and partially unfrozen 
soil in the permafrost zone has been noted by several investigators 
in the region of Barrow but at variable depths (e.g., Brown, 1969; 
Yoshikawa et al., 2004; Meyer et al., 2010).

Fig. 1. Workflow of the grid-based parameter-estimation approach for 
improved evaluation of the influence of various parameterization, pri-
ors, and datasets on the inferred subsurface models.



www.VadoseZoneJournal.org� p. 4 of 19

The land surface footprint of the investigated zone is a grid that 
is ~475 m long in SE–NW direction and 40 m wide, which was 
defined to encompass three different types of ice wedge polygons 
(i.e., high-centered, low-centered, and transitional). These polygo-
nal landscapes formed through successive freeze–thaw cycles and 
their geomorphic expressions are related to the integrity of under-
lying ice wedges (e.g., Leffingwell, 1915). Various geophysical and 
point measurements, including the EMI data grid, were collected 
the week of 24 September  to 1 October 2011, as described by Hub-
bard et al. (2013). This time period represents the end of the grow-
ing season and the beginning of freeze-up. At the time of EMI data 
acquisition, some water was visible on the ground surface in poly-
gon troughs, especially at the NW end of the profile, where ~30 
cm thick ponds were common. Although during this campaign 
the surface waters transitioned from thawed to a partially frozen 
state during the acquisition, the active layer remained unfrozen.

This study focuses on the 475-m-long centerline of the grid, where 
we take advantage of the highest amount of information. This 
includes EMI data (discussed below), an electrical resistance tomog-
raphy (ERT) transect (Fig. 2), and active layer thickness measure-
ments, which were collected every 3 m with a tile probe labeled with 
centimeter gradations. Details about the ERT and active layer probe 
measurements are provided in Hubbard et al. (2013).

Electromagnetic Induction Dataset
The EMI data were collected with a EM38-MK2 (e.g., McNeill, 
1980; Geonics, 2009) operating at a frequency of 14,500 Hz and 
with two different transmitter receiver coil separations (1 and 0.5 
m). The EMI sensitivity curves calculated using the low induction 
value approximation (e.g., McNeill, 1980) indicate that in vertical 
mode with 1-m coil spacing, the signal is most sensitive to EC vari-
ations that occur at 0.4 m below ground surface; variations below 
0.2 m but above 2 m from ground surface contribute to 75% of 
the EC response. When collecting in horizontal mode with a 1-m 
coil separation, the contribution from near-surface material is large 
and decreases almost monotonically with depth, leading to ~75% 
response contribution from the zone above 1-m depth (McNeill, 

1980). In the case where the coils separation is half (0.5 m), the 
contribution depths described above are approximately half. It is 
important to note the ~25% of the response coming from below a 
given depth can still strongly influence the measured apparent EC, 
particularly in the case of strong EC contrasts and increasing EC 
values with depth (e.g., McNeill, 1980; Everett and Meju, 2005).

Acquisition of EMI data at the study site was performed twice 
using both horizontal and vertical coil orientation modes; each 
dataset was collected by foot with the instrument located ~0.1 and 
~0.05 m above ground surface in vertical and horizontal mode, 
respectively. An external control unit allowed automatic and syn-
chronized acquisition with positioning using a GPS. Standard tool 
adjustment was performed at the beginning of each day using the 
instrument protocol (Geonics, 2009). This procedure involves lift-
ing the instrument 1.5 m high above the ground surface, zeroing 
the in-phase measurement, and correcting the apparent EC read-
ing if necessary to ensure that the measured value in horizontal 
configuration is equal to half the value measured in vertical con-
figuration (an assumption based on the design of the tool follow-
ing McNeill, 1980). In fact, such adjustments and measurements 
were performed multiple times at a single location (at 154 m along 
the profile) during the campaign. The maximum shift observed 
between the mean of all the measurements (obtained from mul-
tiple times adjustments) and an individual one was equal to −1 
and +1 mS/m for the 1- and 0.5-m coil spacing, respectively. These 
values are consistent with the correction performed in the adjust-
ment protocol (i.e., involving constant shift in both horizontal 
and vertical configuration for each coils spacing) but potentially 
contribute to the uncertainty in the data.

Initial processing of the data consisted of applying a constant shift 
to the measured apparent EC values to obtain at the adjustment 
location (at 154 m) the mean values inferred from the multiple 
adjustments at this location. This required a constant shift equal 
to −0.5 and +0.5 mS/m for the 1- and 0.5-m coil spacing, respec-
tively. Although we are confident in the adjustment protocol and 
measured values, we recognize that EMI data can often require 

Fig. 2. Electrical resistance tomography (ERT) profile acquired along the centerline and collocated with the electromagnetic induction data. The black 
line (4.5–5 m) shows the base of the active layer measured with a tile probe (modified from Hubbard et al., 2013). Elevations (Z) in this and subsequent 
figures are given relative to mean sea level.
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additional adjustments, depending on the time-varying influence 
of field parameters (temperature, solar radiation) and/or tool par-
ticularities (e.g., manufacturer calibration, drift, power supply). 
To compensate for these additional influences, other studies have 
shifted the measured values by a constant amount to find a sub-
surface model that best reproduces the data (e.g., Singleton et al., 
2010) or have rescaled the measured values to reproduce the simu-
lations of electromagnetic signals from a collocated ERT profile 
(e.g., Lavoue et al., 2010; Minsley et al., 2012b). Although the 
simulation of the EMI signal from a collocated ERT profile does 
not reproduce the measured EMI signals very well in our study, we 
chose not to “calibrate” the EMI data with ERT data. We made 
this choice because the highly heterogeneous subsurface nature of 
our field study site, which exhibits EC variations over several orders 
of magnitude (perhaps the greatest range that can be expected), 
can variably affect EMI and ERT responses, owing to their dif-
ferences in acquisition, theory, physical processes, and processing.

Further, to preserve the part of the data that is most likely not 
related to incoherent noise in the various measurement configu-
rations, we attenuated incoherent noise in the data by perform-
ing a principal component analysis (PCA) based filtering that 
has already been successfully used on EMI data by Minsley et al. 
(2012b). This approach involves singular value decomposition of 
a matrix containing all the normalized measured signals and then 
reconstruction of the signals using only a subset of the so-obtained 
eigenvectors, thus conserving only the information that is most 
highly correlated between the various signals. Here the PCA analy-
sis showed that for each of the four EMI measured signals, more 
than 95% of the variability of each signal could be reproduced 
using the two first eigenvectors, and thus less than 5% by the third 
and fourth eigenvectors. In an attempt to remove the high fre-
quency incoherent noise that is strongly present in the third and 
fourth eigenvectors, we reconstructed the four EMI signals using 
the two first eigenvectors only.

Figure 3 shows the EMI apparent EC values obtained using data 
measured with 1- and 0.5-m coil spacing in both vertical and hori-
zontal configuration along the centerline after PCA filtering. The 
apparent EC values range between 7 and ~32 mS/m on the left 
(south) side and between 8 and ~15 mS/m on the far right (north) 
side. Importantly, although the apparent EC is lowest on the right 
site of the profile, this is the region where ponds with standing water 
are common. Also, the measurements related to largest investigation 
depth (1-m coil spacing in vertical configuration) shows the highest 
apparent EC values. These observations indicate that the measured 
EMI signals are strongly influenced by contributions from the shal-
low, unfrozen active layer and further by deeper permafrost that 
contain necessarily a conductive zone to yield the higher apparent 
EC measured with the 1-m coil spacing in vertical direction. These 
findings were corroborated by the ERT profile (Fig. 2), which suggest 
a three-layer system involving a very thin active layer of moderate EC, 
underlain by a variably thick resistive layer that is in turn underlain 
by a very conductive zone. The influence of the deeper permafrost 
and conductive zone influence on the apparent EC derived from the 
EMI data (even that measured with 0.5-m coils spacing in horizontal 
direction) is evident by comparing the EMI-obtained EC with the 
EC obtained from the top 0.2 m in ERT profile (Fig. 3).

Compared with the ERT data (Fig. 2), the EMI data contain much 
more limited information about the subsurface. Thus, although the 
influence of a deeper conductive layer is clear in the EMI apparent 
EC data (Fig. 3), numerous subsurface models can represent such fea-
tures and reproduce the observed EMI data. This is evident in Fig. 4, 
which shows models obtained with one-dimensional regularized least-
squares-based inversions of the EMI data using EM1DFM (Farquhar-
son, 2000). The inversions differ in the starting model used (i.e., the 
thickness and the initial EC value assigned to each layer of the model). 
The inversions yielded dramatically different results, even though they 
all show a final mean relative misfit between measured and calculated 
EMI signals smaller than 2.5%. This demonstrates the importance of 
exploring the non-uniqueness in solution and optimal use of priors.

Fig. 3. EM38 data after PCA filtering, including data collected along the centerline using 1-m coil spacing in vertical (black) and horizontal (pink) con-
figuration and 0.5-m coil spacing in vertical (blue) and horizontal configuration (red). The grey line shows the top-layer averaged EC values obtained 
from the electrical resistance tomography data shown in Fig. 2.
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66Grid-Search Parameterization
The parameter-estimation described in “Grid-Search-Based 
Parameter-Estimation Approach” was performed at each mea-
surement location along the EMI transect to identify three-layer 
models that lead to an acceptable misfit between simulated 

and measured data. We chose to investigate three-layer models 
because of: (i) the site-specific knowledge of at least two key layers, 
including an active layer underlain by variable permafrost; (ii) the 
observation of three layers from the ERT results; and (iii) the 
pragmatism of a three-layer model: it includes all the one- and 

Fig. 4. (a–e) Examples of models obtained with traditional one-dimensional regularized least-squares-based inversions of the electromagnetic induc-
tion (EMI) data, which have been all performed with various choices about the fixed layer thicknesses and the initial layer EC values. Although the 
inversions yield dramatically different results, they all show a final mean relative misfit between measured and calculated EMI signals smaller than 2.5%.
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two-layer models, while many near-surface environments can be 
characterized to a first order with three layers or less (e.g., Huang 
and Won, 2003; Triantafilis and Monteiro Santos, 2009; Mester 
et al., 2011). We are aware that this choice implies that the number 
of estimated parameters (five) is larger than the number of mea-
surements (four), which means that ours is an underdetermined 
problem. However, as discussed in the introduction, our main 
objective here was not to optimize a model to obtain a minimal 
misfit between calculated and measured data but instead to inves-
tigate very diverse subsurface EC distributions that reproduce the 
measured data within a given range of uncertainty.

In this study, the multiparameter grid search approach samples 
(for each of the three layers) 36 different possible EC values rang-
ing from 10,000 to 0.025 mS/m (or 0.1 to 40,000 Wm) that have 
been obtained by linearly spacing 24 values between 1.6021 and 
4 log10 mS/m and replacing the 5 values between 1.7267 and 
0.4276 log10 mS/m with 17 linearly spaced values to create a finer 
grid in this interval. This discretization leads to 36 different EC 
values for each layer, with a higher sampling rate in the intervals 
that represent typical EC values for saturated unconsolidated sed-
iments. Further, the top layer was defined with 10 different thick-
ness values from 0.1 to 1 m with 0.1-m increment. The middle 
layer was defined with 24 different thickness values from 0.1 to 1 
m with 0.1-m increment, 1.25 to 2 m with 0.25-m increment, 2.5 
to 4 m with 0.5-m increment, and 5 to 10 m with 1-m increment. 
The bottom layer was considered to be of infinite thickness. For 
each of the 11,197,440 models created using the above-defined 
multiparameter grid, the EMI responses were simulated for the 
EM38 configurations used in the field.

As a quality control measure, the forward EMI simulations were 
performed using two codes: em1dfmfwd, which was developed 
at the University of British Columbia (Farquharson, 2000) and 
em1d, developed at Lawrence Berkeley National Laboratory (e.g., 
Brown et al., 2012). Both are based on the full solution to Max-
well’s equations (e.g., Keller and Frischknecht, 1966; Ward and 
Hohmann, 1987; Farquharson, 2000) and allow the calculation of 
the secondary H-field normalized by the primary (i.e., free-space) 
field for any combination of measurements. These measurements 
can be made at different frequencies of the transmitter current 
and for any transmitter and receiver loop separations, orientation, 
and height above the earth’s surface. Very similar results were 
obtained for both codes, with a mean difference of 0.005% and a 
maximum difference of 0.1%. For each, the computation of ~11 
million simulations took less than 1.5 d on a 16-processor (of 2 
cores each) computer (Intel Xeon CPU X5550 at 2.67GHz and 48 
GB RAM) and was expected to take less than 1 wk on a standard 
desktop computer (Intel Core I7 CPU at 2.93 GHz and 8 GB 
RAM). Although another alternative for performing the forward 
simulations is to use the low induction number approximation 
(e.g., McNeill, 1980), which would be about 100 times faster, 
note that such an approximation is not valid for heterogeneous 

models (e.g., Callegary et al., 2007; Lavoue et al., 2010). In fact, 
testing this approach has shown an average relative error of 5% 
but a maximum of 300% when compared with simulations using 
Maxwell-based full solutions; the largest errors are observed in the 
case of higher EC in the bottom layer and are much larger than 
what would be expected under conditions of homogeneity (e.g., 
Figure A1 in McNeill, 1980).

Once the EMI responses are simulated, the evaluation was per-
formed by considering numerous measurement locations, priors, 
and choices in parameterizations. For all cases shown in this study, 
the models were evaluated using the misfit function

1
res (dsim dmes )/ dmes /

n

i i i
i

n
=

é ù= -ë ûå ,

where dmesi and dsimi are the logarithms 10 of the measured and 
simulated EMI data, respectively, and n equals the number of mea-
surements at each location. The acceptance rule to select models for 
further statistical analysis is a misfit res smaller than 5% as well as 
no individual misfit (considering each measurement individually) 
larger than 10%.

66Results
We estimated the EC distributions at each location using the devel-
oped grid-based search approach and the forward simulated data-
base generated as described above. We explored the obtained EC 
distributions with increasing levels of constraints in the inversion, 
including estimation with no, limited, and strong prior constraints.

Parameter Estimation with No  
Prior Constraints
The subsurface EC distribution was first estimated for the case in 
which no prior information was available and/or applied. Figure 5a 
shows the results of one model that was randomly selected among 
all the accepted models at each measurement location. Figure 5a is 
simply a more compact way of visualizing numerous accepted sim-
ulations at each location (not shown), which yield similar findings 
with regards to variability and trend along the profile. Thus, the 
very high lateral variability (from one to the next location) between 
the EMI models shown in Fig. 5a indicates that numerous and 
very different models reproduce the EMI data at one location and 
in its surroundings as well. In fact, most of these models could be 
obtained with a one-dimensional regularized least-squares-based 
inversion, depending on the applied parameterization and initial 
parameter values (e.g., Fig. 4). Figure 5b to 5c show the minimum 
and maximum values of the EC distributions obtained at each 
(finely discretized) depth interval from all the selected models at 
each location. These figures reveal a very large difference between 
the minimum and maximum values, again indicating that numer-
ous and very different models (and EC values at each depth) can 
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reproduce the data within the specified range of uncertainty. 
Although the non-uniqueness is significant, the lateral variations 
throughout the profiles (Fig. 5a) show a shallow part that is gener-
ally more conductive on the right than the left of the profile, while 
the deeper part shows the opposite trend. Finally, even if a very 
low EC for frozen ground (i.e., in the permafrost) were expected 
below a thin active layer, Fig. 5 suggests that there are many pos-
sible EC values in this region if no priors are used in the parameter-
estimation approach.

Figure 6 complements Fig. 5 by showing the frequency distribu-
tion of both the thickness and EC of each layer at each location. 
Note that each bin (the interval defined by the black horizontal 
lines in Fig. 6) of the frequency distribution is related to one of 
the evaluated parameter values and thus to the same number of 
initial simulations (i.e., the initial distribution is uniform). The 
EC distribution in the top layer (Fig. 6a) shows a sharp peak, and 
its mode is consistent with the EC values observed in the top 0.2 
m of the collocated ERT profile (Fig. 2). Further, the top layer EC 
distributions reveal a very different trend than that observed in 

the measured apparent EC values (Fig. 3), which highlights the 
value of using a multidimensional parameter-estimation approach 
relative to the use of apparent EC for interpretation. Figure 6b to 
6e show much flatter and wider distributions for the middle and 
deeper layers than was revealed by the shallowest layer (Fig. 6a). 
This suggests that even if the EC of the deeper layers influence the 
recorded EMI response (Fig. 3), the information within and the 
variability among the various signals constrain primarily the top 
layer EC distributions and less significantly the distributions of the 
deeper layer thickness and EC values (Fig. 6b to 6e).

At each measurement location, the selected models can be inves-
tigated in more detail by looking at the five-dimensional solution 
space defined by the EC of each layer and the thickness of the 
two upper layers. This is shown in Fig. 7 at 150 and 450 m along 
the profile, which are two locations that reveal significant differ-
ences in terms of subsurface heterogeneity (e.g., Fig. 2 and Fig. 5a). 
To visualize the five-dimensional solution space, the EC values 
of the three layers were identified with their three-dimensional 
coordinates. For each of the combinations, one of the selected 

Fig. 5. Parameter-estimation results obtained in case of no prior: (a) random selection of one model among all the accepted models at each location and 
(b) minimum and (c) maximum EC values observed in all the accepted models at each depth and location. The minimum and maximum depth observed 
for the boundary between the top and middle layer are indicated by the grey lines and the ones for the boundary between the middle and bottom layer 
are shown with the white lines (when inside the displayed depth interval). To facilitate visualization, the vertical axis is limited to elevations above 0 m.
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simulations was then randomly displayed, and the corresponding 
thicknesses of the top and middle layer were indicated by the size 
of the symbol and its color, respectively (Fig. 7). In this display, 
nearby locations that show very different symbol color and size 
indicate that related parameters can be very diverse and yet still fit 
the data, while nearby locations that show very limited changes in 
color and size indicate less variability. This display of the solution 
domain, which is not possible with standard inversion methods, is 
very useful for understanding the extent and specificity of solution 
non-uniqueness in a particular environment. This display also can 
be used to evaluate the potential effect of priors in reducing the 
domain of solutions.

Figure 7a shows that the obtained range of EC values for the top 
layer at 150 m is much more limited than for the other layers 
(although identical EC values have been evaluated for each layer), 

indicating again the high information content in the data associ-
ated with the top layer relative to the deeper ones. It also shows 
that if the middle layer were relatively close to the observed appar-
ent EC values (zone between the two black circles), the range of 
possible EC values for the bottom layer is the largest. In this case, 
a relatively high bottom-layer EC value (~>35 mS/m) requires 
the presence of a relatively thick second layer, which will limit the 
bottom-layer influence on the data. However, if the bottom-layer 
EC value is relatively low (~<35 mS/m), the top- and second-
layer thicknesses can be very diverse and still reproduce the data, 
because the bottom-layer EC value is about equal or smaller than 
the second-layer EC value and thus does not significantly constrain 
the solutions. Further, if the second-layer EC is low compared with 
the measured apparent EC values (black circle on the left), the EC 
of the bottom layer has to be high to compensate, while a thicker 
middle layer leads to higher EC values in the bottom layer. This 

Fig. 6. Frequency distributions of the selected models in the case of no prior: (a) top-, (b) middle-, and (c) bottom-layer EC and (d) top- and (e) middle-
layer thickness. In Fig. 6a, the grey line indicates the mode of the distribution and the black line shows the top-layer averaged EC values obtained from 
the electrical resistance tomography data. In Fig. 6d, the black line indicates the active layer thickness sampled in the field. A frequency value equal to 
zero is shown in white, the vertical axis is adapted to the minimum and maximum values observed in the selected models, and the color scale has been 
chosen to be consistent with Fig. 9 and 11.
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equivalence relation is a common issue with the electromagnetic 
method as described above. Also, in this region (black circle on 
the left), the maximal thickness of the low EC second layer is ~4 
m and the value is not much influenced by the EC variations in 
the low EC middle layer. In this regard, the true thickness of the 
low EC second layer is certainly smaller than ~4 m at this loca-
tion because the bottom-layer maximum EC value evaluated in 
the grid search (10,000 mS/m or 0.1 Wm) is extremely large, even 
for very porous sediment with high-salinity water. Finally, if the 
second-layer EC is relatively high compared with the measured 
apparent EC values (black circle on the right of Fig. 7a), its thick-
ness is reduced toward zero because in this case the bottom-layer 
EC is of very limited influence and thus cannot balance the second-
layer EC in the measured apparent EC.

Figure 7b, which shows the solution space at 450 m along the pro-
file, indicates that some trends and behaviors are similar to those 
observed at 150 m (Fig. 7a). The main difference between the solu-
tion domains at the two locations is that given a high EC bottom-
layer value, the second layer must be much thicker at 450 m than 
at 100 m. Also, the selected models are less diverse at 450 m, partly 
because of the more limited range of possible values for the top-layer 
EC. Figure 7 clearly emphasizes the need to constrain the bottom-
layer EC to estimate the thickness of a low EC middle layer.

Parameter Estimation with Limited and Strong 
Prior Constraints
We estimated the layer EC distributions using two different sets 
of constraints on the solution domain by assuming two different 

states of prior knowledge. We refer to these as cases of “limited” 
and “strong” prior constraints. For both cases, we used knowledge 
about EC values of frozen and unfrozen states obtained from previ-
ous electrical studies in permafrost systems. We considered models 
for the selection process only if (i) the top-layer EC was higher than 
2 mS/m (<500 Wm), (ii) the middle-layer EC was lower than 2.85 
mS/m (>350 Wm), (iii) the bottom-layer EC was lower than 250 
mS/m (>4 Wm), and (iv) the top-layer thickness was thicker than 
0.2 m and thinner than 0.7 m. The layer thicknesses were limited 
to a reasonable range of values, based on the active layer thick-
ness measurements performed with a tile probe at the surveyed 
site as described by Hubbard et al. (2013). The bottom-layer EC 
distributions were constrained on the basis of the maximum EC 
values observed over the entire ERT profile (Fig. 2). The strong 
prior case used additional constraints based on the ERT and point 
measurements. In this case, additional constraints were invoked 
by exclusively considering models in which the bottom-layer EC 
was higher than 47.6 mS/m (<21 Wm) and the top-layer thickness 
was within 10 cm from the measured active layer thickness values, 
which were linearly interpolated along the EMI traverse.

Parameter-estimation results for the limited-prior case are shown 
in Fig. 8 and Fig. 9. Comparison of Fig. 8a and Fig. 5a indicates 
that, as expected, the variability between the selected models is 
more limited than the case in which no priors are used. The range 
between EC minimum and maximum EC observed in the selected 
models, which is indicative of variation in the permafrost structure 
throughout the profile, is also smaller than in the no-prior case. 
Specifically, the minimum EC observed throughout the profile 

Fig. 7. Multidimensional visualization of the selected models at 150 m (left) and 450 m (right) along the profile. For each combination of three EC val-
ues (one per layer), a model was randomly drawn (from the selected corresponding models) and displayed with its top and middle layer thickness shown 
by the symbol size (larger corresponds to thicker) and color, respectively. Strong local variations in size or color are generally indicative of relatively wide 
and flat distributions for the corresponding parameter. Interpretations of solutions in circled regions in Fig. 7a are discussed in the text.
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showed a clear EC increase below the observed maximum depth 
for the second-layer thickness (bottom white line in Fig. 8b). This 
boundary was the result of enforcing a low EC in the middle layer 
(which was assumed to be frozen) and limiting the maximum value 
for bottom-layer EC (based on ERT). With these constraints, the 
variations in the middle-layer thickness distributions throughout 
the profile (Fig. 9e) were consistent with the ERT results (Fig. 2). 
However, the maximum EC values observed in this depth inter-
val (defined by white lines in Fig. 8c) throughout the profile were 
still generally large relative to the values shown in the ERT data 
because the bottom-layer EC is not restricted to high EC values 
and thus allows a large range of models with small second-layer 
thickness, which would be expected based on Fig. 7.

Figure 9a shows that the defined limited prior helped to reduce 
the range of the top-layer EC distribution. However, the use of 
limited-prior information did not significantly change the mode 
values, which were already consistent with the ERT profile in the 
no-prior case (Fig. 6a). The constraint applied to the active layer 
thickness did not improve its estimation; there was no sharp peak 
in the distributions, and peaks did not correlate well with active 

layer thickness measured with the tile probe. Similarly, the mid-
dle-layer EC values were not predicted more accurately, which is 
expected because resistive layers are difficult to image since they 
do not contribute much to the overall response in recorded EMI 
signal (e.g., McNeill, 1980). Finally, Fig. 9c and 9e show a more 
variable distribution for bottom-layer EC and middle-layer thick-
ness, respectively, compared with the no-priors case (Fig. 6).

Parameter-estimation results for the case of strong prior constraints 
are shown in Fig. 10 and Fig. 11. Compared with the no-prior (Fig. 
5) and limited-prior cases (Fig. 8), Fig. 10 shows how additional 
constraints restrict the domain of solutions. Figure 11 indicates that 
the thickness of the middle layer is now better resolved because of 
the limited range of possible EC values for the bottom layer. The 
results correlate well with the general trend observed in the ERT 
(of an increasing resistive layer thickness from the left to the right 
of the profile) but still reveal limitations in identifying sharp and 
very local variations. Although possible reasons for local discrepan-
cies between the EMI and ERT include differences in acquisition, 
theory, physical processes, and processing of the data, a precise imag-
ing of the thickness of the second layer cannot be expected from 

Fig. 8. Parameter-estimation results obtained in case of limited prior: (a) random selection of one model among all the accepted models at each location 
and (b) minimum and (c) maximum EC values observed in all the accepted models at each depth and location. The minimum and maximum depth 
observed for the boundary between the top and middle layer are indicated by the grey lines and the ones for the boundary between the middle and 
bottom layer are shown with the white lines. To facilitate visualization, the vertical axis is limited to elevations above 0 m.
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such EMI data because of the limited number of measurements 
and the equivalence principle. Reducing further the observed range 
of middle-layer thickness values (Fig. 11e) would require stronger 
constraints on the bottom-layer EC because of the equivalence rela-
tion between bottom-layer EC and middle-layer thickness (Fig. 7). 
Importantly, all the results show that the additional constraints 
improved the imaging of structural variations below the active layer 
and reduced the range of observed EC values for the top layer.

Influence of Various Parameterization in the 
Case of Limited-Prior Constraints
To assess how parameterization choices affect the results, we 
performed the estimation using the same priors as applied in the 
case of limited priors (Fig. 8) but with different parameterization 
choices. We examined the following four subcases: (i) the model 
acceptance rule was loosened to allow consideration of more 

models; (ii) some of the measurements at each location were sys-
tematically disregarded; (iii) the sampling rate in evaluating the 
various parameters was decreased; and (iv) the parameter estima-
tion was performed by evaluating two-layered models only.

We first modified the acceptance rule to select models that allow 
the reproduction of the data with a relative error of maximum 
10% instead of the previous 5%. Figure 12 shows that doing 
this increased the number of selected models and their diversity. 
Although the width of the top-layer EC distribution also increased 
compared to the limited-priors case (Fig. 8), the mode of the distri-
bution stayed almost the same (Fig. 12d). In all the other parameter 
distributions (not shown here), the modes were even more chal-
lenging to identify than in the original case of limited priors.

Fig. 9. Frequency distributions of the selected models in the case of limited prior: (a) top-, (b) middle-, and (c) bottom-layer EC and (d) top- and 
(e) middle-layer thickness. In Fig. 9a, the grey line indicates the mode of the distribution and the black line shows the top-layer averaged EC values 
obtained from the electrical resistance tomography data. In Fig. 9d, the black line indicates the active layer thickness sampled in the field. A frequency 
value equal to zero is shown in white, the vertical axis is adapted to the minimum and maximum values observed in the selected models, and the color 
scale has been chosen to be consistent with Fig. 6 and 11.
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For the second subcase, we evaluated the consequences of disre-
garding some of the measurements at each location. Figure 13 
shows the parameter estimation when only the measurements 
obtained with the vertical configuration of the tool were used (i.e., 
only half the data previously used, which would take half the time 
to acquire). In this case, the width of the top-layer EC distribution 
was significantly increased, but the mode of the distribution did 
not change substantially (Fig. 13d). This showed that using the 
tool in the vertical configuration at the Barrow site provides good 
information about structural variations. In fact, additional tests 
(not shown) suggested that the 1-m coil spacing in vertical mode 
provides particularly rich information about the variability below 
the top layer at the site, while the three other signals provide more 
information about the top layer. Such assessment is important in 
developing an efficient survey strategy adapted to the study site 
characteristics and scientific questions.

For the third subcase, the inf luence of the number of param-
eter values evaluated in multidimensional grid was considered 
by significantly decreasing the sampling rate in each dimension. 
The coarser grid was obtained by considering only one of two 

consecutive values in each dimension. In this case, the number of 
forward simulations was 349,920, which is less than 3.2% of the 
original ~11 million simulations. The estimated distributions (Fig. 
14) show the various effects of using a very coarse grid. In particular, 
the mode of the top-layer EC distribution and the structure below 
were estimated less precisely in the presence of a relatively high EC 
(above ~12.5 mS/m) top layer, as shown by the very sharp change 
in the EC distributions. Such EC values were too coarsely sampled, 
as shown by the size of the bins (horizontal black lines in Fig. 14b) 
and the sharp change from one bin to the next. This subcase sug-
gests that choosing an overly coarse grid can be easily detected and 
is not critically detrimental to the parameter-estimation results.

For the fourth subcase, we evaluated the consequences of consider-
ing two-layered (instead of the previously considered three-layered) 
models. The parameters evaluated in the multidimensional grid 
corresponded to the top-layer EC, top-layer thickness, and bot-
tom-layer EC, which required 12,960 forward simulations only. 
Figure 15 shows the consequences of choosing a two-layered model. 
First, as expected from the apparent EC measurements (Fig. 3), all 
two-layered models showed higher EC in the bottom layer (Fig. 

Fig. 10. Parameter-estimation results obtained in case of strong prior: (a) random selection of one model among all the accepted models at each location 
and (b) minimum and (c) maximum EC values observed in all the accepted models at each depth and location. The minimum and maximum depth 
observed for the boundary between the top and middle layer are indicated by the closely spaced grey lines and the ones for the boundary between the 
middle and bottom layer are shown with the white lines. To facilitate visualization, the vertical axis is limited to elevations above 0 m.
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15a) and thus failed at imaging the frozen layer visible in the ERT 
profile (Fig. 2). Second, the mode of the top-layer EC distribution 
(Fig. 15d) showed higher discrepancies from the EC of the top 0.2 
m in the ERT profile, compared with the three-layered model case 
(Fig. 9a). Although the range of the frequency distribution (i.e., the 
estimated uncertainty) for both the top-layer EC (Fig. 15d) and 
the bottom-layer EC (minimum and maximum shown in Fig. 15b 
and 15c, respectively) was smaller than in the three-layered model 
case, the two-layered model case led to a much worse estimate of 
the true subsurface EC distribution. This case study demonstrated 
that although it was accompanied by greater uncertainty, for this 
site a three-layer model was more representative of the subsurface.

66Discussion and Conclusions
The EMI method is advantageous for characterizing shallow sub-
surface systems when compared with other methods because large 
areas can be traversed in a minimum amount of time and in a 
noninvasive manner. However, it is often challenging to obtain 
confident estimates in the subsurface EC distributions from EMI 
datasets because of the non-unique nature of the solution. The 
objective of this study was to develop a parameter-estimation 
approach that allows one to quickly evaluate numerous priors 
and parameterization choices at multiple locations, as well as the 
influence of these choices on the inferred subsurface models. To 
this end, we developed and tested a parameter-estimation strat-
egy based on a simple five-dimensional grid-search approach for 
a three-layer one-dimensional model. The method can easily be 

Fig. 11. Frequency distributions of the selected models in the case of strong prior: (a) top-, (b) middle-, and (c) bottom-layer EC and (d) top- and 
(e) middle-layer thickness. In Fig. 11a, the grey line indicates the mode of the distribution and the black line shows the top-layer averaged EC values 
obtained from the electrical resistance tomography data. In Fig. 11d, the black line indicates the active layer thickness sampled in the field. A frequency 
value equal to zero is shown in white, the vertical axis is adapted to the minimum and maximum values observed in the selected models, and the color 
scale has been chosen to be consistent with Fig. 6 and 9.
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limited to a two-layered model for use in regions where two layers 
adequately represents the gross subsurface EC distribution.

This study demonstrated that the developed method is successful 
at identifying subsurface EC models that reproduce the measured 
data over a given range of uncertainty. The method is particularly 
useful for evaluating the information contained in the acquired 
data, as well as the priors required to constrain the solution, and 
for applying constraints in a flexible manner to reduce the solution 
non-uniqueness problem. Importantly, the developed approach 
permits an adequate exploration and visualization of the solu-
tion domain, which can be used to gain an understanding of the 
extent of non-uniqueness and possible choices for constraining 

the solution. This is particularly valuable for handling under-
determined problems (i.e., the equivalence issue), which cannot 
yield a unique solution. Rather than seek a unique solution, the 
approach investigated the diversity of models that reproduce the 
data to understand which subsurface information can be reliably 
extracted from the data. Also, such an understanding is criti-
cal for interpreting estimation results and for developing a field 
acquisition strategy optimized for addressing site-specific scien-
tific questions. Additional advantages of the developed approach 
include its simplicity (no convergence and optimization required) 
and the rapidity of investigating the domain of solution and the 
influence of various priors and measurements. Although this 
approach required a limited number of investigated dimensions 

Fig. 12. Parameter-estimation results obtained in the case of limited prior (as Fig. 8) but using an error of 10% instead of 5% for the acceptance rule: 
(a) random selection of one model amongst all the accepted models at each location, (b) minimum and (c) maximum EC values observed in all the 
accepted models at each depth and location, and (d) top-layer EC frequency distribution. In Fig. 12a to 12c, the minimum and maximum depth 
observed for the boundary between the top and middle layer are indicated by the grey line and the ones for the boundary between the middle and bot-
tom layer are shown with the white line. In Fig. 12d, the grey line indicates the mode of the distribution and the black line shows the top-layer averaged 
EC values obtained from the electrical resistance tomography data.
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and parameter values, as well as a fast-running forward modeling 
code, such simplifications are both pragmatic and often acceptable 
for a variety of investigations in which the need and influence of 
priors could be very important.

Application of such an approach to investigate EC distribution 
from EMI data collected with portable tools has imaged the 
non-uniqueness in solution and demonstrated the value of reli-
able priors to estimate parameters such as the thickness of key 
layers. Thus, improved soil characterization from EMI data can 
be expected with prior constraints such as knowledge of the site 
geology, well logging data, core information, and/or additional 
data. One critical issue with EMI data from portable tools is the 

calibration of the tool. Although the data assessed here did not 
show any sign of critical time drift or calibration error, such shifts 
have been observed in different surveys and studies. Our study 
results have shown that a measurement uncertainty of about 5% 
is not unreasonable, given the inherent uncertainty in calibration 
and drift. Further research will focus on assessing various possible 
sources of shift in EMI data.

Applying the developed approach to EMI data acquired in an 
Arctic environment (Barrow, AK) has shown that if no prior con-
straints are invoked, very diverse subsurface models can reproduce 
the EMI data. However, even in the case of no priors, the mode of 
the top-layer EC distribution was evident and consistent with ERT 

Fig. 13. Parameter-estimation results obtained in the case of limited prior (as Fig. 8) but using only measurement acquired with the EM38 in vertical 
configuration (half the data): (a) random selection of one model amongst all the accepted models at each location, (b) minimum and (c) maximum EC 
values observed in all the accepted models at each depth and location, and (d) top-layer EC frequency distribution. In Fig. 13a to 13c, the minimum 
and maximum depth observed for the boundary between the top and middle layer are indicated by the grey lines and the ones for the boundary between 
the middle and bottom layer are shown with the white lines. In Fig. 13d, the grey line indicates the mode of the distribution and the black line shows 
the top-layer averaged EC values obtained from the electrical resistance tomography data.
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results. This means that the measured signals contained significant 
information about the top-layer EC variability, although param-
eter estimation was required to handle the influence of the various 
layers. This further suggests that the use of measured apparent EC 
with point measurements to develop a petrophysical relationship 
with hydrological properties (as is often performed) can be incor-
rect. Note that although a 1-m coil spacing antenna in vertical 
mode (EM38) dictated that the soil below 2-m depth contributed 
only ~25% of the signal response, this fraction was not negligible. 
It was particularly non-negligible in the presence of a frozen layer 
of variable thickness overlying a deeper conductive layer. How-
ever, the influence of such structures on the data revealed that they 
can be characterized at some level by applying site-specific priors. 

Applying limited priors reduced the uncertainty in the estimated 
top-layer EC frequency distribution and constrained estimated 
parameters to a range of values consistent with the Arctic perma-
frost environment. Invoking stronger priors based on additional 
data collected at the site further reduced the uncertainty in esti-
mated parameters and improved the estimation of the second-layer 
thickness and bottom-layer EC.

Finally, the obtained EC distributions from the EMI data are gen-
erally consistent with the collocated ERT profile. Although some 
local discrepancies exist in imaging deeper structures (likely due to 
limited related information contained in the EMI data and differ-
ences in the physics and processing of both methods), the estimated 

Fig. 14. Parameter-estimation results obtained in the case of limited prior (as Fig. 8) but using a grid of 349,920 models instead of about 11 million: 
(a) random selection of one model amongst all the accepted models at each location, (b) minimum and (c) maximum EC values observed in all the 
accepted models at each depth and location, and (d) top-layer EC frequency distribution. In Fig. 14a to 14c, the minimum and maximum depth 
observed for the boundary between the top and middle layer are indicated by the grey lines and the ones for the boundary between the middle and bot-
tom layer are shown with the white lines. In Fig. 14d, the grey line indicates the mode of the distribution and the black line shows the top-layer averaged 
EC values obtained from the electrical resistance tomography data.



www.VadoseZoneJournal.org� p. 18 of 19

top-layer EC from both methods are very consistent. The results 
of this study revealed the significant potential of the developed 
approach and EMI data for depth imaging of larger regions to 
deliver information relevant for the modeling of carbon cycle in 
the active layer, and possibly deeper, once the data are interpreted 
in terms of hydrological or geochemical parameters.
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