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[1] In developing a reliable approach for inferring hydrological properties through inverse
modeling of tracer data, decisions made on how to parameterize heterogeneity (i.e., how to
represent a heterogeneous distribution using a limited number of parameters that are
amenable to estimation) are of paramount importance, as errors in the model structure are
partly compensated for by estimating biased property values during the inversion. These
biased estimates, while potentially providing an improved fit to the calibration data, may
lead to wrong interpretations and conclusions and reduce the ability of the model to make
reliable predictions. We consider the estimation of spatial variations in permeability and
several other parameters through inverse modeling of tracer data, specifically synthetic and
actual field data associated with the 2007 Winchester experiment from the Department of
Energy Rifle site. Characterization is challenging due to the real-world complexities
associated with field experiments in such a dynamic groundwater system. Our aim is to
highlight and quantify the impact on inversion results of various decisions related to
parameterization, such as the positioning of pilot points in a geostatistical parameterization;
the handling of up-gradient regions; the inclusion of zonal information derived from
geophysical data or core logs; extension from 2-D to 3-D; assumptions regarding the
gradient direction, porosity, and the semivariogram function; and deteriorating
experimental conditions. This work adds to the relatively limited number of studies that
offer guidance on the use of pilot points in complex real-world experiments involving tracer
data (as opposed to hydraulic head data).
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1. Introduction
[2] Subsurface hydrological properties, such as perme-

ability and porosity, can be inferred through inverse model-
ing of indirect measurements (e.g., hydraulic head and
tracer concentrations) at discrete points and times, provided
that such data are sufficiently sensitive to the properties of
interest. However, the calibration of distributed ground-
water models based on limited measurements is generally
an underdetermined inverse problem [e.g., McLaughlin and
Townley, 1996]. To overcome this limitation, simplifying
assumptions regarding spatial variability are commonly
made [e.g., Moore and Doherty, 2006]. For example, pa-
rameter zonation divides the model into a discrete number

of zones, each with spatially uniform properties. The num-
ber and shape of zones, which may also contain parameter-
ized property variations, may be iteratively determined
during the calibration process with increasing granularity
as supported by the calibration data [Sun et al., 1998; Tsai
et al., 2003; Berre et al., 2009], or a level set formulation
that flexibly calibrates zone shapes during inversion of joint
hydrogeophysical data may be used [Cardiff and Kitanidis,
2009]. Another option is to apply regularization, which
enforces some form of spatial variability or smoothing in
the property of interest, to make underdetermined inverse
problems well posed [Yeh, 1986; Carrera et al., 2005]. For
example, a heterogeneous property can be cast as a spa-
tially correlated random field if a statistical model of corre-
lation (e.g., a semivariogram) can be inferred from site
characterization data or concurrently estimated on the basis
of the available calibration data [Kitanidis, 1995; Hu,
2000; Caers, 2003; Finsterle and Kowalsky, 2008]. While
such simplifications may allow for a unique solution of the
inverse problem, they result in a simplified picture of the
subsurface that may or may not be adequate, depending on
the application [Moore and Doherty, 2006]. Decisions
regarding parameterization (i.e., how to represent a hetero-
geneous distribution with a limited number of parameters
that are amenable to estimation) are of great importance for
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successful application of inverse modeling. In this study we
aim to highlight the importance of proper spatial parame-
terization of subsurface heterogeneity, as errors in the
model structure are partly compensated for by estimating
biased property values during the inversion. These biased
estimates—while potentially providing an improved fit to
the calibration data—may lead to wrong interpretations and
conclusions and reduce the ability of the model to make
reliable predictions.
[3] Using at first a geostatistical parameterization, we

treat the base 10 log permeability as a spatially correlated
random field. To estimate its spatial distribution through
inverse modeling of secondary measurements, we use an
implementation of the popular pilot point method [de
Marsily, 1978], of which many variations [e.g., de Marsily
et al., 1984; Certes and de Marsily, 1991; Lavenue and
Pickens, 1992; RamaRao et al., 1995; Gómez-Hérnandez
et al., 1997; Doherty, 2003; Kowalsky et al., 2004, 2005;
Alcolea et al., 2006, 2008; Finsterle and Kowalsky, 2008]
and related methods [Rubin et al., 2010] have been pro-
posed over the years, which have been reviewed by
Hendricks Franssen et al. [2009]. Heterogeneous log per-
meability distributions are generated using sequential
Gaussian simulation (SGSIM) [Deutsch and Journel,
1992], such that they reflect the spatial correlation specified
by the semivariogram and such that they are conditioned to
(i.e., a function of) so-called pilot point values, which are
estimated in the inversion procedure. This geostatistical
approach requires that the inversion procedure be repeated
multiple times, each time with a different initial random
field (based on a different seed number). The multiple
inversion realizations result in a multitude of parameter dis-
tributions, which provide log permeability estimates at
each location in the model with corresponding uncertainty
[RamaRao et al., 1995].
[4] While there is no set rule for determining the optimal

positioning of pilot points for a given scenario, Jung et al.
[2011] provide an excellent review of studies that have
considered how to add pilot points (e.g., predefining them
or adding them sequentially) and how best to select their
locations, including empirically based approaches (e.g.,
random placement or a uniform density of pilot points) and
sensitivity-based approaches that optimize pilot point
placement on the basis of measurement locations (e.g., on
the basis of the adjoint sensitivity technique of Lavenue
and Pickens [1992] or the D optimality criterion proposed
by Jung et al. [2011]). Motivated by the lack of studies
offering guidelines on implementing pilot points in hydro-
geological applications, Doherty et al. [2010] offer a variety
of such guidelines based largely on the mathematical basis
of the pilot point method, and they lay out some future
related research directions. Among numerous recommenda-
tions, they cite the need for further synthetic studies to eluci-
date pilot point placement and other implementation details.
[5] The majority of pilot point applications rely on sim-

plistic numerical experiments, and most limit their scope to
hydraulic head measurements (and hydraulic conductivity
measurements) rather than transient tracer measurements.
In addition to the continued need for numerical experi-
ments with pilot points in applications that are of practical
relevance and contain a variety of data types, there is a
need for more examples in which the methods are applied

to field data from experiments with real-world complica-
tions and limitations, to help refine, improve and identify
guidelines for successful inverse modeling.
[6] Heterogeneity can also be parameterized using geo-

physical data in a variety of ways, such as through tomo-
graphic constraints in the inversion of tracer data [Linde
et al., 2006]. Coupled hydrogeophysical approaches have
combined traditional hydrological measurements with geo-
physical data, such as seismic data [Hyndman et al., 1994;
Hyndman and Gorelick, 1996], which are related to litho-
logical zonation, or electrical resistivity data [e.g., Pollock
and Cirpka, 2008; Kowalsky et al., 2011; Pollock and
Cirpka, 2010, 2012], which are sensitive to solute concen-
tration and therefore provide secondary measurements that
can be used to estimate hydrological properties.
[7] In general, a zonation parameterization is also of

great value, as it is conducive to incorporating characteriza-
tion data, such as from geophysical measurements, hydro-
logical tests, or core data, into a model. Parameterization
techniques can also be combined, such as in the zonation–
kriging method of Tsai [2006] that integrates the conditional
estimates of a kriged field within a geostatistical framework
and of a zonal structure honoring a set of sampled data.
[8] Dafflon et al. [2011] evaluated several parameter

estimation approaches for an application similar to the one
considered here, a tracer experiment in an unconfined aqui-
fer. Aside from gaining valuable insight into the variable-
density flow phenomena in their experiment, resulting from
the high concentration of saline tracer used, they evaluated
the usefulness of various sources of geophysical and hydro-
logical information. Their study demonstrated some of the
challenges in dealing with real field experiments (e.g., their
hydrological model could not properly fit the concentration
breakthrough, which they speculate was due to inadequa-
cies in the conceptual model or boundary conditions or in
parameterization of heterogeneity).
[9] The current work is more directly motivated by a

previous study (M. B. Kowalsky, S. Finsterle, A. Englert,
K. H. Williams, C. Steefel, and S. S. Hubbard, Inversion of
time-lapse tracer data for estimating changes in field-scale
flow properties during biostimulation, submitted to Journal
of Hydrology, 2012), which analyzed time-lapse tracer data
collected in two consecutive biostimulation field experi-
ments that were conducted in a flow cell at a uranium-con-
taminated aquifer at Rifle, Colorado, in 2002 and 2003.
They performed hydrological inverse modeling of the
tracer data, using a geostatistical parameterization, to esti-
mate the heterogeneous log permeability distribution for
each year. With a goal of identifying subtle changes in flow
properties, such as those expected to occur during biosti-
mulation, they concluded there was insufficient information
in the tracer data of that particular experiment to accurately
infer changes in permeability of less than half an order of
magnitude from one year to the next. They hypothesized
that the coarse well spacing of the experiment, relative to the
length scale of heterogeneity, contributed to nonuniqueness
in the inverse problem. The study also pointed to the need
for a better understanding of how potential errors in the
model parameterization could affect the solution of such
inverse problems and how additional site characterization
data might be included to reduce uncertainty in parameter
estimates.
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[10] This study is based on a subsequent field-scale
tracer experiment conducted at the Rifle site. Described in
detail by Williams et al. [2011], the experiment took place
in 2007 within a flow cell having a closer well spacing than
that used for the 2002–2003 study (Kowalsky et al., submit-
ted, 2012). After providing some details about the site and
the experiment in section 2, we describe the hydrological
inverse modeling approach in section 3, including details
of the hydrological model, parameterization techniques,
and the inverse modeling procedure itself. Then we use a
synthetic example in section 4 to examine how decisions
made regarding parameterization impact solution of the
inverse problem, and we examine issues that can arise
when implementing zonation information, known to vary-
ing degrees of completeness and accuracy, such as from
core logs or geophysical data, in the inversion procedure.
The inverse modeling approaches are applied to actual field
data in section 5, first using a 2-D model with a geostatisti-
cal parameterization and testing, among other things, the
previous assumption of uniform porosity and gradient
direction. The model is then extended to 3-D by employing
a geostatistical parameterization together with a zonation
parameterization that incorporates facies information derived
from geologic well log descriptions, while accounting for
uncertainty in the facies geometry. Comparisons are then
made between permeability values that are estimated and
derived from slug test data, and between values of porosity
estimated in the study and inferred from other sources.
[11] The importance of this work is exemplified by the

fact that one of the main difficulties in building reactive
transport models for complex field sites continues to stem
from uncertainty in the basic heterogeneous hydrological
properties, such as permeability and porosity. Thus testing,
improving, and refining techniques for estimating such
properties continues to be an essential research topic in
hydrogeology. Furthermore, there is a lack of studies high-
lighting the impact of decisions related to parameterization
and quantifying how they affect inverse modeling results.
We intend for this work to add to the relatively limited
number of synthetic and field applications offering some
guidance for the use of pilot points in complex real-world
experiments involving tracer data (as opposed to hydraulic
head data). The need is apparent for ongoing synthetic
examples for testing the approach as new applications arise,
for quantifying the impact of certain modeling assump-
tions, and for application to field data from complex real-
world field experiments.

2. Description of Site and Experiment
[12] The experiment we consider was performed at the

Department of Energy (DOE) Integrated Field Research
Challenge Site (IFRC) at Rifle, Colorado, in a shallow
unconfined aquifer contaminated from uranium mill tail-
ings. The aquifer is 2.5 to 3 m thick, and is located on the
floodplain of the Colorado river in alluvium situated above
an impermeable bedrock formation (Wasatch) and below a
clay fill layer that was put in place following removal of
contaminated soil from the site. The IFRC site has been the
subject of a number of experiments investigating uranium
remediation through acetate biostimulation, a process
involving the injection of an electron donor (acetate) to
facilitate the microbial transformation of aqueous uranium,

U(VI), to an insoluble form, U(IV) [e.g., Anderson et al.,
2003; Yabusaki et al., 2007; Englert et al., 2009; Fang
et al., 2009]. One focus of the IFRC experiments is to
investigate whether the efficacy of biostimulation is
impacted by subsurface heterogeneity, and whether biosti-
mulation itself causes changes in flow properties that fur-
ther influence its efficacy [Li et al., 2010; Kowalsky et al.,
submitted, 2012]. To this end, nonreactive (i.e., conserva-
tive) tracers are typically injected into the groundwater to
allow for characterization of the transport processes occur-
ring in the experiments.
[13] Here we consider the ‘‘Winchester’’ experiment of

2007 [Williams et al., 2011]. Site groundwater was
amended with sodium bromide and acetate and mixed in a
holding tank prior to injection within ten wells, screened
over the entire aquifer and oriented approximately perpen-
dicular to the predominant direction of groundwater flow.
The resulting concentrations of various geochemical spe-
cies were measured as a function of time in 12 down-
gradient monitoring wells that were also fully screened
(Figure 1). Since the primary goal of the current study is to
characterize heterogeneity of the hydrological properties,
we focus on the analysis of the conservative tracer bromide.
Figure 2 shows the approximate bromide concentration in
the holding tank, along with the water and bromide injec-
tion rates, calculated on the basis of the concentration in
the tank and the measured time-varying flow rate from the
tank to the wells. Note that while the water table is known
to fluctuate seasonally, it was nearly constant during the
experiment (i.e., the saturated water thickness only varied
by around 1%), allowing the aquifer to be modeled with a
constant thickness of 2.5 m. These injection functions are
used as input to the hydrological model for the synthetic
example (section 4) and for application of the approach to
the field data (section 5). The synthetic concentration data
and the field data will be presented and discussed in the
corresponding sections.
[14] Recent studies have analyzed data collected from

the Winchester experiment within the context of reactive

Figure 1. Numerical grid with locations of injection and
monitoring wells for the 2007 ‘‘Winchester’’ experiment.
The groundwater flow direction is approximately from left
to right.
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transport modeling. Fang et al. [2009] developed a reaction
network for the abiotic and microbially mediated reactions
occurring during the biostimulation experiments, and per-
formed biogeochemical reactive transport simulations.
They calibrated the reaction network using a 1-D model
with data from an earlier experiment, and tested its per-
formance using later data sets, including those from the
Winchester experiment. Li et al. [2011] performed 2-D re-
active transport modeling, using permeability distributions
obtained as part of the current study, to assess the relation-
ship between physical and geochemical heterogeneity and
bioremediation efficacy. Yabusaki et al. [2011] performed
reactive transport modeling using 3-D lithofacies-based
models of heterogeneity and found good agreement
between the measured and simulated geochemical species
for a second experiment conducted in 2008 in the same ex-
perimental field plot.
[15] In order to understand and accurately model the

complex biogeochemical reactions occurring during biosti-
mulation, such as at the Rifle site, it is crucial to be able to
estimate heterogeneity in subsurface properties. Heteroge-
neity is expected to play a critical role in determining the
efficacy of biostimulation. Therefore, methods for estimat-
ing heterogeneous subsurface properties on the basis of
limited characterization data, such as tracer concentrations,
core data, and geophysical data, are in high demand.

3. Approach
[16] In order to focus on a challenging setting that

reflects the real world complexities associated with
dynamic field experiments in shallow alluvial aquifers, we
consider an inverse problem based on the Winchester
experiment from the Rifle site described in section 2. In
particular, we evaluate the use of inverse modeling of
the bromide tracer data to estimate spatial variations in

permeability. In most cases we assume that the porosity is
constant and unknown, and we include its estimation in the
inversion procedure. Since spatial variations in porosity
can also have a significant impact on transport in some
cases and therefore affect attempts at estimating permeabil-
ity [e.g., Hu et al., 2009; Dafflon et al., 2011], we also
allow for variable porosity in section 5.1.
[17] The inverse modeling involves the use of a forward

model that simulates the tracer injection and the corre-
sponding concentration measurements; model parameter-
ization that defines how heterogeneity is represented in the
model; and an inverse modeling procedure that allows for
estimation of the unknown parameters using an optimiza-
tion algorithm that minimizes the difference between the
simulated and measured observations. Some details of the
different components are given next.

3.1. Hydrological Model

[18] The experiment is modeled using the flow and trans-
port simulator TOUGH2 [Pruess et al., 1999]. While
TOUGH2 can accommodate nonisothermal multiphase sys-
tems, the implementation used here is for the (2-D or 3-D)
isothermal simulation of two mass components (water and
bromide) in the aqueous phase. We neglect density-depend-
ent flow due to the relatively low bromide concentrations
used in the experiment. This is in contrast to the experiment
of Dafflon et al. [2011] in which density-dependent flow
effects were present because of the high concentration and
high injection rate of the injected tracer (5 times higher and
5 orders of magnitude higher, respectively, than for the
Winchester experiment). Hydrodynamic dispersion is
neglected at present, under the assumption that pore level
causes of dispersion are considered less significant, espe-
cially given model uncertainty, than the dispersion caused
by heterogeneity, which is explicitly handled in the inver-
sion. The 2-D model used in sections 4 and 5.1 is a depth-
averaged model with a constant thickness of 2.5 m, and it
covers a horizontal area of 17 m by 16 m, with constant
grid spacing equal to 0.25 m, giving a total of 4352 grid
blocks (see Figure 1). Recall that the injection and monitor-
ing wells are screened over the entire aquifer, which helps
justify simulating the experiment with a 2-D model. The
3-D model used in section 5.2 is similar except that it con-
tains 12 grid blocks in the vertical direction (with 0.25 m
spacing), giving a total of 52,224 grid blocks.
[19] We simulate injection of the bromide tracer by speci-

fying the mass fluxes of water and bromide at each injection
well on the basis of the concentration in the tank that sup-
plies the tracer and on the measured flow rate from the tank
to the wells (Figure 2), and we record the calculated concen-
trations at the monitoring wells at the specified times.
[20] While the groundwater flow direction and magni-

tude in general are known to fluctuate seasonally at the site,
they were relatively constant during the Winchester experi-
ment, allowing us to specify a fixed hydraulic head gradient
of 0.004. For most cases, we assume the regional ground-
water flow direction is perpendicular to the plane formed
by the injection wells, and we fix the pressures at the up-
gradient and down-gradient boundaries accordingly, and a
zero-flux boundary condition is used for the boundaries
parallel to the mean flow direction. We also consider a case
in section 5.1 in which the gradient direction is varied, and

Figure 2. (a) Approximate bromide concentration in tank
and rates at which (b) water and (c) bromide were pumped
into the injection wells during the experiment.
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this requires that the boundary conditions be modified (as
will be explained in section 5.1).
[21] It is worth noting that the local gradient in the vicin-

ity of the injection wells can change during the experiments
because of mounding of injectate within the injection
wells; this effect is accounted for in the simulations.

3.2. Parameterization of the Inverse Problem

[22] The log permeability is described using a geostatis-
tical parameterization (in sections 4.1–4.3 and 5.1), a zona-
tion parameterization (in section 4.4), or a combination of
the two (in sections 4.4 and 5.2). As mentioned, the poros-
ity is considered spatially uniform for all cases except one
in section 5.1. Note that any mention of log permeability
throughout the paper refers to the base 10 logarithm of the
permeability, which is given in m2.
[23] In the geostatistical parameterization, the log per-

meability is treated as a spatially correlated field, which we
assume can be described adequately using an exponential
semivariogram model with a variance of 0.26 and an inte-
gral scale of 3.3 m on the basis of the analysis of slug test
data from the site. (The integral scale is intentionally given
an incorrect value of 6.6 m in one case in section 4.1.)
[24] We also explore zonation as an alternative parame-

terization of the inverse problem, wherein regions of the
model with uniform material properties are defined on the
basis of practical considerations (e.g., a uniform region is
defined in a region of the model, such as up gradient of the
injection wells) or on the basis of the geometry defined by
characterization data, such as geophysical or core data,
known to varying degrees of completeness and accuracy.
The log permeability values for these regions are estimated
in the inversion procedure. It may also be advantageous to
employ the geostatistical parameterization in some regions
of the model and the zonation parameterization elsewhere,
such as when zonation information is only available for a
subset of the entire model domain.

3.3. Inverse Modeling Procedure

[25] The code iTOUGH2 [Finsterle, 1999, 2004], which
provides inverse modeling capabilities for TOUGH2, is
used to estimate the unknown parameters in this study
using a variation of the pilot point method described in sec-
tion 1. The general procedure is as follows: (1) the parame-
ter guesses are specified, (2) the initial pressure is obtained
for the system by calculating the steady state distribution
with the current parameter values and specified boundary
conditions, (3) the initial tracer concentration is set uni-
formly to zero, (4) the simulation proceeds as bromide and
groundwater are injected into the injection wells, (5) the
simulated concentrations are recorded in each of the moni-
toring wells at the times when corresponding data are
available, (6) the objective function is evaluated, (7) a non-
linear optimization algorithm, specifically the Levenberg-
Marquardt algorithm [Levenberg, 1944; Marquardt, 1963],
which aims to find the parameter values that minimize the
objective function, is used to update the parameter guesses,
and (8) the procedure is repeated, starting at step 1, until an
estimate of the minimum value of the objective function is
found. The objective function is a measure of the misfit
between the measured and simulated data, formed by
summing the squares of the weighted residuals, where a

weighted residual is the difference between the simulated
and measured data divided by the standard deviation of the
measurement error. The concentration measurements repre-
sent the system state to be matched, and are weighted with
a constant measurement error assumed to be given by a
standard deviation of 0.31 mM. Note that in discussing the
misfit between simulated and measured data, epistemic
error is the more correct term (than measurement error), as
it encompasses both inaccuracies in making the measure-
ments and also, for example, model structural error [Rubin,
2003].
[26] Regarding the implementation of the pilot point

method used, so-called prior data is ascribed to each pilot
point with a value equal to the reference log permeability
(log kref) and a weight of one (corresponding to a log per-
meability standard deviation of 1.0), such that large devia-
tions from this value are penalized in the objective
function. Adding weight to the pilot points can result in a
more stable inverse solution by reducing fluctuations of the
pilot points that are insensitive to the observation data
[Alcolea et al., 2006]. Note that log kref is the mean value
specified in the sequential Gaussian simulation procedure,
though it does not always exactly equal the mean of the
resulting distribution. It can be considered an unknown pa-
rameter in the inversion.
[27] To quantify how well model output reproduces

measured data, we analyze statistical measures of the resid-
uals (the difference between the measured and modeled
output), as defined in Appendix A. In addition, we employ
the measures of parameter uncertainty and estimation error
that are given in Appendix B.
[28] It is worth describing the computational efforts

required for this study. Many of the inversions were run on
a Linux computer with an Intel(R) Xeon(R) Processor
X5550 (clock speed of 2.67 GHz, 4 CPU cores, and 8.2
MB cache). For one typical case in which 51 parameters
were estimated while running on a single processor, the av-
erage times for a forward run and an inversion realization
were 1 s and 87 min, respectively. Since two series of
inversion realizations were running in parallel on two pro-
cessors, 34 inversion realizations could be completed in
28.5 h. In another case in which 82 parameters were esti-
mated, the average times for a forward run and an inversion
realization were 1.2 s and 102 min, respectively. In this
case, since three series of inversions were running in paral-
lel on three processors, 34 inversion realizations could be
completed in 25.5 h. A Linux cluster was used in some
cases, allowing the inversions to be further parallelized
within iTOUGH2, such that a large number of processors
equal to the total number of unknown parameters plus one
could run in parallel, speeding up inversion realizations
substantially.

4. Synthetic Example
[29] In this section we consider a synthetic example

based on the Winchester field experiment which represents
a realistic experiment in a dynamic alluvial aquifer with
real-world complexities and limitations. In sections 4.1 and
4.2, we focus on several inversion cases to highlight and
quantify the impact of key decisions for parameterizing the
inverse problem on parameter estimates and on the ability
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of the model to reproduce the synthetic data. We also
examine the performance of the pilot point approach for
this particular application in the face of deteriorating exper-
imental conditions (decreased sampling frequency and
increasing measurement error) in section 4.3.
[30] In anticipation of requirements to extend such mod-

els from 2-D to 3-D with the consequent requirement to esti-
mate 3-D heterogeneous property distributions, nonunique
parameter estimates are expected (especially when tracer
data represent depth-averaged measurements), making it de-
sirable to consider alternative parameterizations (i.e., in
addition to the geostatistical parameterization with the pilot
point approach) that can directly integrate zonal information
derived from geophysical data or core logs. Therefore, we
take advantage of the synthetic example to examine some
decisions made in implementing zonal information into a
model instead of (or in addition to) parameterization with
the pilot point method. In particular, we examine the poten-
tial for using a zonation parameterization in which the
geometry of the main features of heterogeneity may be per-
fectly known to varying degrees, known inaccurately, or
known only over a subset of the model domain (section 4.4).
[31] The synthetic concentration data were generated

using the forward model described in section 3.1 with a
2-D permeability distribution (Figure 3) that, incidentally,
was obtained from a single inversion realization of an early
attempt at inversion of the actual field data. Using such a
distribution as the ‘‘true’’ model for the synthetic example
has the benefit of providing synthetic data that are similar
to those of an actual field experiment. The porosity of the
synthetic model is 0.121.
[32] Figure 4 shows simulated tracer concentrations and

corresponding changes in pressure due to the tracer injec-
tion at several times. As is evident in Figures 4a and 4b, the
injection rate is not high enough relative to the groundwater

velocity to cause up-gradient migration of the tracer (this is
consistent with the Winchester field experiment, where no
tracer was detected in wells located slightly up gradient of
the injection wells). Relatively minor increases in pressure
are observed (Figures 4d and 4e), with increases highest
near the injection wells and dropping off with distance
from the injection wells. Relative to preinjection condi-
tions, pressures increase by around 40% of the ‘‘maximum
pressure difference’’ in the model (the difference between
the pressure at the left and right boundaries), with the larg-
est increase occurring in a low-permeability zone near x ¼
0 m and y ¼ 2.5 m. By 50 days, when no tracer injection is
occurring, the pressure has returned to preinjection condi-
tions (Figure 4f), though the tail end of the bromide tracer
is still evident (Figure 4c). We expect that the location of
the model boundaries will not influence the simulation
results substantially. Implementing the approach of Lehi-
koinen et al. [2007] would be an excellent way to account
for errors due to the truncation of the computational do-
main, but this is left for future research. At present, we sim-
ply take advantage of the fact that the pressures and
concentrations are known for the synthetic model. (For the
application to field data in section 5, we make the same
assumption, but we vary the gradient direction in one case.)
[33] We consider two sampling scenarios: one with fine

sampling (every two days between days 2 and 62 for a total
of 31 times), referred to as ‘‘31t’’, and one with the compa-
ratively coarse sampling of the actual field experiment (on
days 2, 4, 6, 11, 15, 18, 20, 23, 26, 36, 41, 62 for a total of
12 times), referred to as ‘‘12t.’’ For sampling scenario 31t,
which is considered in sections 4.1 and 4.2, the synthetic
data are free of measurement error (see Figure 5a). For sam-
pling scenario 12t, which is considered in sections 4.3 and
4.4, three versions of synthetic data are used: one with no
measurement error (Figure 5b), referred to as ‘‘N0’’; one
with a low level of measurement error (Figure 5c), referred
to as ‘‘N1’’; and one with a high level of measurement error
(Figure 5d), referred to as ‘‘N2.’’ Measurement error is
introduced in the synthetic data by adding to it uncorrelated
random noise with a mean of zero and a standard deviation
of 0.13 and 0.31 mM for N1 and N2, respectively.
[34] Details for the different inversion cases of sections

4.1 and 4.2 are given in Table 1, while the cases of sections
4.3 and 4.4 are given in Tables 2 and 3.

4.1. Sensitivity to Pilot Point Spacing and Integral
Scale of Semivariogram (With 31 Sampling Times
and No Measurement Error)

[35] When using a pilot point parameterization, inversion
results are potentially sensitive to choices made regarding
the implementation of pilot points (e.g., how many of them
are used, what regions they cover, and what their spacing
is). The spacing of pilot points is typically set to around
half the integral scale of the heterogeneity (as mentioned in
section 3.2, a value of 3.3 m is used for the integral scale in
this study), though optimal spacing may depend on details
of the particular application. In addition, one must take into
account the tradeoff between the desired resolution of the
estimated distribution, and the potentially limited amount
of complementary information contained in the data. The
parameters of interest must have sufficient sensitivity to the
concentration data to allow for their estimation. Doherty

Figure 3. Permeability distribution used for the synthetic
example in section 4. The injection and monitoring wells
are shown with triangles and circles, respectively. Note that
to improve visualization, only a subset of the entire model-
ing domain (see Figure 1) is shown here and in the remain-
ing figures that show 2-D permeability distributions
(Figures 6, 7, 8, 9, and 12).
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et al. [2010] describe the goal of making a network that is
dense enough for differences between the interpolated val-
ues between pilot points and the true parameter field to lie
in the ‘‘calibration null-space,’’ in other words, so that they
are not informed by the observations.
[36] We test the inversion using four pilot point configura-

tions that we refer to, for the sake of discussion, as having
‘‘coarse,’’ ‘‘medium,’’ ‘‘medium-shifted,’’ and ‘‘fine’’ pilot
point spacing (cases 31t-N0-C, 31t-N0-M, 31t-N0-M-shifted,
and 31t-N0-F, respectively), as depicted in Figures 6a, 6c,
6e, and 6g. The coarse case (31t-N0-C) uses a total of 35
pilot points in five rows and seven columns with 2 m spac-
ing (or 8 grid blocks) in both directions. The medium case
(31t-N0-M) uses a total of 49 pilot points in seven rows
and seven columns with the same spacing of columns (2 m
or 8 grid blocks) but decreased spacing of rows (1.75 m or
7 grid blocks). The medium-shifted case uses the number
of pilot points as in the medium case but every other col-
umn of pilot points shifted in the y direction by 0.75 m (or
3 grid blocks). The fine case (31t-N0-F) uses a total of
80 pilot points in eight rows and ten columns with spacing
in both directions decreased further (1.5 m or 6 grid
blocks). Each case in this section uses the finely sampled
synthetic data (31t) with no measurement error (N0), repre-
senting ideal conditions.
[37] In addition, an inversion case (31t-N0-Uni) is

conducted in which the permeability and porosity are

homogeneous and their values are estimated in the inver-
sion. This case serves as a baseline for the various perform-
ance measures reported in Table 1, and it provides us a
means to assess the degree of heterogeneity in the model.
[38] The inversion results are summarized in Table 1.

The homogeneous model does not allow for an adequate fit
between the synthetic data and the simulated concentra-
tions. For the heterogeneous cases, the fit improves sub-
stantially by decreasing the spacing of pilot points by only
25 cm (or 1 grid block). For example, when going from
coarse to medium spacing, the error variance s20 (equation
(A1)), which describes the fit to the observations (i.e., the
synthetic data in section 4), drops from 0.207 to 0.132
(Table 1). For reference, the corresponding value for the
homogeneous model is 1.66. Keeping the same spacing of
columns but vertically shifting every column slightly
results in a value of s20 (0.136) that is not improved relative
to the case with medium spacing. Changing from medium
to fine spacing results in s20 decreasing to 0.126, which is
only a minor improvement, especially considering that the
standard deviation of s20 is over 0.04. The synthetic data
and simulated concentrations for the case with medium
spacing (31t-N0-M) are shown in Figure 5a, and the simu-
lated concentrations for the homogeneous reference case
are shown as well.
[39] The overall appearance of the estimated log perme-

ability (Figure 6) for each heterogeneous case is similar to

Figure 4. (a–c) Snapshot of tracer concentration and (d–f) corresponding normalized change in pres-
sure due to injection at 10, 30, and 50 days, respectively, for the synthetic example considered in
section 4. The normalized change in pressure is given by (P � P0)/�Pmax, where P is the simulated pres-
sure at any given location at the indicated time, P0 is the initial pressure before injection at the same
location, and �Pmax is the maximum difference in pressure in the model (equal to the difference in pres-
sure between the left and right boundaries). The injection and monitoring wells are shown in Figure 4a
with triangles and circles, respectively.
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that of the true model (Figure 3). As listed in Table 1, vari-
ous performance measures are calculated for the region
covered by the injection and monitoring wells (within the
area given by �0.5 < x < 9.5 and �4.5 < y < 4.5). The
average standard deviation of the estimated log permeabil-
ity �log k;ave (equation (B3)) is lowest, equal to 0.411, for
the case with fine pilot point spacing. However, the case
with medium spacing (31t-N0-M) provides slightly more
accurate estimates based on the log permeability estimate
error values "1 and "2 (equations (B4) and (B5), respectively).

[40] It is possible that the specific locations of pilot
points could explain why the medium spacing case pro-
vides slightly better results. We added cases for the me-
dium and fine spacing where the pilot points were shifted
by a constant value of 0.25 and 0.75 cm, respectively, in
both the x and y directions. However, while the values var-
ied slightly with the shifted cases, the results remained con-
sistent with the results for medium spacing fitting slightly
better than for the fine spacing. In addition, a case (31t-N0-
M-Shifted) in which every other column of pilot points is

Figure 5. Examples of bromide concentrations for synthetic inversion cases that use the medium pilot
point spacing: (a) 31 sampling times and no measurement error (case 31t-N0-C in section 4.1) and 12
sampling times with (b) no measurement error (case 12t-N0-M in section 4.3), (c) low measurement
error (case 12t-N1-M in section 4.3), and (d) high measurement error (case 12t-N2-M in section 4.3). For
monitoring wells M1 to M12, the synthetic data are shown with symbols, and the inversion results are
shown with solid lines (mean of 30 realizations) and dashed lines (mean 62 standard deviations). For
reference, the homogeneous cases 31t-N0-Uni and 12t-N0-Uni are shown with solid gray lines in Figures
5a and 5b, respectively.
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shifted by 60.75 m in the y direction slightly worsened the
fit to the data and the accuracy of the estimates, suggesting
that regular spacing is preferred for this type of experiment.
[41] In all heterogeneous cases, the estimated porosity

values are within one standard deviation of the true value
(0.121), while the value for the homogeneous case is signif-
icantly inaccurate. Recall that log kref is the mean value
specified in the sequential Gaussian simulation procedure,
and it does not necessarily equal the mean of the resulting
distribution. Accordingly, the estimated values of log kref
for each case range between �10.642 and �10.626, which
is closer to the actual mean of the true log permeability dis-
tribution (�10.677) than to the reference value used to gen-
erate the true distribution (�10.558).
[42] We assume that the integral scale of the semivario-

gram is known accurately for the inversion, but we were
curious whether its value could be estimated as a parameter
in the inversion and whether an inaccurately assumed value
would negatively affect the parameter estimates. We found
that there was insufficient sensitivity of the concentration
data to allow for estimation of the integral scale in the
inversion. Furthermore, when purposefully assigning an
inaccurate value (6.6 m instead of the true value of 3.3 m),
the resulting errors in the inversion results were minor (see
case 31t-N0-M-Error in Table 1).

4.2. Sensitivity to Parameterization of Up-Gradient
Region (With 31 Sampling Times and No Measurement
Error)

[43] In section 4.1, we considered several cases with
pilot points covering not only the region of the injection
and monitoring wells but also the region up gradient of
the injection wells (i.e., between the left boundary of the
model and the injection wells, as seen in Figure 1). In this
section we explore two alternatives for parameterizing the

‘‘up-gradient region’’ in such a way as to reduce the num-
ber of parameters to be estimated in the inversion. For this
purpose we use a pilot point configuration with medium
spacing, similar to case 31t-N0-M from section 4.1 except
that two columns of pilot points are removed from the up-
gradient region, reducing the number of pilot points from
49 to 35. The up-gradient region is handled in one of two
ways. In the first case (case 31t-N0-MH), it is given uncon-
ditional heterogeneity (i.e., the log permeability is hetero-
geneous and contains the specified spatial correlation, on
average, but it is not influenced by any pilot point values in
that region). In the second case (case 31t-N0-MU), the log
permeability in the up-gradient region is made uniform and
its value is estimated in the inversion. Inversion proceeds
as before, with both cases using the fine sampling scenario
(31t) with no measurement error (N0), again representing
ideal conditions.
[44] The inversion results are summarized in Table 1,

and the log permeability estimates are shown in Figure 7.
The fit to the observations is worsened, relative to the case
from section 4.1 with medium spacing (case 31t-N0-M),
with the error variance increasing by 35% and 26%, respec-
tively, for the cases with the up-gradient region modeled
using unconditional heterogeneity (case 31t-N0-MH; Fig-
ures 7a and 7b) and a uniform value (case 31t-N0-MU;
Figures 7c and 7d). The average standard deviation �log k;ave
increases by 13% and 3% for the respective cases. In addi-
tion, the error in log k increases for the first case, by 11%
for "1 (equation (B4)) and 23% for "2 (equation (B5)), and
for the second case by 14% for "1 and 30% for "2.
[45] While an inverse modeling practitioner might

naively choose to handle an up-gradient region in a similar
manner, perhaps with the goal of reducing the number of
parameters or because it is well outside of the region of in-
terest and not thought to be important, this example

Table 2. Summary of 2-D Inversions for Synthetic Example

Case

12t-N0-Uni 12t-N0-M 12t-N1-M 12t-N2-M

Section 4.3 4.3 4.3 4.3
Description Uniform

reference case
Reduced observation
times, no noise

Reduced observation
times, low noise

Reduced observation
times, high noise

Number of observation times 12 12 12 12
Number of bromide data mb 144 144 144 144
Measurement error �bromide

a (mmol) 0 0 0.13 0.31
Number of pilot points mpp

b 0 49 49 49
Number of unknowns n 2 51 51 51
mb þ mpp � n (equation (A1)) 142 142 142 142
Parameter estimates
Pilot points N/A Figures 8a and 8b Figures 8c and 8d Figures 8e and 8f
�log k,ave (equation (B3)) 0.0 0.437 0.436 0.430
log kref �10.758 (60.021)c �10.636 (60.031) �10.638 (60.037) �10.640 (60.026)
� 0.155 (60.008) 0.122 (60.011) 0.122 (60.013) 0.113 (60.010)

Estimation error
log k error "1 (equation (B4)) 0.371 0.292 0.295 0.308
log k error "2 (equation (B5)) 0.226 0.145 0.140 0.162

Residual analysis
Error variance s20 (equation (A1)) 1.85 0.242 (60.078) 0.307 (60.077) 0.649 (60.086)
NS (equation (A2))d 0.479 0.864 (60.017) 0.899 (60.012) 0.867 (60.012)

aStandard deviation of the zero-mean measurement error that was added to the synthetic data in section 4.
bThe pilot point parameters (log permeability values) are given prior data equal to log kref, with a standard deviation of 1.0.
cAverage value for all realizations followed in parentheses by the standard deviation (where applicable).
dNash-Sutcliffe model efficiency.
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illustrates the high sensitivity of the results to the properties
in this region. This example also points to the fact that a
rigorous strategy for gauging sensitivity, such as using an
adjoint state method [e.g., Cirpka and Kitanidis, 2001]
could provide similar additional insights into the sensitivity
of tracer measurements to various spatially distributed pa-
rameters in the hydrological model.

4.3. Sensitivity to Sampling Times and Measurement
Error (With 12 Sampling Times and Variable
Measurement Error)

[46] To examine the performance of the pilot point
approach for this particular application in the face of less
ideal experimental conditions, next we quantify the impact
on the inversion results of decreasing the number of sam-
pling times and adding measurement error to the concentra-
tion data. Specifically, we switch from the idealized
sampling scenario of 31t to the limited scenario of 12t,
which uses the same 12 sampling times as in the actual
field experiment, and we consider three cases with differing
amounts of measurement error: N0, N1, and N2 (cases

12t-N0-M, 12t-N1-M, and 12t-N2-M, respectively). The
inversions for these cases use 49 pilot points with the me-
dium spacing (i.e., the pilot point configuration used in
case 31t-N0-M of section 4.1). An example (for case 12t-
N1-M) of the estimated mean and standard deviation of the
permeability distribution is shown in Figure 8. It is reassur-
ing that the overall appearance of the log permeability
remains similar to that of the true model. The inversion
results for each case are summarized in Table 2.
[47] The main impact of reducing the number of survey

times from 31 to 12, on the basis of comparison of cases
31t-N0-M and 12t-N0-M (see Table 2), is an increase in the
error variance s20 from 0.132 to 0.242, and also a slight
increase in the log permeability error ("1 and "2 increase by
5% and 14%, respectively). Figures 5a and 5b allow for
visual comparison of the fit between the synthetic data and
the simulated concentrations.
[48] With the addition of measurement error, the fit

between the synthetic data and the simulated concentrations
worsens; the error variance s20 increases from 0.242 to 0.307
and to 0.649 for cases 12t-N1-M and 12t-N2-M, respectively

Table 3. Summary of 2-D Inversions for Synthetic Example

Case

12t-N0-3Z 12t-N0-5Z 12t-N0-5Z-Error 12t-N0-5Zlim 12t-N0-5ZlimPP

Section 4.4 4.4 4.4 4.4 4.4
Description Three zones

perfectly known
Five zones
perfectly known

Five zones
inaccurately known
(errors up to 50 cm)

Five zones known
for limited region;
homogeneous
outside of wells

Five zones known for
limited region;
pilot points
outside of wells

Region modeled with
five zones (or facies)

Entire model Entire model Entire model �1 m < x < 12 m,
�5 m < y < 5 m

�1 m < x < 12 m,
�5 m < y < 5 m

Region modeled as
uniform (homogeneous)

N/A N/A N/A For x < �1 m, all y;
for x > �1 m,
y < �5 m, y > 5 m

N/A

Region modeled with pilot points N/A N/A N/A N/A For x < �1 m, all y;
for x > �1 m,
y < �5 m, y > 5 m

Number of observation times 12 12 12 12 12
Number of bromide data mb 144 144 144 144 144
Measurement error,
�bromide

a (mmol)
0 0 0 0 0

Number of pilot points mpp
b 0 0 0 0 24

Number of unknowns n 6 6 6 7 31
mb þ mpp � n (equation (A1)) 138 138 138 137 137
Parameter estimates
Pilot points N/A N/A N/A N/A Figure 9f
log kref (for pilot points) N/A N/A N/A N/A �10.57 (60.17)d
log kupgradient N/A N/A N/A �11.06 (60.05)c N/A
log k1 (for facies 1) �10.07 (60.03)c �9.65 (60.03)c �10.07 (60.05)c �8.94 (60.36)c �9.60 (60.01)d
log k2 (for facies 2) �10.51 (60.03)c �10.22 (60.02)c �9.39 (60.05)c �10.24 (60.11)c �10.22 (60.31)d
log k3 (for facies 3) �11.49 (60.03)c �10.61 (60.01)c �10.79 (60.03)c �10.55 (60.09)c �10.61 (60.11)d
log k4 (for facies 4) N/A �11.22 (60.01)c �10.98 (60.03)c �10.70 (60.09)c �11.17 (60.07)d
log k5 (for facies 5) N/A �11.81 (60.03)c �12.87 (60.08)c �10.88 (60.22)c �11.73 (60.05)d
� 0.115 (60.003)c 0.121 (60.001)c 0.132 (60.004)c 0.133 (60.006)c 0.120 (60.19)d

Estimation error
log k error, "1 (equation (B4)) 0.187 0.172 0.214 0.334 0.164
log k error, "2 (equation (B5)) 0.050 0.044 0.070 0.172 0.040

Residual analysis
Error variance
s20 (equation (A1))

0.767 0.051 0.419 1.17 0.224 (60.083)d

NS (equation (A2))e 0.813 0.906 0.814 0.652 0.910 (60.012)d

aStandard deviation of the zero-mean measurement error that was added to the synthetic data in section 4.
bThe pilot point parameters (log permeability values) are given prior data equal to log kref, with a standard deviation of 1.0.
cEstimated values followed in parentheses by the standard deviation.
dEstimated values given by the mean of 30 inversion realizations, followed in parentheses by the standard deviation.
eNash-Sutcliffe model efficiency.
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Figure 6
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(see Figures 5b–5d). For the former case, the log permeability
error stays about the same ("1 decreases by 4%, while e2
increases by 1%). For the case with high measurement error,
"1 and "2 increase by 6% and 12%, respectively.
[49] Overall, the inversions continue to perform well de-

spite the decreased number of sampling times and the addi-
tion of measurement error, though the case with less
measurement error results in slightly more accurate perme-
ability estimates.

4.4. Parameterization by Zonation With or Without
Pilot Points (With 12 Sampling Times and No
Measurement Error)

[50] As mentioned, to overcome nonuniqueness inherent
to the inverse problem in this application, especially when
extending the type of model from 2-D to 3-D, it may be
beneficial to go beyond the geostatistical parameterization
considered so far and reduce the number of unknown

parameters, while taking advantage of geometrical infor-
mation related to geological units that is potentially avail-
able through additional site characterization data, such as
geophysical measurements, well logging data, or core
descriptions. On the basis of the synthetic example dis-
cussed in sections 4.1–4.3, we examine the use of a zona-
tion parameterization, where heterogeneity is described by
zones within which hydrological properties are uniform
and for which the spatial distribution is known, and exam-
ine decisions made in implementing the zonal parameter-
ization in a model under different assumptions.
[51] We construct two synthetic ‘‘facies’’ data sets that

represent the log permeability distributions with three and
five types of zones, respectively, representing geological
units or facies, each corresponding to a mutually exclusive
range of log permeability. To construct each data set, for
each pixel of the true log permeability distribution of the
synthetic example (Figure 9a), a facies type is assigned

Figure 6. Sensitivity to pilot point placement and geostatistical errors (see section 4.1 and Table 1). The estimated log
permeability for (a) coarse (case 31t-N0-C), (c) medium (case 31t-N0-M), (e) medium-shifted (case 31t-N0-M-Shifted),
and (g) fine (case 31t-N0-F) spacing of pilot points. (b, d, f, h) The corresponding standard deviation. (i) The estimated
log permeability and (j) standard deviation for case 31t-N0-M-Error in which medium spacing is used while the range is
assumed to be twice as large as its true value of 3.3 m. Here and in the other figures showing permeability distributions
(Figures 7, 8, 9, 12, and 16), the injection wells, monitoring wells, and pilot points are indicated with triangles, circles,
and stars, respectively.

Figure 7. Sensitivity to the parameterization of region up gradient of (to the left of) the monitoring
wells (see section 4.2 and Table 1). (a) The estimated log permeability and (b) the corresponding stand-
ard deviation for the case (31t-N0-MH), in which the up-gradient region is modeled with unconditional
heterogeneity (i.e., no pilot points are used in that region). (c and d) Similarly, the same for the case
(31t-N0-MU) in which the up-gradient region is assumed to be uniform and its value is estimated in the
inversion.
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depending on its value of log permeability. In the first two
cases, the facies data sets are error free and cover the entire
model, consisting of either three zones (case 12t-N0-3Z;
Figure 9b) or five zones (case 12t-N0-5Z; Figure 9c). In
the third case (12t-N0-5Z-Error), the facies data set covers
the entire model but contains errors, which were created
intentionally by shifting 2 m by 2 m blocks by only 50 cm
(or two grid blocks) in an arbitrary direction. In the last
two cases, the facies data sets are known accurately, but
they cover only a limited region that contains the wells,
while the region outside of the wells is modeled either with
an additional homogeneous zone (case 12t-N0-Zlim;
Figure 9e) or with a geostatistical parameterization using
pilot points (case 12t-N0-ZlimPP; Figure 9f). In each case,
permeability values for each zone and a single porosity
value are estimated by inversion. In the last case, 24 pilot
point values and a reference log permeability value are also
estimated. The synthetic concentration data used in these
cases correspond to the coarse sampling scenario (t12) with
no measurement error (N0). The inversion results are sum-
marized in Table 3, and the estimated log permeability val-
ues are depicted in Figure 9.
[52] The purpose of the first two cases (12t-N0-3Z and

12t-N0-5Z) is to test whether such a parameterization can
successfully represent heterogeneity under the most ideal
conditions (i.e., in which facies data are perfectly known
and are available for the entire model domain). Indeed, the
inversion for the case with five zones (12t-N0-5Z) results
in values of error variance (s20 ¼ 0.051) and log permeabil-
ity error ("1 ¼ 0.172, and "2 ¼ 0.044) that are substantially
lower than for the previous cases. However, for the case
with only three zones (12t-N0-3Z), the results are poor
(e.g., s20 ¼ 0.767) and indicate that using three zones does
not meet the minimum requirements for representing heter-
ogeneity at the site.
[53] The third case (12t-N0-5Z-Err), containing a very

large value of s20 (0.419) reveals that even relatively small
errors in the zonal geometry can prevent the model
response from being able to reproduce the (synthetic)
measurements, and the resulting permeability parameter
estimates are a poor representation of the true system.

Figure 8. Inversion results for a representative case from section 4.3 (also see Table 2) in which the
synthetic example is used to examine the sensitivity to decreased sampling times and increasing mea-
surement error. (a) The estimated log permeability for the case with low noise (case 12t-N1-M) and (b)
the corresponding standard deviation.

Figure 9. Inversion results for section 4.4 (see Table 3).
(a) The true permeability. (b) The geometry of three zones
is known perfectly (case 12t-N0-3Z). The geometry of five
zones is known (c) perfectly (case 12t-N0-5Z), (d) inaccur-
ately, with 2 m by 2 m regions shifted by 650 cm in the y
direction (case 12t-N0-5Z-Error), and (e) perfectly, but
only for the well region, where core data are available
(case 12t-N0-5Zlim). (f) The zone geometry of five zones
is only known in the well region, and pilot points are used
in the region outside of the wells (case 12t-N0-ZlimPP). In
all cases, permeability values in each zone along with a
uniform porosity are estimated, while in the last case, 24
pilot point values are also estimated.
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From this exercise, it is clear that uncertainty in the zonal
geometry must be taken into account (see section 5.2).
[54] For the second to last case (12t-N0-Zlim), in which

coverage of the facies data is limited to the well region, the
error variance s20 is dramatically increased (1.17), as is the
error in the estimated log permeability ("1 ¼ 0.334, and "2
¼ 0.172). This result is similar to the result of section 4.2,
which showed that assuming a uniform zone up gradient of
the injection wells could negatively affect the fit to the
observations and the corresponding parameter estimates.
But it serves as an important reminder that when zonal ge-
ometry is known for a subset of the model domain, the
remaining regions of the model must be handled carefully.
[55] In the final case (12t-N0-ZlimPP) of the synthetic

example, the zonation parameterization in the well region,
based on the ‘‘limited’’ facies data, is combined with the
geostatistical parameterization in the region outside of
the wells, and the inversion results are greatly improved.
The error variance s20 is decreased to 0.224, and the error in
log permeability is at a similar level as for the first case in
this section with facies data available everywhere (case 883
12t-N0-5Z). However, this improvement comes at the
expense of introducing an additional 24 parameters to be
estimated by inversion.
[56] We conclude that even relatively small uncertainty

in the facies geometry must be taken into account to avoid
biased parameter estimates. In addition, even if perfect in-
formation on the spatial distribution of facies within the
well region is known, making the decision to assume ho-
mogeneous properties outside of the well region is insuffi-
cient for obtaining accurate parameter estimates. However,
combining such information with a pilot point parameter-
ization in the remaining region appears to work well. A

similar approach to the one considered in this section will
be applied to the field data in section 5.2 to estimate 3-D
properties.

5. Application to Field Data
[57] Next we perform hydrological inversion of the field

data collected in the Winchester experiment, while taking
advantage of the lessons learned in the synthetic example
of section 4. We use a 2-D model with the geostatistical
parameterization in section 5.1. Then, we extend the model
to 3-D by introducing facies data into the inversion proce-
dure through a combined application of the zonation
parameterization and the geostatistical parameterization in
section 5.2. Details of the corresponding inversion cases
and results are given in Tables 4 and 5.
[58] The bromide concentration data that were measured

in the experiment (Figure 10) are used for the remaining
cases. Recall that the synthetic data of the coarse sampling
scenario 12t of section 4 (Figures 5b–5d) were intentionally
made similar to the actual field data.

5.1. Results for 2-D Model With Pilot Point
Parameterization

[59] In cases Field-M and Field-F, we apply the geostat-
istical parameterization with medium (case Field-M) and
fine (case Field-F) pilot point spacing, which has 49 and 80
pilot points, respectively, as unknown parameters, along
with a reference value of log permeability and the porosity.
These pilot point configurations correspond to the medium
and fine spacing configurations used in section 4, for exam-
ple, in cases 31t-N0-M and 31t-N0-F.
[60] The fit between the measured and simulated concen-

trations are shown in Figure 10, and the residuals (the

Table 4. Summary of 2-D Inversions for Field Data Application

Case

Field-M Field-F Field-M-10deg Field-M-VarPor

Section 5.1 5.1 5.1 5.1
Description Field data, medium

pilot point spacing
Field data, fine pilot
point spacing

Field data, medium pilot
point spacing, gradient
rotated by 10�

Field data, medium
pilot point spacing,
variable porosity

Number of pilot points mpp 0 0 0 0
Number of observation times 12 12 12 12
Number of bromide data mb 144 144 144 144
Measurement error �bromide

a (mmol) 0.13 0.13 0.13 0.13
Number of pilot points mpp

b 49 80 49 49
Number of unknowns n 51 82 51 52
mb þ mpp � n (equation (A1)) 142 142 142 141
Parameter estimates
Pilot points Figures 12a and 12b Figures 12c and 12d Figures 12e and 12f Figures 12g and 12h
�log k,ave (equation (B3)) 0.434 0.436 0.403 0.437
log kref �10.626 (60.033)c �10.620 (60.013) �10.635 (60.024) �10.638 (60.031)
Uniform porosity � 0.121 (60.012) 0.120 (60.011) 0.117 (60.010) N/A
Variable porosity � ¼ a (K (m d�1))1/b N/A N/A N/A a ¼ 0.099 (60.007),

b ¼ 13.1 (65.6)
Residual analysis
Error variance s20 (equation (A1)) 0.525 (60.084) 0.573 (60.079) 0.538 (60.064) 0.528 (60.087)
NS (equation (A2))d 0.916 (60.015) 0.922 (60.008) 0.923 (60.010) 0.915 (60.014)

aStandard deviation measurement error assumed for the field data in section 5.
bThe pilot point parameters (log permeability values) are given prior data equal to log kref, with a standard deviation of 1.0.
cAverage value for all realizations followed in parentheses by the standard deviation.
dNash-Sutcliffe model efficiency.
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measured minus the simulated concentrations) are shown in
Figure 11. The residual distributions appear to be mostly
random and Gaussian, exhibiting little bias. The subtle
effects of potential outliers can be seen in the residuals for
several monitoring wells. For example, in M1 and M7 the
tail (Figure 11) is slightly increased to the right because of
a couple of measurements that are underpredicted by the
simulated values (see Figure 10). Similarly, the tail is
increased slightly to the left at well M9 because of two
lower concentration measurements that are overpredicted
in the simulations.
[61] The estimated log permeability and standard devia-

tion are shown in Figure 12. The log permeability estimates
are similar for both cases (Figures 12a and 12c), as is the
porosity, and the uncertainty, expressed by the average
standard deviation �log k,ave (Table 4).
[62] Next we compare the permeability estimates with

values derived from slug test data collected at the site
before and after the biostimulation experiment. For this
purpose, the permeability with grid block centers within
25 cm of the wells was averaged using the geometric mean.
In addition, corrections were made to account for the actual
thickness of the aquifer at each well (the effective log per-
meability values estimated through the hydrological inver-
sion correspond to an aquifer with 2.5 m aquifer thickness).
As seen in Figure 13, the slug test values are consistently
lower than the permeability estimates, by around a half
order of magnitude in the monitoring wells, and by up to 2
orders of magnitude in the injection wells. The relatively
poor match between the slug test estimates and the inversion
estimates could be to incorrect assumptions in the slug test
analysis (e.g., errors in the anisotropy value, which was

assumed to be 0.1, or the specified radii of the near-well
materials) or in the conceptual model used for the hydrologi-
cal inversion (e.g., that the porosity is assumed constant, or
errors in the assumed direction of regional groundwater flow).
[63] To investigate whether errors in the assumed direc-

tion of groundwater flow could bias the inversion results,
we performed inversions with the groundwater flow direc-
tion either fixed or considered as an unknown parameter,
thus allowing it to vary from the direction perpendicular to
the line of injection wells. This is accomplished by fixing
the pressure on all boundaries of the model, as opposed to
only on the left and right sides of the model (Figure 1), and
forcing it to satisfy the equation of a plane that is rotated by
�. The angle � is relative to the line that is perpendicular to
the injection wells and increases in the counter clockwise
direction, such that � ¼ 0� and 90� correspond to the gradi-
ent pointing from left to right and from bottom to top,
respectively (Figure 1). While, technically, the angle � can
either be fixed or considered as an additional parameter to
be estimated by inversion, our investigation indicated that
� cannot be uniquely determined along with the remaining
parameters, as its estimated value appears to be quite sensi-
tive to the initial guess of its value.
[64] In case Field-M-10deg, the regional gradient is

assumed to be 10� different from the previous cases (i.e., �
is fixed to 10� for the inversion instead of 0� for the previ-
ous cases). The fit to the concentration data remains similar
to the previous cases Field-M and Field-F, while the aver-
age standard deviation of the estimated log permeability
(�log k;ave) is lower (decreased from 0.434 and 0.436 to
0.403), indicating slightly lower uncertainty. As can be
seen in Figure 12e, the estimated permeability values are
qualitatively very similar to the previous cases as well.
The most obvious impact of rotating the gradient seems to
be a decrease in the estimated log permeability around
half of the injection wells (�6 < y < �1). However,
the permeability estimates for this case do not show a
significantly different match when compared to the slug
test data (Figure 13).
[65] Until now, we assumed that the porosity was con-

stant and estimated its value along with the other hydrolog-
ical parameters, but it is not clear what impact this decision
ultimately has on the estimated permeability values. To
examine this issue, we included an additional case in which
the porosity was made variable (heterogeneous), assumed
to vary as a function of the permeability. For this purpose
we chose a general form of the Bretjinksi model [see de
Marsily, 1986] that was developed for sands: � ¼ a K1/b,

where � is the porosity, K is the hydraulic conductivity
(m d�1), and the empirically determined factors a ¼ 0.117
and b ¼ 7 (see Figure 14). We implemented this relation-
ship in TOUGH2 to make the porosity a function of perme-
ability for case Field-M-VarPor. In addition to the
unknown pilot points, we estimated the parameters a and b
as unknown parameters in the inversion, along with the
remaining parameters (see Table 4). The resulting esti-
mated permeability distribution and standard deviation are
shown in Figures 12g and 12h, respectively, and the esti-
mated porosity-permeability functions are shown in Figure
14. The remarkable similarity between the cases Field-M
and Field-M-VarPor of the parameter estimates, the error
variance, and the other performance measures indicates

Table 5. Summary of 3-D Inversion for Field Data Application

Field-ZlimPP Case

Section 5.2
Description Five zones from facies model; pilot

points outside of wells
Region with lithofacies zones �1 m < x < 12 m, �5 m < y < 5 m
Region with pilot points For x < �1 m, all y; for x > �1 m,

y < �5 m, y > 5 m
Number of observation times 12
Number of bromide data mb 144
Measurement error �bromide

a (mmol) 0.13
Number of pilot points mpp

b 24
Number of unknowns n 29
mb þ mpp � n (equation (A1)) 139
Parameter estimates
Pilot points (PP) Figure 16
log kref �10.73 (60.09)c
log k1 fixed
log k2 �9.89 (60.35)
log k3 �10.69 (60.09)
log k4 �10.96 (60.13)
log k5 fixed
� 0.104 (60.006)

Residual analysis
Error variance s20 (equation (A1)) 0.742 (60.089)
NS (equation (A2))d 0.869 (60.016)

aStandard deviation measurement error assumed for the field data in sec-
tion 5.
bThe pilot point parameters (log permeability values) are given prior

data equal to log kref, with a standard deviation of 1.0.
cAverage value for all realizations followed in parentheses by the stand-

ard deviation.
dNash-Sutcliffe model efficiency.
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that the variations in porosity, at least as it was imple-
mented, does not significantly impact the parameter esti-
mates and may not be significant for transport.
[66] Comparison of the estimated porosity values in

sections 4 and 5 to measured values from the site is made
difficult due to a lack of direct porosity measurements at
the site (e.g., the recovered core at the site is not representa-
tive of the in situ conditions as the largest fraction could
not be collected after coring). So porosity estimates must
be inferred indirectly. For example, despite the uncertainty
in the contents of the cored material, Yabusaki et al. [2011]
used a packing model from the measured grain size distri-
butions from 23 samples to estimate porosity for the repre-
sentative facies (described further in section 5.2), obtaining
values between 0.2 and 0.23, with an overall mean of
0.224. Electrical conductivity logging was also performed
with a Geonics EM-39 borehole sonde tool in most of the
wells in the experimental plot, but translation into porosity
requires knowledge of the fluid electrical conductivity, and
parameters of a function relating bulk electrical conductiv-
ity to porosity [Archie, 1942]. Assuming a value for the
fluid electrical conductivity (2700 mS cm�1) based on a

recent measurement at the site and assuming a range of
possible values of the cementation factor m [see Archie,
1942] provide a possible range for the porosity at the site
(Figure 15). For a value of m between 1.3 and 1.8, which
might be expected for unconsolidated sediments, the aver-
age porosity may range between 0.1 and 0.2, with a stand-
ard deviation between 0.04 and 0.05, which is entirely
consistent with the result shown in Figure 14, and the val-
ues of porosity estimated in previous cases in this study
(around 0.12).

5.2. Results for 3-D Model With Facies-Based
Zonation and Pilot Point Parameterization

[67] So far in this study, it was assumed that a 2-D repre-
sentation of heterogeneity in the hydrological model was
sufficient, and the effects of vertical heterogeneity were
lumped into an effective (depth-averaged) permeability
that varied in the horizontal direction. The choice of a 2-D
model over a 3-D model can be justified for at least two
reasons. First, the thickness of the actual aquifer is small
compared to the horizontal dimensions of the model
domain, which minimizes the importance of accounting

Figure 10. Measured and simulated concentrations for the inversion of field data in case Field-M of
section 5.1 (see Table 4). For monitoring wells M1 to M12, the field data are shown with symbols, and
the inversion results are shown with solid lines (mean of 30 realizations) and dashed lines (mean 62
standard deviations).
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for flow variations in the vertical direction. Second, since
the available data do not contain information about vertical
flow variations (as they are depth-averaged concentrations),
there is insufficient information to parameterize a 3-D
geostatistical model with pilot points (i.e., developing such
a model would lead to nonuniqueness and substantially
increased estimation uncertainty and is thus not justifiable).
[68] While the complexity of the 2-D model and its

parameterization does appear sufficient to reproduce the
measured data (as was demonstrated in section 5.1), it is
known from geologist’s log descriptions that the site
exhibits vertical heterogeneity, and there is interest in bet-
ter understanding the effect of vertical variations on flow
and transport, and on biostimulation in particular. Extend-
ing the 2-D model to 3-D may be possible using facies in-
formation available from geologic data [Yabusaki et al.,
2011].
[69] In this section, we benefit from multiple realizations

of facies models previously developed on the basis of a
geostatistical analysis of geologic data (see Yabusaki et al.
[2011] for details). For a given model, the 3-D facies

distribution is known, and each pixel is assigned a facies
indicator. In total, five facies indicators are considered:
1 for the clay fill layer, 2 for fines, 3 for muddy gravel,
4 for sandy gravel, and 5 for the Wasatch bedrock forma-
tion. In the modeling study of Yabusaki et al. [2011], these
models were used to parameterize a 3-D reactive transport
model for the Big Rusty experiment of 2008. For this pur-
pose, the following values of hydraulic conductivity were
assumed for each facies (the base 10 log of permeability
(m2) is given in parentheses for reference) : for facies 1,
0.1 m d�1 (�12.9); for facies 2, 0.01 m d�1 (�13.9); for
facies 3, 3.0 m d�1 (�11.45); for facies 4, 30.0 m d�1

(�10.45); for facies 5, 1 � 10�5 m d�1 (�16.9).
[70] In the final inversion case for this study, we combine

the 3-D zonation parameterization for the region covered by
facies data (�1 m < x < 12 m and �5 m < y < 5 m and
for all values of z) and a 2-D geostatistical parameterization
for the remaining region (for x < �1 m, all values of y; for
x > �1, y < �5 m or y > 5). In other words, the area cov-
ered by the facies data is vertically heterogeneous and is
described by five zones with a single permeability value

Figure 11. Residuals (difference between measured and simulated concentrations) for the inversion of
field data in case Field-M of section 5.1 (see Table 4). For monitoring wells M1 to M12, the normalized
histograms are shown with solid lines (mean of 30 realizations) and dashed lines (mean 62 standard
deviations), and the corresponding Gaussian model is shown with a gray line.
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each; for the area surrounding the facies data, the perme-
ability is uniform in the vertical direction but heterogene-
ous in the horizontal direction, described by the
geostatistical parameterization using 24 pilot points (with
the same pilot point configuration as was given in section
4.4). In total, the log permeabilities of 3 of the facies zones
are estimated during inversion, in addition to the 24 pilot
point values, the corresponding log kref, and the porosity.

(The permeability in the bedrock is fixed at the value listed
above, as there is insufficient sensitivity in the data to esti-
mate its value. In addition, the clay fill layer is not present
at the depths covered by the 3-D model, so it is not
included.) The inversion process is repeated for 30 realiza-
tions, each using a different facies model realization, and a
different seed number for generating the log permeability
in the geostatistical region containing pilot points.

Figure 12. Results for the 2-D inversion of field data (see section 5.1 and Table 4). The estimated log
permeability for the cases with (a) medium (case Field-M) and (c) fine (case Field-F) pilot point spacing
are shown. (e) Case Field-M-10�, which assumes the gradient is rotated by 10� counterclockwise. (g)
Case Field-M-VarPor, which assumes variable porosity and medium pilot point spacing. (b, d, f, h) The
standard deviation for these cases, respectively.
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[71] Details of the inversions are given in Table 5. The
log permeability for a single inversion realization and the
mean of all 30 realizations are shown in Figures 16a and
16b, respectively. While the error variance is somewhat
increased (s20 ¼ 0.74) relative to the cases in section 5.1
(0.53–0.57), it is nonetheless a remarkable fit, evidenced
by the still large value of NS (0.869), especially consider-
ing the reduced number of parameters required for fitting
the data.

[72] The estimated values of log permeability for facies
2, 3, and 4 are �9.9, �10.7, and �11.0, respectively. While
the values for facies 3 and 4 are similar to the previously
assumed values, the value for facies 2 is significantly
higher.

Figure 13. Permeability values estimated in 2-D inversion cases of section 5.1, as indicated in the
legend, compared with values inferred from slug test data before (pre) and after (post) the experiment for
the (a) monitoring wells and (b) injection wells. The monitoring and injection well locations are shown
in Figure 1 (the injection wells are numbered from top to bottom). Permeability values within 25 cm of
the wells are averaged with geometric averaging.

Figure 14. Mean of the estimated porosity-permeability
relationships obtained by inversion with medium pilot point
spacing and an assumed relationship between porosity and
permeability (case Field-M-VarPor).

Figure 15. Average porosity inferred from electrical con-
ductivity logs as a function of the cementation factor m in
Archie’s law [Archie, 1942], which is used to convert the bulk
electrical conductivity to porosity. The solid line shows the
average value, while the dashed lines represent the average
value 62 standard deviations. The fluid electrical conductiv-
ity was set to 2700 mS cm�1 on the basis of a recent measure-
ment of fluid electrical conductivity at the site collected
during the same time of season as the Winchester experiment.
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[73] No physical explanation is evident for how the esti-
mate of log permeability for the fines could be higher than
for the muddy gravel and sandy gravel units, but it may result
from the limited occurrence of facies 2 in the model. For all
30 realizations, the average percentages of volume corre-
sponding to facies 2, 3, 4, and 5 in the model region covered
by facies data are 6.1, 53.2, 25.9, and 14.8, respectively.
(Recall that the permeability value of facies 5 is fixed in the

inversion.) For the entire model, including the pilot point
region, the corresponding average percentages are 2.4, 21.0,
10.2, and 5.8. The limited occurrence of facies 2 leads to
decreased sensitivity of the measurements to its permeability
value, which may explain its higher estimation uncertainty
(� is 0.35 for facies 2, as opposed to 0.09 and 0.13 for facies
3 and 4, respectively) and higher than expected estimated
value. While not attempted here, one could constrain the

Figure 16. Distributions of log permeability for 3-D models of section 5.2 (a) obtained by a single
inversion realization and (b) obtained by taking the mean of 30 inversion realizations. Note that the color
scales are different, and gray colors indicate values lower than the ranges of the color scales.
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inverse problem to enforce the rank of permeability values
among facies, assuming such rank were known with
confidence.
[74] Permeability values from the 3-D models within

25 cm of the well locations were averaged for comparison
with the slug test data (Figure 17). Two forms of averaging
were done: one in which the nearby values at each depth
were horizontally averaged with the geometric mean, fol-
lowed by averaging of the resulting values in the vertical
direction with the arithmetic mean; and one in which the
geometric mean of all the nearby values was used (regard-
less of direction). The case with the geometric and arithme-
tic averaging results in values that are quite similar to the
values obtained in the 2-D case (compare Figures 13 and
17). However, the 3-D values that were averaged with the
geometric mean are lower, and the match to the slug test
data is closer in some areas. These results suggest that the
slug test measurements could represent a different averag-
ing of permeability than is represented by the depth-
averaged estimates obtained by hydrological inversions
with the 2-D model. Properly determining how near-well
heterogeneity is averaged using different aquifer tests is
possible with additional effort [Wu et al., 2005]. Current
research involving high-resolution modeling of the slug
tests at the Rifle site is underway and will hopefully pro-
vide some guidance on how to interpret such data in the
future at this site and similar sites.

6. Conclusions
[75] We consider the estimation of spatial variations in

permeability and several other parameters through inverse

modeling of tracer data, specifically synthetic and actual
field data associated with the 2007 Winchester experiment
from the DOE Rifle site. This site represents a challenging
setting that reflects the real-world complexities associated
with dynamic, shallow, alluvial aquifers. Our aim is to
highlight and quantify the impact on inversion results of
various decisions related to parameterization, such as the
positioning of pilot points in a geostatistical parameteriza-
tion, the handling of up-gradient regions, the inclusion of
zonal information derived from geophysical data or core
logs, extension from 2-D to 3-D, assumptions regarding the
gradient direction, porosity, and the semivariogram func-
tion, and deteriorating experimental conditions.
[76] A synthetic example that was based on the field

experiment allowed for the impact of subtle changes in
pilot point alignment and spacing to be evaluated. The ho-
mogenous inversions were performed to provide an idea of
the extent to which the measured concentrations were
affected by heterogeneity versus an irregular injection
function. Moving from the coarse to medium spacing pilot
point configuration (essentially decreasing the spacing by
only one grid block) caused a fair improvement but a negli-
gible improvement was found with further reduced spacing
(decreasing the spacing by one more grid block). Shifting
the pilot point networks uniformly by several grid blocks
did not change the results significantly. However, the con-
figuration in which the pilot points were not aligned hori-
zontally did not perform as well as the regular spacing,
suggesting that uniform spacing is better in this type of
application and environment. Intentionally increasing the
integral scale by a factor of 2 did not result in significant
deterioration of the results, which means that some

Figure 17. Vertical average of the permeability values that were estimated in the 3-D inversion of
section 5.2 (case Field-ZLimPP) compared with values inferred from slug test data before (pre) and after
(post) the experiment for the (a) monitoring wells and (b) injection wells. The monitoring and injection well
locations are shown in Figure 1 (the injection wells are numbered from top to bottom). Permeability values
within 50 cm of the wells are averaged in one of two ways: with geometric averaging in the horizontal direc-
tion followed by arithmetic averaging in the vertical direction (circles) or with geometric averaging (stars).
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uncertainty in the geostatistical model due to a lack of site-
specific data can be allowed. We attempted to estimate the
parameter in the inversion but were unable to do so suc-
cessfully; interestingly, the optimization algorithm tended
to increase the integral scale, resulting in a better fit
between the measured and simulated concentrations but
worse parameter estimates.
[77] The handling of the parameterization in the up-gradi-

ent region was far more important than the pilot point spac-
ing. The measured concentrations could not be adequately
simulated with a uniform zone or with unconditioned hetero-
geneity in the up-gradient region. Adding up-gradient pilot
points has the obvious disadvantage of necessitating an
increased number of parameters for inverse modeling.
[78] We also examined parameterization by zonation in

order to reduce the number of unknown parameters by tak-
ing advantage of geometrical information related to geolog-
ical units, even if it is only available for a subset of the
model domain. In the most ideal case in which the facies
distribution is known with five zones over the entire model,
the permeability estimates are improved relative to the geo-
statistical parameterization. However, results are poor
when only three zones are used. Further demonstrating the
sensitivity of the results to details of the zonation informa-
tion, when the five zones are assumed to be known every-
where but slightly inaccurate, the performance declines
severely. In practical application, the success depends
heavily on the resolution and accuracy of the facies model.
However, with multiple realizations of facies, for example,
generated from geostatistical simulation (see section 5.2
and Yabusaki et al. 2011]), the uncertainty in zone geome-
try is naturally taken into account. It was also demonstrated
that the extent of the facies zone is crucial (i.e., the up-
gradient boundary could not be modeled with uniform
properties, but a combination of pilot points and the zona-
tion information worked well).
[79] Inversion of the actual field data was performed first

for a geostatistical parameterization of the permeability
using a 2-D model. Residuals between the measured and
simulated concentrations seem roughly normally distrib-
uted. The match does not improve when inversion is per-
formed with the assumption of a different gradient direction
or even when the porosity is allowed to be variable. The
assumption that the porosity is uniform for this study seems
reasonable so far. The slug test–derived estimates of log
permeability are about 0.5 or 1 order of magnitude lower
than those estimates in the inversion. Inversion was also
extended to 3-D by combining the 3-D facies distributions
with 2-D pilot points. In that case, the depth-averaged per-
meability estimates are similar to the 2-D results when a
geometric average in the horizontal direction followed by
an arithmetic average in the vertical direction is performed.
However, the match to the slug test data is better in some
regions when a geometric mean of the permeability in the 3-D
model is used, indicating that the slug test measurements
could represent a different averaging of permeability than is
represented by the depth-averaged estimates obtained by
hydrological inversions with the 2-D model.
[80] Properly determining how near-well heterogeneity

is averaged using different aquifer tests is possible with
additional effort [Wu et al., 2005]. Current research involv-
ing high-resolution modeling of the slug tests at the Rifle

site is underway and will hopefully provide some guidance
on how to interpret such data in the future at this site and
similar sites.
[81] This study adds to the relatively limited number

of studies that offer guidance on the use of pilot points
in complex real-world experiments involving tracer
data (as opposed to hydraulic head data). It highlights
the importance of proper spatial parameterization of
subsurface heterogeneity, as errors in the model struc-
ture are partly compensated for by estimating biased
property values during the inversion of tracer data.
These biased estimates, while potentially providing an
improved fit to the calibration data, may lead to wrong
interpretations and conclusions (e.g., regarding the
impacts of biostimulation on flow and transport proper-
ties) and reduce the ability of the model to make reli-
able predictions. Influences of heterogeneity outside the
immediate zone of interest cannot be ignored, and
proper attention has to be paid to the averaging scheme
employed when reducing the model dimension. We
demonstrated a combined approach that allows the mod-
eler to flexibly include available information as deter-
ministically as possible, while using a stochastic
method to account for uncertainty where such informa-
tion is not available.

Appendix A: Residual Analysis
[82] To quantify how well model output reproduces meas-

ured data for each inversion case, we analyze the residuals
(the difference between the measured and modeled output)
using two statistical measures: the error variance s20 and the
Nash-Sutcliffe model efficiency (NS).
[83] The a posteriori error variance is the variance of the

weighted residuals given by

S20 ¼
1

mb þ mpp � n
Xmbþmpp
i¼1

di � zi
�i

� �2
; (A1)

where di and zi are the measured and simulated values of
observation i, �i is the standard deviation of the measure-
ment error, mb is the number of bromide concentration
data, mpp is the number of prior data (associated with the
pilot points), and n is the number of parameters estimated
in the inversion. The quantity (mb þ mpp – n) is the degree
of freedom of the inversion.
[84] A popular method for comparing model performance

is given by the NS criterion, which is a measure of the ratio
of model error to variability in the measured data:

NS ¼ 1�
Xmb
i¼1

ðdi � ziÞ2
�Xmb

i¼1
ðdi � dÞ2; (A2)

where d is the mean value of all mb bromide concentration
data. The NS index, which is a number less than or equal to
one, can be interpreted as the relative ability of a model to
predict the data, where NS ¼ 0 indicates that the model is
not better at predicting the data than simply obtaining the
mean of the observed values. Performance levels for the
NS index have been specified as follows [Maréchal, 2004;
Allen et al., 2007]: >0.65, excellent ; between 0.5 and
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0.65, very good; between 0.2 and 0.5, good; <0.2, poor.
Gupta et al. [2009] provide a detailed interpretation of the
NS criterion.

Appendix B: Measures of Parameter Uncer-
tainty and Estimation Error
[85] Several measures are used in this study for quantify-

ing uncertainty in the estimated log permeability (log k).
The mean log k estimate for N inversion realizations is cal-
culated at each grid block i as follows:

hlog kest;ii ¼ 1

N

XN
j¼1
log kjest;i; (B1)

where the superscript j is the realization number. The
standard deviation gives a measure of the corresponding
estimation uncertainty:

�log k;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

ðlog kjest;i � hlog kest;iiÞ
2

vuut ; (B2)

the average standard deviation for all m grid blocks in a
region of interest is given by

�log k;ave ¼ 1

M

XM
i¼1

�log k;i; (B3)

where i is grid block number. This quantity is reported in
Tables 1, 2, and 4.
[86] For cases in section 4 involving a synthetic example

in which the true log k is known, we also report measures
of the average estimation error. One such measure is the
average of the absolute value of the difference between the
true log k values and the mean of the estimated log k values
as follows:

"1 ¼ 1

M

XM
i¼1

jlog ktrue;i � hlog kest;iij: (B4)

A second measure of the estimation error in log k is the
root-mean-square error, defined as

"2 ¼ 1

M

XM
i¼1

ðlog ktrue;i � hlog kest;iiÞ2: (B5)

"1 and "2 are reported in Tables 1, 2, and 3.
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