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ABSTRACT 

We address the problem of monitoring CO2 in 
real time to provide early warning of possible 
leakage. The new data assimilation approach we 
develop takes advantage of the temporal resolu-
tion of continuously acquired seismic survey 
data, and has been tested on a TOUGH2 synthet-
ic CO2 injection model. This Kalman Filter 
(KF) based method is sufficiently fast for online 
data processing and provides risk-based esti-
mates. We also discuss the validity of describing 
the unknown system dynamics using a random 
walk model in the context of CO2 monitoring.     

INTRODUCTION 

Subsurface monitoring is essential for risk man-
agement during many field operations, such as 
CO2 injection during Carbon Capture and Se-
questration (CCS) and Enhanced Oil Recovery 
(EOR), hydraulic fracturing. The key challenge 
in subsurface monitoring is the data assimilation 
(DA)/ filtering problem of reconstructing an un-
observable dynamic process (such as CO2 
plume) using both static data (well-log, seismic 
data) and dynamic data (such as 4-D seismic 
data, or well production data). 
 
Time-lapse seismic surveys have been widely 
adopted for monitoring subsurface fluid flow 
(Lumley 2001). Recent developments in 4D 
seismic and continuous active-source seismic 
monitoring (CASSM) has increased the data 
output frequency to the order of minutes (Daley 
et al. 2007). Thus, there is a growing need for a 
fast data assimilation solution that can update 
the parameter based on the most recently ac-
quired observations, i.e. real-time monitoring.  
 
 
 

On the other hand, practical implementation of 
data assimilation methods for subsurface moni-
toring must also address the challenge of limited 
memory and processing time. Solving the spatio-
temporal process jointly incorporating all data 
sets is time-consuming, whereas sequential fil-
tering only requires storing solutions from the 
last step and processing the measurement from 
the current step, which makes the problem trac-
table for real-time subsurface monitoring pur-
poses. 
 
The general starting point for sequential data 
assimilation is the Bayesian framework, which 
finds the posterior pdf of the parameters and 
model state, i.e., observation-conditioned pa-
rameter estimates at each time instance, given a 
set of measurements and a dynamical model 
with uncertainties. The dynamic model is as-
sumed to be a Markov model, which holds that 
state variables at one time-instant are dependent 
only on the states of the previous time-instant. 
This condition is normally satisfied for most 
dynamic models, such as flow simulators. An-
other assumption is that measurement errors are 
uncorrelated in time. These two assumptions 
allow the Bayesian theorem to be written in a 
recursive fashion. The resulting sequential 
Bayesian filter obviates the need for repro-
cessing previous data, while still preserving the 
influence from measurements at all previous 
time steps during model updating.  
 
Several Bayesian filters have been applied to 
subsurface dynamic imaging problems. For line-
ar dynamic problems, the Kalman Filter gives a 
linear, unbiased, and minimal error-variance 
estimate of the unknown state (Kalman 1960). 
The Extended Kalman Filter (EKF), an adapta-
tion of the Kalman Filter for solving nonlinear 
problems through linearization (Anderson and 
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Moore 1979), has been applied to field environ-
mental monitoring (Nenna, Pidlisecky and 
Knight 2011). However, there are two major 
drawbacks associated with both KF and EKF: 
(1) advancing a covariance matrix in time is 
computationally expensive when the number of 
unknowns is large, and (2) linearization of non-
linear equations by removing high-order terms 
results in the evolution of the approximation 
error (Evensen 2003).  
    
The Ensemble Kalman Filter (EnKF), developed 
by Evensen (1994) provides an alternative solu-
tion for data assimilation of large-scale nonline-
ar problems. A Monte Carlo version of KF, 
EnKF uses a group of random samples (ensem-
ble) to represent the distribution of the unknown 
states. For a linear dynamical model, EnKF will 
converge exactly to KF with larger ensemble 
size. Another sequential Monte Carlo (SMC) 
based filter similar to EnKF is the particle filter. 
However, the particle filter (Doucet, De Freitas 
and Gordon 2001) requires a large number of 
realizations to converge, which makes it compu-
tationally unrealistic for applications to geophys-
ical problems. 
 
In this paper, we form the monitoring problem 
as a linear dynamical problem, and compare the 
performance and computational cost of the Basic 
Kalman Filter, Fast Kalman Filter, and EnKF. 
We propose an algorithm that can incorporate 
fast linear algebra methods to accelerate the sta-
tistical filter, in order to cope with real-time 
high-dimensional problems in subsurface moni-
toring. We also provide a numerical example of 
its application to CO2 monitoring. 
 
DATA ASSIMILATION THEORY 
 
Linear State-Space Model and Random Walk 
Transition Model 
 
When observations are collected in rapid succes-
sion, we can exploit “continuity over time” to 
combine measurements from different time 
steps. The intrinsic state s being monitored is a 
dynamic process governed by a physical model 
f. We can define a state space model (SSM) that 
consists of two time series, an unobservable in-
trinsic state x୩	, k ൒ 1 and an observable intrin-
sic state y୩, k ൒ 1 —their relationship is de-

scribed by y୧ ൌ hሺs୧, v୧ሻ. In the CO2 monitoring 
example, we are interested in tracking the CO2 
plume location, so the intrinsic state to be esti-
mated is CO2 saturation, and the observation is 
seismic survey data. As CO2 pushes its way into 
the pore space, CO2 saturation changes with 
time, and the seismic data we record changes 
accordingly.  
 
We first consider a linear dynamical system 
governed by the Linear Gauss-Markov model: 
 
 s୧ ൌ Fs୧ିଵ ൅ u୧  
 y୧ ൌ Hs୧ ൅ v୧  
 
where F ∈ R୫ൈ୫ is the state transition matrix; it 
represents our knowledge about the temporal 
behavior of s (change in s after one time step); 
the current state depends only on the previous 
state. The vector u୧  is the zero-mean Gaussian 
process noise, with u୧~N	ሺ0, Qሻ, Q is the model 
error covariance matrix. The measurements 
(given data) are denoted d_i, , , , , , ,, , and are re-
lated to x୧ through linear operator H; the meas-
urement noise is modeled as white noise 
v୧~N	ሺ0, Rሻ, where R is a diagonal matrix. 
 
Assuming that the state s୩ is a random variable, 
whose first two moments, mean sො୩  and error 
covariance P୩ , are known, then the mean and 
covariance propagate as follows: 
 

s̅୩ ൌ s̅୩ିଵ 
P୩ ൌ P୩ିଵ ൅ Q୩ 

 
For Gaussian random variables, the probability 
distribution of s is completely characterized by 
its first two moments. Without any observations, 
the linearized forward model can predict the 
next state with large uncertainty. Extra infor-
mation can be extracted from online measure-
ments to improve our knowledge of the states 
and reduce the uncertainty in the system. For a 
linear state-space model, KF will give LMMSE 
estimates of the state given observations. 
  
One common state transition model, the random 
walk model, is usually adopted when data is ac-
quired rapidly, at a rate faster than discernible 
change in the system, in the absence of a valid 
physical model for state evolution (Nenna et al. 
2011). This random-walk-model assumption 
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allows us to write the forecast step in a simple 
linear form, as follows, 

s୩ାଵ ൌ s୩ ൅ u୧ 
 
Given that the dynamics of a complex system 
(e.g. subsurface fluid flow) often depends on 
prior knowledge of parameters with high uncer-
tainties, the random walk model is useful in the 
absence of a reliable physical dynamical model. 
Moreover, the computational cost of Kalman 
Filtering can be greatly reduced given this sim-
ple model.  
 
Basic Kalman Filter 
 
The KF provides Linear Minimum Mean Square 
Error (LMMSE) estimates for the linear state-
space model above. The Kalman filter algorithm 
enables predicting the most likely state s୧ com-
patible with the probabilistic model for the evo-
lution model (state transition matrix F) and the 
measurements (matrix H). There are two steps in 
this algorithm: (1) Forecast Step: projecting 
forward the current state and error covariance to 
obtain an a priori estimate for the next time step; 
(2) Analysis Step: incorporating the new meas-
urements into the a priori estimate to obtain an 
improved a posteriori estimate. The Kalman gain 
K tells you how much weight to put on meas-
urements versus the temporal prediction. 
 
Forecast Step 
 s୤

୩ ൌ Fsୟ୩ିଵ  
 P୤

୩ ൌ FPୟ୩F୘ ൅ Q  
 
Analysis Step 
 
 K ൌ P୤H୘൫HP୤H୘ ൅ R൯

ିଵ
  

 sୟ ൌ s୤ ൅ Kሺy െ Hs୤ሻ  
 Pୟ ൌ ሺI െ KHሻP୤  
 
k: time step index f: forecast, a: analysis 
s: state to be estimated , F: state transition ma-
trix, P: state error covariance matrix, Q: forecast 
error covariance matrix,  R: measurement error 
covariance matrix 
 
For numerical implementations, a more efficient 
algorithm for the analysis step, in which the co-
variance update is at the cost of ܱሺ݉ଶሻ, is as 
follows: 

 P୷୷ ൌ HP୤H୘ , P୶୷ ൌ P୤H୘  

 ൫P୷୷ ൅ R൯B ൌ y െ Hs୤  
 s୩

ୟ ൌ s୩
୤ ൅ MB  

 Pୟ ൌ P୤ െ P୶୷ሺC ൅ RሻିଵP୶୷ ୘  

 
Ensemble Kalman Filter (EnKF) 
 
The EnKF is a Monte Carlo approximation of 
the KF developed to approximate the LMMSE 
estimates when the state dimension is too large 
for KF to propagate the state error covariance in 
a reasonable amount of time, or the linearization 
of the forecast model is not possible.  
 
Consider an ensemble matrix 

X ൌ ሾxଵ, xଶ, … , x୒ሿ, ∈ R୫ൈ୒, 

where each ensemble member x୧ is a realization 
of a known vector. The ensemble mean denoted 
with a bar is given by 

xത ൌ
ଵ

୒
∑ x୧
୒
ଵ  , 

and the ensemble covariance matrix is given by  

Pୣ ൌ
ଵ

୒ିଵ
∑ ሺx୧ െ xതሻሺx୧ െ xതሻ୘୒
ଵ , 

The ensemble perturbation matrix is X′ ൌ X െ Xഥ, 
thus 

Pୣ ൌ X′X′୘/ሺN െ 1ሻ. 

 
Generating an initial state ensemble S and inte-
grating each ensemble member s୧  forward in 
time according to a dynamical model, we have: 

s୧
୤ ൌ As୧ ൅ u୧  or  s୧

୤ ൌ Gሺs୧, u୧ሻ  

Given N realizations of the state vector s and 
observation vector y to form the state perturba-
tion matrix S′ ∈ R୫ൈ୒ and observation perturba-
tion matrix Y′ ∈ R୬ൈ୒ , we have: 

Pୣ୤ ൌ S′୤൫S′୤൯
୘
/ሺN െ 1ሻ  

Rୣ ൌ Y′୤൫Y′୤൯
୘
/ሺN െ 1ሻ 

 
Rewriting the analysis equation in ensemble 
form: 

Kୣ ൌ Pୣ୤H୘൫HP୤
ୣH୘ ൅ Rୣ൯

ିଵ
      

Sୟ ൌ S୤ ൅ KୣሺY െ HS୤ሻ   
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With the perturbation form of the EnKF update, 
the error covariance P୤ does not need to be con-
structed explictly, only the low rank approxima-
tion Pୣ୤ ൌ SᇱSᇱ୘ is used. The ensemble approxi-
mated Kalman Gain thus can be computed at the 
cost of Oሺmሻ, which makes EnKF suitable for 
high-dimensional geophysical problems. The 
perturbation of observation is necessary for the 
EnKF to maintain a sufficient spread in the en-
semble and prevent filter divergence 
(Houtekamer and Mitchell 1998). 
 
Fast Kalman Filter 

The Kalman Filter requires recursively updating 
the state and error covariance. If we denote the 
state dimension using ݉, then the computational 
cost of state update is ܱሺ݉ሻ, while the cost of 
covariance update, according to the Riccati 
equation, is ܱሺ݉ଶሻ . In geophysical problems, 
state dimension ܰ is typically ~10ସ– 10଼, which 
makes updating and storing the state error covar-
iance matrix of size Nଶ at every time step com-
putationally intractable. An alternative idea is to 
compute and store only the covariance matrix 
for measurement prediction ௬ܲ௬ ൌ HP୤H୘ ∈
ܴ௡ൈ௡ and cross covariance P୶୷ ൌ P୤H୘ ∈ ܴ௠ൈ௡. 
Under the random walk forecast model assump-
tion (and state transition matrix F is an identity 
matrix), we show that it is possible to circum-
vent the state error covariance update, thus re-
ducing the computational cost from ܱሺ݉ଶሻ  to 
ܱሺ݉ሻ. 
 
This new algorithm consists of two parts: initial-
ization and update. As a first step, we initialize 
the cross covariance as ்ܳܪ, which is the prod-
uct of model error covariance Q and the trans-
pose of the linear measurement operator. Nor-
mally, the cost of computing this product is  
ܱሺ݉ଶ , ሻ ; however, because Q and H have 
unique structures, we can use fast linear algebra 
methods such as the Fast Multipole Method 
(FMM) hierarchical matrix solver as a blackbox 
to compute the cross covariance at the cost of 
ܱሺ݉ሻ. 
 
During the update step, we recursively update 
the cross covariance at the cost of Oሺmሻ. Then 
Kalman Gain is computed as a function of cross 
covariance, which is then used to update the 
state at the cost of Oሺmሻ. The overall cost of the 

Kalman Filter is now Oሺmሻ, which means that 
the computational cost grows linearly instead of 
quadratically with the state dimension. 
 

Reduce sampling error in EnKF with covari-
ance tapering 
 
From the Monte Carlo theory, the convergence 
rate is 1/√N  regardless of the state dimension 
m. Without any approach for reducing the sam-
pling error, the EnKF is both costly and inaccu-
rate compared to KF. However, covariance ta-
pering or localization can improve the covari-
ance estimates using small sample sizes. It re-
duces the variance in the estimator, but it does 
introduce a bias to the solution. We can choose a 
covariance taper C with a similar structure as P୤ 
so that P୤

ୣ ൌ C	°	P୤
ୣ . C can be selected as an 

identity matrix or a distance-based covariance 

matrix. C ൌ θexp	ሺ
‖୶‖

୪
ሻ.  

 
Because we need to run the forward model for 
each ensemble member at every time step, 
(which is costly), we want to reduce the size of 
the ensemble as much as possible. However, a 
small ensemble size may yield spurious correla-
tions that, when used in the Kalman Gain, can 
cause changes in the state variables over which 
the data has no real influence. Also, in the stand-
ard EnKF, the posterior ensemble is the linear 
combination of the prior ensemble, whose rank 
is less than or equal to Nୣ , yielding a rank-
deficiency problem. To reduce both the sam-
pling error and rank-deficiency problem, we can 
introduce a distance-dependent localization 
(Houtekamer and Mitchell 2001). The localized 
covariance matrix is the Schur product of the 
correlation function ρ  and the original sample 
covariance, ρ	°	Cୱୱ. The small error covariances 
associated with remote observation are removed 
(Aanonsen et al. 2009) and the new EnKF up-
date step is given by 
 

 

Kୣ
ൌ ൣ൫ρH୘൯°൫AୱA୷୘൯൧ൣሺHρHሻ୘°൫A୷A୷୘൯

൅ AୢAୢ
୘൧

ିଵ
 

 
We use the ray operator H to project the correla-
tion function ρ  from R୒౩ൈ୒౩  to R୒౩ൈ୒ౚ . After 
applying localization, the posterior ensemble is 
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not restricted to the subspace spanned by the 
prior ensemble. If the sample covariance is posi-
tive semi-definite, with positive values on the 
diagonal, and the localization matrix is positive 
definite, then from the Schur product theorem, 
the resulting localized covariance matrix is 
guaranteed to be of full rank and positive defi-
nite.   
	
Covariance localization reduces the variance of 
the estimator, yet introduces a bias to the solu-
tion. Ideally, the covariance taper C should have 
a structure similar to the P୤, so that P୤

ୣ ൎ C		°	P୤
ୣ. 

 
 
NUMERICAL EXPERIMENTS  
 
The purpose of these numerical experiments is 
to demonstrate the performance of KF and EnKF 
in reconstructing the dynamic 2-D object (such 
as a CO2 plume) from tomographic measure-
ment (seismic travel time) when no deterministic 
model for the state evolution is given (transition 
matrix F ൌ I).  
 
We use, as data, synthetic results produced by 
TOUGH2 (Pruess, Oldenburg and Moridis 
1999). This model was implemented to recon-
struct the CO2 injection process at the FRIO II 
site using real field parameters as constraints 
(Daley, Ajo-Franklin and Doughty 2011).  In the 
FRIO pilot project, investigators injected, at a 
depth of 1657 m, about 380 tons of CO2 at a rate 
of 76T/day into a 17 m thick blue sand brine 
aquifer, with a dip of 18 degrees, about 30% 
porosity, and permeability of 1 to over 4 darcy. 
The breakthrough time for CO2 at the observa-
tion wells (~30 m apart) was around 2 days. 
Based on well logs and core measurements, a 
realistic model was constructed with layered 
permeability and porosity distribution.   
 
Introducing a petrophysical relationship between 
CO2 saturation and seismic properties, we can 
obtain a time-varying map of seismic velocity 
and attenuation, and then simulate the CASSM  
response—which can then be compared with the 
CASSM field measurement. As previously ob-
served, CO2 is heterogeneously distributed in 
brine water, so that the relation between CO2 
saturation and the change in the seismic velocity 
can be described with a patchy petrophysical 

model better than with the more classic 
Gassmann model. The change in velocity and 
attenuation as a function of CO2 is shown in 
Figure 3 of the previously cited work.  The 
change in velocity is captured by CASSM.  Field 
CASSM is equipped with one piezotube source 
located at 1657 m depth generating 1 kHz seis-
mic signals, and 13 receivers located at varying 
depths. Travel-time measurements are acquired 
every 15 minutes beginning 2 hours after injec-
tion (Daley et al. 2007). The effects of buoyancy 
are particularly pronounced. Simulation and data 
suggest that CO2 flow is straight up near the in-
jection point until it hits the cap rock; then, it 
continues upwards along the dip of the cap rock.  
 

 
Figure 1. Illustration of general seismic crosswell 

setup; a transmitter array is installed at the 
injection well (here: at X-location 0 m) 
and a receiver array is installed at a near-
by monitoring well (here: at X-location 30 
m). The CO2 plume shows up as a de-
crease in velocity. 

 
 
The synthetic CASSM survey design is shown 
in Figure 1. Six sources and 48 receivers are de-
ployed and remain the same over the course of 
CO2 monitoring. The background velocity has 
been removed; only changes in velocity after 
CO2 injection are demonstrated in the graph. 
White Gaussian noise has been added to each 
measurement, resulting in a 65 dB signal-to-
noise ratio (SNR) defined as 
 

SNR ൌ 10 logଵ଴
‖Hs‖ଶ

ଶ

‖v‖ଶ
ଶ  
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Before injection begins, we assume the CO2 in-
duced velocity perturbation is zero, so it is rea-
sonable to assume ݏ଴ ൌ 0 and ଴ܲ ൌ 0, true mod-
el and inversion results from KF and EnKF are 
shown in Figure 2. Pre-injection change in ve-
locity is zero. Three hours after injection, a low-
velocity zone began to form around the injection 
point. Another low velocity zone formed below 
the cap rock and extended laterally over time, 
which is predicted well by the KF result. The 
time interval between adjacent pictures is 30 
hours. Here, our target domain to be imaged is 
between the monitoring wells; thus in the figure, 
only relevant parts are shown. EnKF gives a 
larger relative estimation error than the fast KF.  
 

 
Figure 2. Reconstruct CO2 induced velocity perturba-

tion (slowness in 10-5 s/m) on a 55×59 grid. 
Only the inversion result between the well 
is shown in the graph.   Case I: True slow-
ness change; Case II: slowness change giv-
en by KF; Case III: slowness change given 
by EnKF with linear covariance tapering; 
Case VI: slowness change given by EnKF 
with exponential covariance tapering. 

 

Computational and storage cost is summarized 
in Table 1. Generally, initialization of cross co-
variance exhibits quadratic growth with state 
dimension. However, the Fast Multipole Method 
(FMM) can reduce the cost to ܱሺܰሻ.  The cost 
of state update in 41 time frames also grows lin-
ear with state dimension, as well as the storage 
cost. Thus, we dramatically reduce the computa-
tional cost by updating covariance directly with 
ܱሺܰଶሻ to ܱሺܰሻ. 

 
Table 1. Computational and storage cost of fast KF 

State Di-
mension 

Initial-
ize QHT 

Initialize 
QHT with 

FMM 

State 
update (41 

frames) 

Storage 
Cost 

3245   
(55x59) 

26.37s 31.37s 1.91s 
 

7.5MB 

12753 
(117x109) 

400.9s 91.76s 5.84s 29.4MB 

50778 
(237x217) 

6360.96s 280.07s 21.76s 117MB 

250000 
(500x500) 

N/A 1157.6s N/A 576MB 

 
 
CONCLUSIONS 
 
This paper addresses the problem of subsurface 
monitoring by formulating the problem using a 
linear state-space model. We showed that the 
Kalman Filter-based data assimilation tool can 
reconstruct dynamic objects recursively with 
good quality and computational efficiency. This 
is ideal for real-time monitoring applications in 
which data are collected at a rate faster than a 
discernible change in state. Fast KF with FMM 
significantly reduces the computational cost of 
the Kalman Filter update, from Oሺmଶሻ to Oሺm). 
Localized EnKF also reduces the computational 
cost to Oሺmሻ, yet introduces a bias into the esti-
mation.     
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