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ABSTRACT 

We tried to accelerate the computational speed 
of TOUGH2 simulation by introducing a linear 
computation routine using a Graphics Processing 
Unit (GPU). Libraries for GPU computation 
were introduced, and new solvers for linear 
equations were developed. Out of those, 
CLLUSTB, an ILU preconditioned BiCGSTAB 
solver made with the CULA Sparse, 
demonstrated good performance both in speed 
and accuracy. We introduced the new solvers 
into TOUGH2 to improve its performance and, 
for a sample problem, conducted a natural-state 
three-dimensional simulation of a geothermal 
reservoir. As a result, the routine with GPU was 
1.44 times faster in matrix calculation, and 1.34 
times faster in simulation, than the computed 
results with the iterative solver DLUSTB, 
originally built into TOUGH2. 

INTRODUCTION 

In the numerical simulation of mass and heat 
flows in porous media, calculations of linear 
equations are required, and TOUGH2 spends 
considerable time on them. TOUGH2 includes 
direct and iterative solvers, and the user can 
choose one of them according to the 
characteristics of the model to be simulated. 
Moridis (1995) compared computational 
performances of the matrix computation routines 
built into TOUGH2 and evaluated each 
performance. In this study, we developed new 
routines that we incorporated into TOUGH2 to 
speed up calculation of linear equations, and 
tested these new routines in a simulation 
performance. The entire process described above  
was conducted using a function of a graphics 
processing unit (GPU) parallel computing 
routine.  

MATRIX CALCULATION WITH GPU 

GPU (Graphics Processing Unit) consists of a 
semiconductor chip that has multiple cores for 
parallel computing. GPU has been used for 
image processing, but we used GPU on which a 
part of the computation with respect to matrix 
calculation in TOUGH2 was carried out. For this 
purpose, we developed an operational code 
using CUDA, an integrated development 
environment for GPU in C language. 

Numerical Libraries for GPU 
We developed routines using three libraries for 
matrix computation: CUDA SDK, CUSP, and 
CULA Sparse. These libraries include a variety 
of iterative calculation methods: BiCG, 
BiCGSTAB, BiCGSTAB, and GMRES. These 
methods are described in detail as follows: 

BiCG 
The BiCG (biconjugate gradient) method is an 
algorithm to solve a set of linear equations 
expressed as: 
  bAx =  
 
where A is the square coefficient matrix, x is the 
solution vector, and b is the known vector. This 
method can solve linear equations even if A is 
not symmetric. However, the solving methods 
for asymmetric matrices tend to have difficulty 
with convergence compared to those for 
positive-definite symmetric matrices (Hasegawa 
et al., 2004). 

BiCGSTAB 
The BiCGSTAB (biconjugate gradient 
stabilized) method was developed an 
improvement to BiCG. It has faster and 
smoother convergence capability than the 
original BiCG and the conjugate gradient 
squared method (CGS). In general, it has good 
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performance both in speed and cost, unless the 
matrix is too large (Nodera, 1993). 

BiCGSTAB(l) 
BiCGSTAB(l) is a generalization of BiCGSTAB, 
with l denoting the degree of minimal residual 
polynomials. BiCGSTAB fails computation 
when the imaginary part of eigenvalues of the 
coefficient matrix is large. On the other hand, 
BiCGSTAB(l) can detect and avoid such 
situations by changing the value of l. The 
computational cost depends on the size of l. 

GMRES 
GMRES (generalized minimal residual method 
is a robust Krylov subspace method for 
ansymmetric square matrices (Hayami, Ito, 
2005). Memory usage and computational cost 
increase as the number of iterations increases. 
Using this method the calculation restarts after a 
specified number of iterations, and an 
approximate solution is given as an initial value 
for the subsequent iteration. 

Preconditioners 
In the three libraries above, preconditioners for 
matrix calculation are available as described 
below: 

Jacobi 
The Jacobi preconditioner is a replication of the 
diagonal of the coefficient matrix. The costs of 
generation, memory usage, and application are 
very small. Thus, a user can expect to save 
calculation time when this preconditioner is 
suitable for the matrix. 

Block Jacobi 
The Block Jacobi preconditioner is a replication 
of a block diagonal (of specified size) of the 
coefficient matrix. The calculation time per 
iteration increases when the size of the block 
becomes large. However, processes of both 
generation and application are suitable for the 
GPU. 

ILU(0) 
ILU(0) is the incomplete LU factorization with 
zero(0) fill-in. In application, two triangular 
solvers are used, but these are not well suited for 
parallel computing on GPU. It may thus take up 

longer computing time, but may improve 
convergence significantly for some matrices. 

AINV 
AINV (Approximate INVerse) approximates the 
inverse of the coefficient matrix as follows: 
 
  tZZDA 11 −− ≅  
 
where A-1 is the inverse matrix of A, Z is the 
upper triangular matrix, Zt is the transposed 
matrix, and D is the diagonal matrix. Using this 
method, the operation called dropping  is carried 
out to preserve the sparsity of the preconditioner. 
The dropping operation signifies that the values 
of non-zero elements generated in the process 
are less than a specified threshold value, at 
which point  they are regarded as zero. This 
operation improves computation speed, but has a 
negative influence on convergence, because the 
positive definiteness of the preconditioner is lost 
with this operation (Fujino, 2004). 

AMG based on Smoothed Aggregation 
The multigrid method is an algorithm by which 
to solve differential equations by discretization 
into multiple layers. The algebraic multigrid 
method (AMG) is a modified version of the 
multigrid method, and is available as a solver for 
sparse matrices. AMG based on smoothed 
aggregation makes some aggregations and 
defines the interpolation operator. This can be 
used as a preconditioner by introducing in the 
algorithm. 

PERFORMANCE IMPROVEMENT 

We developed routines by combining iterative 
methods and preconditioners, and then 
compared their performances by simulating 
sample problems with TOUGH2: We used two 
models: Model A , a porous type, and Model B, 
a double porosity type.  

Hardware specification 
In this study, we used Intel Core i7-980X (12 
MBs Cache, 3.33 GHz) as CPU and TeslaC2070 
as GPU. This CPU has six cores and supports 
hyper-threading technology. Thus, it can process 
twelve threads in parallel. Therefore, we used 
only one CPU core for evaluating the parallelism 
of GPU. 
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Performance comparison on the Model-A 
This model has a dimension of 8 km×4.2 km and 
3 km depth. It was divided into 26×8 grids for 
the horizontal plane and 17 layers for the 
vertical plane. Three rock types were assigned; 
Rock1, Rock2, and Atmosphere. Their density 
was 2500 kg/m3, porosity 0.10, heat conductivity 
2.50 W/mºC, and heat capacity 1000 J/kgºC. 
With respect to the permeability, they have 
different values. Rock1 has 1.0×10-16m2, Rock2 
has 1.0×10-13m2, and atmosphere has 1.0×10-11 

m2 for all directions. 
 
Figure1 shows a grid system of Model A. 

 

 
Figure 1. Grid system of Model A 

In Figure 1, the top figure represents the plan 
view at a depth of 200 m; the bottom figure 
represents the vertical cross section along the A-
A’ line in the top figure. High temperature fluid 
of 1.085×106 J/kg at 10kg/s was assigned as a 
source at four grids in the layer of 1400 m to 
1500 m depth (blue squared dots in the figure). 
A hydrostatic condition filled with 15ºC water 
was given as the initial condition. 

Convergence and matrices 
First, we solved a matrix equation generated in 
this simulation using the methods without 
preconditioners. However, the number of 
iterations would soon be too large, and failure of 
calculation was often observed. Then, we 
checked the magnitude of the value for each 
element in the matrix to find that characteristics. 

As a result, we found that the values of element 
varied over a wide range, from 1.0×10-28 to 
1.0×105. Figure 2 shows the distribution of the 
number of elements according to their value. 

 

 
Figure 2. Histogram of the elements of the matrix 

generated in the simulation of Model A 

It is well understood that convergence is difficult 
to attain when the difference between the 
absolute value of the maximum and the 
minimum is large, because this situation leads to 
loss of precision and reduces calculation 
accuracy. The Krylov subspace method is likely 
to be affected significantly by round-off error. 
Thus, it is difficult for these methods to 
converge against such matrices. For solving this 
problem, proper preconditioners needs to be 
introduced.  

Solvers with preconditioners 
We subsequently developed routines by 
combining the solver methods with the 
preconditioners. The routines we developed are 
summarized in Table 1. 
 
We incorporated these routines into TOUGH2 
and simulated the sample problems. The number 
of time steps was set to 100. Then, we compared 
the routines with DLUSTB to evaluate their 
efficiency. DLUSTB is a built-in function of 
TOUGH2 and is BiCGSTAB with ILU 
preconditioner. Five routines, CSJACSTB, 
CSAINVSTB, CSAINVGM, CSSAGM, and 
SDKSTB, are excluded from the comparison 
because of a lack of convergence. 
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Table 1. Routines developed with GPU 

Routine name Library Method Preconditioner 
CLLUBCG 

CULA 
sparse 

BiCG 
ILU 

CLJACBCG Jacobi 
CLBJBCG Block Jacobi 
CLLUSTB 

BiCG 
STAB 

ILU 
CLJACSTB Jacobi 
CLBJSTB Block Jacobi 

CLLUSTBL 
BiCG 

STAB(L) 

ILU 
CLJACSTBL Jacobi 
CLBJSTBL Block Jacobi 
CLLUGM 

GMRES 
ILU 

CLJACGM Jacobi 
CLBJGM Block Jacobi 

CSJACSTB 

Cusp 

BiCG 
STAB 

Jacobi 
CSAINVSTB AINV 

CSSASTB AMG based on 
Smoothed 

Aggregation 
CSJACGM 

GMRES 

Jacobi 
CSAINVGM AINV 

CSSAGM AMG based on 
Smoothed 

Aggregation 
SDKSTB SDK BiCG 

STAB 
None 

 
Table2 shows the simulation time calculated by 
each routine. The results indicate that 
CLLUSTB is the fastest among the developed 
routines. The execution time required by using 
the routines with GPU is 4.29 to 42.8 times as 
long as that with DLSUSTB, as indicated in 
Table 2. This is partly because overhead occurs 
during the exchange of the data between PC and 
GPU. This overhead has no relationship with the 
size of the data to be exchanged, so we can 
assume that the performance of the routines with 
GPU improves as the size of the target matrix 
increases. Therefore, we computed a sample 
problem for Model B with a larger sized matrix, 
and then compared the performances for 
DLUSTB and CLLUSTB. 

Evaluation of accuracy 
We found that CLLUSTB performed at 
relatively faster computation speed compared to 
the other routines. However, even if the 

simulation terminates in a short time, the 
accuracy of computation among the routines 
needs to be confirmed at the same time. Hence, 
we compared the time histories of Model A 
simulation calculated by DLUSTB and 
CLLUSTB. The gridblock that contains fluid 
source was checked in terms of pressure and 
temperature. We found that both routines result 
in the same values. Therefore, CLLUSTB was 
confirmed to have equivalent calculation 
accuracy to DLUSTB. 
 
Table 2. Comparison of execution time 

Routine Execution time (sec) 
CLLUBCG 71.878 
CLJACBCG 129.99 
CLBJBCG 113.08 
CLLUSTB 47.018 
CLJACSTB 65.005 
CLBJSTB 57.456 

CLLUSTBL 52.149 
CLJACSTBL 51.084 
CLBJSTBL 52.683 
CLLUGM 331.46 
CLJACGM 468.64 
CLBJGM 353.27 
CSSASTB 422.57 
CSJACGM 1146.5 
DLUSTB 10.957 

 

Performance comparison on the Model-B 
Next, we conducted simulations to test the 
efficiency of routines with the large-scale Model 
B, increasing the size of matrix. Figure 3 shows 
a grid system of the model. Physical properties 
are the same as those of Model A. 
 
In this evaluation, we used the MINC-method to 
easily increase the number of elements, and then 
measured the calculation time. We assumed the 
same simulation conditions except for the 
number of elements. In Figure 3, the top part of 
the figure represents the plan view at a depth of 
200 m, and the bottom part represents the 
vertical cross section along the A-A’ line in the 
top part. The number of time steps was set to 
3000, and high temperature fluid of 1.085×106 
J/kg at 10 kg/s was assigned as a source. They 
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are placed at the bottom of the model (blue 
squared dots in the figure) to avoid any 
calculation instability caused by the MINC-
model. 

 

 
Figure 3 Grid model of Model B 

When the elements that contain the fluid source 
are processed with the MINC-method, the 
pressure change per unit of time increases, 
because of the small fracture pore volume. 
Therefore, time-step size is reduced significantly 
to ensure numerical stability, and the calculation 
time becomes long. For this reason, we placed 
the sources into the blocks that have large 
volume, allowing a small pressure change with 
the same time step size.  
 
Using this method, we compared DLUSTB with 
CLLUSTB by increasing the number of the 
elements from two to twelve times. The results 
from comparing the computational times of 
CLLUSTB and DLUSTB for 3000 time steps 
are summarized in Tables 3 and 4. Table 3 
shows the matrix-calculation times of the 
routines; Table 4 shows the simulation times of 
the routines. Figure 4 presents the plot of these 

results. From this figure, we can see that 
CLLUSTB performs better than DLUSTB when 
the size of matrix is greater than about 50,000. 
 

Table 3. Comparison of execution time for matrix 
calculation with CLLUSTB and DLUSTB 

Size of Matrix Time(sec) 

 CLLUSTB DLUSTB 

45972 39.80 38.33 
91944 56.97 67.39 

137916 73.79 92.60 
183888 87.07 115.1 
229860 105.0 137.5 
275862 123.1 177.4 

 

Table 4. Comparison of execution time for 
simulation 

Size of Matrix Time (sec) 

 CLLUSTB DLUSTB 

45972 52.99 52.21 
91944 72.10 87.46 

137916 92.42 118.3 
183888 113.7 146.2 
229860 131.7 174.0 
275862 165.1 221.2 

 

 
Figure 4. Comparison of the execution time 

In addition, we verified the effectiveness of the 
GPU when the matrix size is large. In general, 
the larger the size of the matrix, the faster the 
computational times, regardless of the routines. 
The results were approximated using the 
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following equations for DLUSTB and 
CLLUSTB. 
 

5.251004.2:CLLUSTB
 4.211037.8 :DLUSTB

04.14

15.15

+×=

+×=
−

−

Nt
Nt

 
 
where t is the calculation time (sec), and N is the 
size of the matrix. The third term on the right-
hand side is the intercept for the overhead of the 
transferring matrices. From this result, we can 
conclude that performance of the routine with 
GPU improves significantly as the size of the 
matrix increases. 
 
The routine with GPU achieved 1.44 times faster 
matrix calculations and 1.34 times faster 
simulations compared to the computed results 
with the iterative solver DLUSTB, at the matrix 
size of 275,862. 

CONCLUSIONS 

The following conclusions can be drawn: 

(1) Matrix computation on TOUGH2 failed 
when no preconditioners were incorporated. 

(2) The ILU preconditioned BiCGSTAB, 
developed with CULA sparse, performed 
the best among the three libraries: CUDA 
SDK, Cusp, and CULA sparse. The routine 
developed with GPU achieved 1.44 times 
faster matrix calculation, and 1.34 times 
faster overall simulation, compared to the 
computed results with the iterative solver 
DLUSTB at the matrix size of 275,862. 

(3) The computational performance of the 
routine with GPU improves as the size of 
the matrix increases. 
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