
PROCEEDINGS, TOUGH Symposium 2012
Lawrence Berkeley National Laboratory, Berkeley, California, September 17-19, 2012

 - 1 -

PERFORMANCE IMPROVEMENT OF TOUGH2 SIMULATION
WITH GRAPHICS PROCESSING UNIT

Yusuke SHIMOTOKU, Toshiaki TANAKA, Ryuichi ITOI

Faculty of Engineering, Kyushu University
Nishi-ku, Fukuoka, JAPAN 819-0395

e-mail: y-shimotoku@mine.kyushu-u.ac.jp

ABSTRACT

We tried to accelerate the computational speed
of TOUGH2 simulation by introducing a linear
computation routine using a Graphics Processing
Unit (GPU). Libraries for GPU computation
were introduced, and new solvers for linear
equations were developed. Out of those,
CLLUSTB, an ILU preconditioned BiCGSTAB
solver made with the CULA Sparse,
demonstrated good performance both in speed
and accuracy. We introduced the new solvers
into TOUGH2 to improve its performance and,
for a sample problem, conducted a natural-state
three-dimensional simulation of a geothermal
reservoir. As a result, the routine with GPU was
1.44 times faster in matrix calculation, and 1.34
times faster in simulation, than the computed
results with the iterative solver DLUSTB,
originally built into TOUGH2.

INTRODUCTION

In the numerical simulation of mass and heat
flows in porous media, calculations of linear
equations are required, and TOUGH2 spends
considerable time on them. TOUGH2 includes
direct and iterative solvers, and the user can
choose one of them according to the
characteristics of the model to be simulated.
Moridis (1995) compared computational
performances of the matrix computation routines
built into TOUGH2 and evaluated each
performance. In this study, we developed new
routines that we incorporated into TOUGH2 to
speed up calculation of linear equations, and
tested these new routines in a simulation
performance. The entire process described above
was conducted using a function of a graphics
processing unit (GPU) parallel computing
routine.

MATRIX CALCULATION WITH GPU

GPU (Graphics Processing Unit) consists of a
semiconductor chip that has multiple cores for
parallel computing. GPU has been used for
image processing, but we used GPU on which a
part of the computation with respect to matrix
calculation in TOUGH2 was carried out. For this
purpose, we developed an operational code
using CUDA, an integrated development
environment for GPU in C language.

Numerical Libraries for GPU
We developed routines using three libraries for
matrix computation: CUDA SDK, CUSP, and
CULA Sparse. These libraries include a variety
of iterative calculation methods: BiCG,
BiCGSTAB, BiCGSTAB, and GMRES. These
methods are described in detail as follows:

BiCG
The BiCG (biconjugate gradient) method is an
algorithm to solve a set of linear equations
expressed as:
 bAx =

where A is the square coefficient matrix, x is the
solution vector, and b is the known vector. This
method can solve linear equations even if A is
not symmetric. However, the solving methods
for asymmetric matrices tend to have difficulty
with convergence compared to those for
positive-definite symmetric matrices (Hasegawa
et al., 2004).

BiCGSTAB
The BiCGSTAB (biconjugate gradient
stabilized) method was developed an
improvement to BiCG. It has faster and
smoother convergence capability than the
original BiCG and the conjugate gradient
squared method (CGS). In general, it has good

 - 2 -

performance both in speed and cost, unless the
matrix is too large (Nodera, 1993).

BiCGSTAB(l)
BiCGSTAB(l) is a generalization of BiCGSTAB,
with l denoting the degree of minimal residual
polynomials. BiCGSTAB fails computation
when the imaginary part of eigenvalues of the
coefficient matrix is large. On the other hand,
BiCGSTAB(l) can detect and avoid such
situations by changing the value of l. The
computational cost depends on the size of l.

GMRES
GMRES (generalized minimal residual method
is a robust Krylov subspace method for
ansymmetric square matrices (Hayami, Ito,
2005). Memory usage and computational cost
increase as the number of iterations increases.
Using this method the calculation restarts after a
specified number of iterations, and an
approximate solution is given as an initial value
for the subsequent iteration.

Preconditioners
In the three libraries above, preconditioners for
matrix calculation are available as described
below:

Jacobi
The Jacobi preconditioner is a replication of the
diagonal of the coefficient matrix. The costs of
generation, memory usage, and application are
very small. Thus, a user can expect to save
calculation time when this preconditioner is
suitable for the matrix.

Block Jacobi
The Block Jacobi preconditioner is a replication
of a block diagonal (of specified size) of the
coefficient matrix. The calculation time per
iteration increases when the size of the block
becomes large. However, processes of both
generation and application are suitable for the
GPU.

ILU(0)
ILU(0) is the incomplete LU factorization with
zero(0) fill-in. In application, two triangular
solvers are used, but these are not well suited for
parallel computing on GPU. It may thus take up

longer computing time, but may improve
convergence significantly for some matrices.

AINV
AINV (Approximate INVerse) approximates the
inverse of the coefficient matrix as follows:

 tZZDA 11 −− ≅

where A-1 is the inverse matrix of A, Z is the
upper triangular matrix, Zt is the transposed
matrix, and D is the diagonal matrix. Using this
method, the operation called dropping is carried
out to preserve the sparsity of the preconditioner.
The dropping operation signifies that the values
of non-zero elements generated in the process
are less than a specified threshold value, at
which point they are regarded as zero. This
operation improves computation speed, but has a
negative influence on convergence, because the
positive definiteness of the preconditioner is lost
with this operation (Fujino, 2004).

AMG based on Smoothed Aggregation
The multigrid method is an algorithm by which
to solve differential equations by discretization
into multiple layers. The algebraic multigrid
method (AMG) is a modified version of the
multigrid method, and is available as a solver for
sparse matrices. AMG based on smoothed
aggregation makes some aggregations and
defines the interpolation operator. This can be
used as a preconditioner by introducing in the
algorithm.

PERFORMANCE IMPROVEMENT

We developed routines by combining iterative
methods and preconditioners, and then
compared their performances by simulating
sample problems with TOUGH2: We used two
models: Model A , a porous type, and Model B,
a double porosity type.

Hardware specification
In this study, we used Intel Core i7-980X (12
MBs Cache, 3.33 GHz) as CPU and TeslaC2070
as GPU. This CPU has six cores and supports
hyper-threading technology. Thus, it can process
twelve threads in parallel. Therefore, we used
only one CPU core for evaluating the parallelism
of GPU.

 - 3 -

Performance comparison on the Model-A
This model has a dimension of 8 km×4.2 km and
3 km depth. It was divided into 26×8 grids for
the horizontal plane and 17 layers for the
vertical plane. Three rock types were assigned;
Rock1, Rock2, and Atmosphere. Their density
was 2500 kg/m3, porosity 0.10, heat conductivity
2.50 W/mºC, and heat capacity 1000 J/kgºC.
With respect to the permeability, they have
different values. Rock1 has 1.0×10-16m2, Rock2
has 1.0×10-13m2, and atmosphere has 1.0×10-11

m2 for all directions.

Figure1 shows a grid system of Model A.

Figure 1. Grid system of Model A

In Figure 1, the top figure represents the plan
view at a depth of 200 m; the bottom figure
represents the vertical cross section along the A-
A’ line in the top figure. High temperature fluid
of 1.085×106 J/kg at 10kg/s was assigned as a
source at four grids in the layer of 1400 m to
1500 m depth (blue squared dots in the figure).
A hydrostatic condition filled with 15ºC water
was given as the initial condition.

Convergence and matrices
First, we solved a matrix equation generated in
this simulation using the methods without
preconditioners. However, the number of
iterations would soon be too large, and failure of
calculation was often observed. Then, we
checked the magnitude of the value for each
element in the matrix to find that characteristics.

As a result, we found that the values of element
varied over a wide range, from 1.0×10-28 to
1.0×105. Figure 2 shows the distribution of the
number of elements according to their value.

Figure 2. Histogram of the elements of the matrix

generated in the simulation of Model A

It is well understood that convergence is difficult
to attain when the difference between the
absolute value of the maximum and the
minimum is large, because this situation leads to
loss of precision and reduces calculation
accuracy. The Krylov subspace method is likely
to be affected significantly by round-off error.
Thus, it is difficult for these methods to
converge against such matrices. For solving this
problem, proper preconditioners needs to be
introduced.

Solvers with preconditioners
We subsequently developed routines by
combining the solver methods with the
preconditioners. The routines we developed are
summarized in Table 1.

We incorporated these routines into TOUGH2
and simulated the sample problems. The number
of time steps was set to 100. Then, we compared
the routines with DLUSTB to evaluate their
efficiency. DLUSTB is a built-in function of
TOUGH2 and is BiCGSTAB with ILU
preconditioner. Five routines, CSJACSTB,
CSAINVSTB, CSAINVGM, CSSAGM, and
SDKSTB, are excluded from the comparison
because of a lack of convergence.

0
2
4
6
8

10
12
14
16

1.
E-

28

1.
E-

25

1.
E-

22

1.
E-

19

1.
E-

16

1.
E-

13

1.
E-

10

1.
E-

07

1.
E-

04

1.
E-

01

1.
E+

02

1.
E+

05

Magnitude of the values

Distribution(%)

 - 4 -

Table 1. Routines developed with GPU

Routine name Library Method Preconditioner
CLLUBCG

CULA
sparse

BiCG
ILU

CLJACBCG Jacobi
CLBJBCG Block Jacobi
CLLUSTB

BiCG
STAB

ILU
CLJACSTB Jacobi
CLBJSTB Block Jacobi

CLLUSTBL
BiCG

STAB(L)

ILU
CLJACSTBL Jacobi
CLBJSTBL Block Jacobi
CLLUGM

GMRES
ILU

CLJACGM Jacobi
CLBJGM Block Jacobi

CSJACSTB

Cusp

BiCG
STAB

Jacobi
CSAINVSTB AINV

CSSASTB AMG based on
Smoothed

Aggregation
CSJACGM

GMRES

Jacobi
CSAINVGM AINV

CSSAGM AMG based on
Smoothed

Aggregation
SDKSTB SDK BiCG

STAB
None

Table2 shows the simulation time calculated by
each routine. The results indicate that
CLLUSTB is the fastest among the developed
routines. The execution time required by using
the routines with GPU is 4.29 to 42.8 times as
long as that with DLSUSTB, as indicated in
Table 2. This is partly because overhead occurs
during the exchange of the data between PC and
GPU. This overhead has no relationship with the
size of the data to be exchanged, so we can
assume that the performance of the routines with
GPU improves as the size of the target matrix
increases. Therefore, we computed a sample
problem for Model B with a larger sized matrix,
and then compared the performances for
DLUSTB and CLLUSTB.

Evaluation of accuracy
We found that CLLUSTB performed at
relatively faster computation speed compared to
the other routines. However, even if the

simulation terminates in a short time, the
accuracy of computation among the routines
needs to be confirmed at the same time. Hence,
we compared the time histories of Model A
simulation calculated by DLUSTB and
CLLUSTB. The gridblock that contains fluid
source was checked in terms of pressure and
temperature. We found that both routines result
in the same values. Therefore, CLLUSTB was
confirmed to have equivalent calculation
accuracy to DLUSTB.

Table 2. Comparison of execution time

Routine Execution time (sec)
CLLUBCG 71.878
CLJACBCG 129.99
CLBJBCG 113.08
CLLUSTB 47.018
CLJACSTB 65.005
CLBJSTB 57.456

CLLUSTBL 52.149
CLJACSTBL 51.084
CLBJSTBL 52.683
CLLUGM 331.46
CLJACGM 468.64
CLBJGM 353.27
CSSASTB 422.57
CSJACGM 1146.5
DLUSTB 10.957

Performance comparison on the Model-B
Next, we conducted simulations to test the
efficiency of routines with the large-scale Model
B, increasing the size of matrix. Figure 3 shows
a grid system of the model. Physical properties
are the same as those of Model A.

In this evaluation, we used the MINC-method to
easily increase the number of elements, and then
measured the calculation time. We assumed the
same simulation conditions except for the
number of elements. In Figure 3, the top part of
the figure represents the plan view at a depth of
200 m, and the bottom part represents the
vertical cross section along the A-A’ line in the
top part. The number of time steps was set to
3000, and high temperature fluid of 1.085×106
J/kg at 10 kg/s was assigned as a source. They

 - 5 -

are placed at the bottom of the model (blue
squared dots in the figure) to avoid any
calculation instability caused by the MINC-
model.

Figure 3 Grid model of Model B

When the elements that contain the fluid source
are processed with the MINC-method, the
pressure change per unit of time increases,
because of the small fracture pore volume.
Therefore, time-step size is reduced significantly
to ensure numerical stability, and the calculation
time becomes long. For this reason, we placed
the sources into the blocks that have large
volume, allowing a small pressure change with
the same time step size.

Using this method, we compared DLUSTB with
CLLUSTB by increasing the number of the
elements from two to twelve times. The results
from comparing the computational times of
CLLUSTB and DLUSTB for 3000 time steps
are summarized in Tables 3 and 4. Table 3
shows the matrix-calculation times of the
routines; Table 4 shows the simulation times of
the routines. Figure 4 presents the plot of these

results. From this figure, we can see that
CLLUSTB performs better than DLUSTB when
the size of matrix is greater than about 50,000.

Table 3. Comparison of execution time for matrix
calculation with CLLUSTB and DLUSTB

Size of Matrix Time(sec)

 CLLUSTB DLUSTB

45972 39.80 38.33
91944 56.97 67.39

137916 73.79 92.60
183888 87.07 115.1
229860 105.0 137.5
275862 123.1 177.4

Table 4. Comparison of execution time for
simulation

Size of Matrix Time (sec)

 CLLUSTB DLUSTB

45972 52.99 52.21
91944 72.10 87.46

137916 92.42 118.3
183888 113.7 146.2
229860 131.7 174.0
275862 165.1 221.2

Figure 4. Comparison of the execution time

In addition, we verified the effectiveness of the
GPU when the matrix size is large. In general,
the larger the size of the matrix, the faster the
computational times, regardless of the routines.
The results were approximated using the

0

50

100

150

200

250

300

0 100000 200000 300000

Ti
m

e
(s

ec
)

Size of the matrix

CLLUSTB
matrix

DLUSTB
matrix

CLLUSTB
simulation

DLUSTB
simulation

 - 6 -

following equations for DLUSTB and
CLLUSTB.

5.251004.2:CLLUSTB
 4.211037.8 :DLUSTB

04.14

15.15

+×=

+×=
−

−

Nt
Nt

where t is the calculation time (sec), and N is the
size of the matrix. The third term on the right-
hand side is the intercept for the overhead of the
transferring matrices. From this result, we can
conclude that performance of the routine with
GPU improves significantly as the size of the
matrix increases.

The routine with GPU achieved 1.44 times faster
matrix calculations and 1.34 times faster
simulations compared to the computed results
with the iterative solver DLUSTB, at the matrix
size of 275,862.

CONCLUSIONS

The following conclusions can be drawn:

(1) Matrix computation on TOUGH2 failed
when no preconditioners were incorporated.

(2) The ILU preconditioned BiCGSTAB,
developed with CULA sparse, performed
the best among the three libraries: CUDA
SDK, Cusp, and CULA sparse. The routine
developed with GPU achieved 1.44 times
faster matrix calculation, and 1.34 times
faster overall simulation, compared to the
computed results with the iterative solver
DLUSTB at the matrix size of 275,862.

(3) The computational performance of the
routine with GPU improves as the size of
the matrix increases.

REFERENCES

Fujino, S., Robustness and Efficiency of Recent
Preconditioners of CG Methods, RIMS
Kokyuroku 1362, 13-21, 2004 (in Japanese)

Hasegawa, H., Sogabe, T., and Ogita, T. CG
Method for Symmetric Matrices Generated
by Unsymmetric Matrices, RIMS Kokyuroku
1362, 6-12, 2004 (in Japanese)

Hayami, K., T. Ito, Solution of Least Squares
Problems Using GMRES Methods,
Proceedings of the Institute of Statistical
Mathematics Vol. 53, No. 2, 331-348, 2005
(in Japanese with English abstract)

Moridis, G. J., A New Set of Direct and Iterative
Solvers for the TOUGH2 Family of Codes,
Report LBL-37066, Lawrence Berkeley
National Laboratory, Berkeley, Calif., 1999.

Nodera, T., Overview of Solving Method for
Sparse Matrices, RIMS Kokyuroku 832, 127-
136, 1993(in Japanese)

	ABSTRACT
	introduction
	matrix calculation with gpu
	Numerical Libraries for GPU
	BiCG
	BiCGSTAB
	BiCGSTAB(l)
	GMRES

	Preconditioners
	Jacobi
	Block Jacobi
	ILU(0)
	AINV
	AMG based on Smoothed Aggregation

	Performance improvement
	Hardware specification
	Performance comparison on the Model-A
	Convergence and matrices
	Solvers with preconditioners
	Evaluation of accuracy

	Performance comparison on the Model-B

	conclusionS
	REFERENCES

