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ABSTRACT 

Here we present a specific method for global 
optimization of parameters within a model for 
multiphase flow in porous media. This model, 
which involves a search for first-order saddle 
points and the minima of an objective function 
obtained from the iTOUGH2 code, has been 
implemented within the EON software for 
distributed and cloud computing. While it can be 
applied to problems with a large number of 
parameters, the application presented here is a 
simple illustrative model of the Laugarnes 
geothermal area in Reykjavík, Iceland, 
calibrated in two-dimensional parameter space. 

INTRODUCTION 

The development of reservoir models often 
involves inverse modeling, which consists of 
estimating model parameters from measure-
ments of system response made at discrete 
points in space and time. The difference between 
model calculations and the data at calibration 
points is measured by the objective function. 
This objective function could, for example, be 
the sum of the squares of the difference between 
calculated model output and field-measured 
data. Estimating model parameters is then 
formulated as an optimization problem, in which 
the goal is to find the parameter values that 
minimize the objective function. 
 
Even for small models with only a few parame-
ters, the objective function can have more than 
one minimum. This is illustrated in Figure 1, 
which shows a 1D cut through an objective 
function for the model described below. Within 
the interval shown, three local minima appear.  

 
The occurrence of multiple minima is more 
likely in models with a larger number of param-
eters.  The main task then becomes that of 
finding the global minimum of a function among 
the several local minima—a very challenging 
problem. It is also important to know whether 
additional local minima, which are insignifi-
cantly higher (compared with estimated error 
bars), are present and could represent equally 
good parameter sets for practical purposes. 
 

 
Figure 1. A 1-dimensional cut through the objective 

function for the model system studied 
here, illustrating the problem of multiple 
local minima.  The goal is to find the 
global minimum (vicinity of -14.1) among 
the local minima. 

Global optimization of functions of many varia-
bles is often carried out using simulated anneal-
ing algorithms that roughly mimic the annealing 
of materials. The 1983 article by Kirkpatrick, 
Gelatt and Vecchi (Kirkpatrick 1983) illustrated 
how such an approach could be applied to circuit 
design. This article has since been cited exten-
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sively, and the authors’ method applied to many 
different optimization problems. There, the 
objective function is taken to represent an 
“energy” of the system, and a fictitious temper-
ature is introduced. By applying a Monte Carlo 
algorithm, we can simulate the annealing 
process by accepting or rejecting changes in the 
arguments of the objective function. The reason 
for introducing temperature is to introduce and 
control the probability of accepting increases in 
the objective function, since they may be an 
essential intermediate step in ultimately reaching 
lower function values. 
 
A central issue in simulated annealing calcula-
tions is the time scale of the “cooling” of the 
system, from high temperatures to zero temper-
ature. The lower the cooling rate, the more likely 
the method will find the global minimum. For a 
given amount of computational effort, a method 
that can simulate longer time intervals is there-
fore more likely to reach the global minimum.  
 
One method for long time-scale simulations, 
known as the adaptive kinetic Monte Carlo 
(AKMC) algorithm, has recently been developed 
(Henkelman 2001) in the context of transitions 
for atomic-scale systems. It can be used for 
global optimization in a way that is analogous to 
simulated annealing (Pedersen 2012). The 
important feature of this approach is the ability 
to move from one local minimum of the objec-
tive function to another, via paths that lie close 
to first-order saddle points. The saddle points are 
found using the minimum mode following 
method (Henkelman 1999). The kinetic Monte 
Carlo algorithm is used to select between the 
determined possible paths through different 
saddle points. Alternatively, the path lying 
through the lowest saddle point leading to a new 
local minimum can be chosen, in which case a 
temperature does not need be defined (Pedersen 
2012). The advantage of this algorithm over the 
original simulated annealing algorithm is that 
fewer objective-function evaluations are needed 
to move from one local minimum to another. 
Also, the objective function only gets evaluated 
for parameter values for which its value is rela-
tively small, while the regions with excessively 
high values for the objective function are 
avoided. 

CONCEPTUAL AND NUMERICAL 
MODEL  

Here, we apply this algorithm to a specific 
geothermal modeling problem. Laugarnes is a 
low-temperature field in Iceland, which has been 
described in some detail by Thorsteinsson and 
Eliasson (1970). This geothermal area is fed by 
three aquifers: Aquifer A with water of 110–
120°C, Aquifer B with water of 135°C and 
Aquifer C with water of temperature of 146°C. 
Tuffs and sediments act as aquicludes between 
the aquifers. The active reservoir underlies an 
area of 5 km2 within the city of Reykjavik and 
has a base temperature about 145°C 
(Bodvarsson 1978). Prior to exploitation, the 
hydrostatic pressure at the surface in the 
geothermal field was 6–7 bars (Einar 
Gunnlaugsson et al., 2000) and about 10 L/s of 
88°C water issued in free flow from the hot 
spring. (Thorsteinsson and Eliasson 1970). 
 

 
Figure 2. Aerial partial view of Voronoi mesh used 

to model the area. Red and blue circles 
production and observation wells 
respectively. 

To build a simplified model for this area, we 
created a mainly hexagonal Voronoi mesh with 
38 volume elements, covering an area of 12 km2 
(Figure 2). The model extends to 2235 m depth 
in eight layers. There is a single volume element 
at layer 1 and at layer 8, both of which are 
inactive and represent the reservoir top and 
bottom. Layers 3, 5, and 7 represent aquifers A, 
B and C respectively; layers 2, 4, and 6 represent 
aquicludes and were assigned lower permeabil-
ity values (Figure 3). 
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Figure 3. View of layers used in the model. Colors 

correspond to different material proper-
ties. 

A 3D representation of the geometry of the 
model can be seen in Figure 4. The red point at 
the surface represents the location of an obser-
vation well, while the blue point represents the 
location of a hot spring. Thus, a well on deliver-
ability was defined there acting as a sink. 
 

 
Figure 4. 3D view of the model. Colors correspond 

to different material properties The blue 
and red points at the top layer represent 
the location of hot spring (water sink) and 
an observation well respectively. 

Two types of sources have been included: first, a 
mass source located at the bottom of the reser-
voir was positioned in the area where the upflow 
is thought to be located. Second, heat sources 
where placed at scattered positions on the 
bottom (Figure 5). 
 

 
Figure 5. Semi-transparent 3D view of the model. 

The red starts at the bottom layer repre-
sents the heat sources distribution and the 
green start signifies a water source. 

Six calibration points are used (Figure 6). The 
red line in Figure 6 represents the observation 
well; it has four calibration points at four differ-
ent depths. Starting from the top, point 1 repre-
sents pressure at the top of reservoir. Points 2, 3 
and 4 represent temperatures in aquifer A, B, 
and C respectively. Points 5 and 6 are in the 
same location and represent the water flow rate 
from the hot spring and enthalpy of its water. 
 

 
Figure 6. Semi-transparent 3D view of the model. 

From the top, points from 1 to 4 in red 
color and 5 to 6 in blue color are calibra-
tion points. Points 5 and 6 coincide in the 
same position. 

This model has been constructed to represent a 
realistic system, but at the same time be simple 
enough to allow tests and studies of the perfor-
mance of the optimization algorithm. Focus is 
mainly on the inverse modeling, so it was 
decided to generate the data at the calibration 
points, add some Gaussian noise, and then use 
this as a representation of the real data for the 
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natural-state calibration process. Reasonable 
values were chosen for the fixed parameters in 
the model, i.e., those that will not change during 
the optimization, in order to produce a model 
result close to what already has been reported 
for this region. Fitting the generated data instead 
of what is measured has the main advantage that 
the location of the minimum is known before-
hand, which makes the analysis of the optimiza-
tion algorithm simpler. 

OBJECTIVE FUNCTION 

The objective function may be close to quadratic 
or highly nonlinear in nature; it may be continu-
ous, differentiable, and smooth; or discontinu-
ous, not differentiable, and rough. For a nonlin-
ear model, the topography of the objective 
function away from the minimum becomes intri-
cate, making it difficult for the optimization 
algorithm to iteratively proceed towards the 
minimum (Finsterle, 2007). 
 
The two-dimensional optimization problem 
addressed here originates from the calibration of 
the simplified model described above. In this 
case, the objective function is the squared 
deviation between “observed” and calculated 
pressure at calibration point 1, temperature at 
calibration points 2 to 4, and water flow rate and 
water enthalpy at calibration points 5 and 6 
respectively. Figure 7 shows the shape of the 
objective function in the parameter space 
defined by the logarithm of mass generation rate 
(log(q)) and the logarithm of permeability 
(log(k)) for the aquiclude layers—obtained using 
the Grid Search Method implemented in 
iTOUGH2. It should be noticed that within the 
interval for the permeability between -17.0 and 
15.5 the objective function is not smooth. It 
furthermore shows some point-like discontinui-
ties that probably are caused by numerical insta-
bilities in the forward model. Thus, our focus 
will mainly be on the smooth regions. 
 
Note that the contour lines in Figure 8 show that 
the objective function has three minima. The 
global minimum is known to be located for 
log(k)=-14.00 and log(q)=1.00, (will be referred 
as M2), but two local minima also occur, one at 
log(k)=-16.46 and log(q)=1.10 (M1) and another 
at log(q)=12.79 and log(q)=1.76 (M3). Between 
minima M1 and M2, there is a first-order saddle 

point (SP1), and between M2 and M3, there is 
another first-order saddle point (SP2). 
 

 
Figure 7. The objective function for the simplified 

model, as a function of two variables: 
log(generation rate) on the x-axis and 
log(permeability) on the y-axis. Between -
17.0 and 15.5 it shows some point-like 
discontinuities that probably are caused 
by numerical instabilities in the forward 
model 

Both local minima correspond to a significantly 
higher value of the objective function, but they 
will attract minimization paths started from 
nearby regions in parameter space.  While it can 
easily be discounted in this simple two-dimen-
sional problem, this can be a severe problem for 
models involving many parameters. Further-
more, more complex problems are also likely to 
have more local minima, several of which can 
have reasonable values for the parameters. 

FINDING THE NEAREST LOCAL 
MINIMUM 

The Levenberg-Marquardt minimization 
algorithm is found to perform well for most 
iTOUGH2 applications (Finsterle, 2007). It can 
be made to converge efficiently by selecting 
appropriate values for convergence parameters, 
but as for most other local minimization 
algorithms, it only strives to converge to the 
minimum closest to the initial guess of the 
model parameters. Figure 8 shows the solution 
paths, for the Levenberg-Marquardt minimiza-
tion algorithm, starting from four different initial 
guesses.  If the initial guess is in vicinity of the 
global minimum, the method converges to it. 
But if the initial guess is not in the proximity of 
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the global minimum, the method converges to 
the higher local minima. A region of parameter 
space leads to convergence to local minima. 
 

 
Figure 8: Contour lines of the objective function 

and solution paths of Levenberg-
Marquardt minimization algorithm in the 
2D parameter space log (g)-log(k), 
starting from 4 different points. The 
squares represent initial guesses that lead 
to convergence to local minima. The 
circles represent initial guesses that lead 
to convergence to the global minimum. 
This illustrates the possibility that a 
minimization from an initial guess of the 
parameter values can lead to convergence 
to a local minimum with a substantially 
higher value of the objective function than 
the global minimum. 

This example illustrates the need for exploring 
the objective-function surface beyond just 
finding the local minimum nearest to the initial 
guess. While it is easy to envision setting up 
enough minimization calculations to cover a fine 
grid of possible initial guesses for all parameters 
when the number of parameters is small, this 
will quickly become unmanageable as the 
number of parameters increases.  

SEARCHING FOR MULTIPLE MINIMA 

The task of finding the global minimum of a 
function with multiple local minima is 
challenging—the only method that is guaranteed 
to work is a simulated annealing method requir-
ing an impossibly slow cooling rate and impos-
sibly large computational effort. Therefore, we 
need a more efficient method for dealing with 
objective functions with multiple local minima. 
 
The AKMC algorithm can be applied to explore 
functions with multiple minima. The basic 
feature of this algorithm is the ability to climb 
up the objective function surface to focus on 
regions around first-order saddle points. The 

algorithm thereby gains the ability to reach new 
minima adjacent to a known minimum. In a 
simulated annealing formulation, the new 
minimum can be accepted or rejected based on 
the difference in objective-function values and 
the current value of the temperature (Pedersen 
2012). Alternatively, a map of the minima can 
be generated, with each additional minimum 
selected based on the height of the first-order 
saddle point on the path to the minimum. 
 
The AKMC algorithm works by the following 
principle (for a more detailed description, see 
Henkelman (2001) and Pedersen (2011)).  For a 
given local minimum, several saddle-point 
searches are carried out (on the order of 10 to 
100), starting from a random change in the 
model parameters. To initialize each search, we 
impose a small change in the parameter values at 
the minimum, generated from a Gaussian 
random distribution.  For each of the perturbed 
parameter values, the minimum mode following 
method (Henkelman, 1999) is then used to climb 
up the objective-function surface and home in on 
a first-order saddle point. Such searches are 
continued, using a probabilistic confidence 
estimate, until additional searches reveal no new 
low-lying saddle points (Xu 2008). 
 
The most important aspect of the AKMC 
method is the slow increase in computational 
effort with the increase in the number of param-
eters. This method was originally developed to 
search for transition mechanisms and find stable 
arrangements of atoms in solids.  It has been 
applied successfully to systems with thousands 
of parameters (atom coordinates in those cases). 
It has been implemented in software for both 
distributed computing and cloud computing 
(Pedersen 2010), making it possible to use 
multiple CPUs simultaneously connected by a 
simple internet connection. Idle time on 
computer clusters or personal computers can be 
used to carry out the calculations. The saddle-
point searches are farmed out to the various 
CPUs, and the saddle points and minima found 
are reported back to the server, which keeps 
track of them. 
 
We carried out calculations using this algorithm 
for the simplified test problem, one starting from 
an initial point close to the global minimum and 
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another from an initial point close to a local 
minimum.  In either case, both the global and the 
local minimum are found (to within a chosen 
tolerance in the gradient).   
 

 

Figure 9. AKMC minimization path from initial 
guess represented as a blue square. It 
converges to the global minimum (path in 
blue), given an initial displacement (black 
dotted line) it climbs up to converge to the 
saddle point (path in red), given a 
displacement from saddle point (black 
dotted line) it converges also to the local 
minimum. 

Figure 9 shows the minimization path using 
AKMC. From the initial guess (-15.0, 0.6), 
represented in the figure as a blue square, the 
path converges to the global minimum through 
the blue path. Then, after a small increment in 
parameter values, it starts a climb up the objec-
tive-function surface and converges on a first-
order saddle point to a rather loose tolerance. 
After a displacement along the mode for which 
the saddle point is a maximum, a minimization 
converges to the adjacent local minimum. 
 
Similarly, Figure 10 shows the minimization 
path using a different initial guess (-12.9, 1.61). 
It converges to a local minimum and, after a 
displacement, climbs up to converge to a saddle 
point. Another displacement is given from the 
saddle point, which then converges to the global 
minimum. 
 
Both paths go through the vicinity of the first-
order saddle point. The tolerance for the conver-
gence onto the saddle point can be large, since 
the precise value of the objective function there 
is not important. The fact that the paths taken 
from one minimum to another go through the 

vicinity of saddle points means that parameter 
regions with very large objective-function values 
are avoided, which can be advantageous, since 
unphysical parameters can lead to ill-defined 
values of the objective function, as well as a 
large computational effort. 
 

 
Figure 10. AKMC minimization path from initial 

guess represented as a blue square. It 
converges to the local minimum (path in 
blue), given an initial displacement 
(black dotted line) it climbs up to 
converge to the saddle point (path in 
red), given a displacement from saddle 
point (black dotted line) it converges also 
to the global minimum. 

DISCUSSION 

The problem of finding the global minimum of 
an objective function that has many local 
minima is a challenging one—with the only 
method guaranteed to work being a simulated 
annealing method with an impossibly slow 
cooling rate requiring infinite computational 
effort (Kirkpatrick, 1983). For object functions 
that are continuous and differentiable, the gradi-
ent can be used to navigate on the objective 
function surface, so as to move from one local 
minimum to another. This assumes the minima 
can be associated with basins of significant 
extent and that the surface is not “rippled.” If 
these conditions are met, the AKMC method 
with systematic coarse graining (Pedersen 2012) 
can be used to map out the local minima. Not 
only will this method provide an estimate of the 
global minimum (as the lowest minimum 



 - 7 - 

found), but it will also give an estimate for the 
uniqueness of the solution found, and the most 
important parts of the objective function.  
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