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ABSTRACT 

Monitoring and modeling migration of injected 
CO2 in the subsurface is critical for assessing the 
risk of leakage from geologic carbon 
sequestration sites, but it is also very 
challenging. Integrating complementary 
hydrological and geophysical monitoring data in 
a coupled hydrogeophysical inversion can help 
to address this challenge. We consider a 
synthetic CO2 injection study to analyze the 
effect of adding cross-borehole electrical 
resistance and seismic data to inversions of 
pressure and gas-composition data. The 
geophysical data are found to significantly 
improve convergence and stability of the 
inversions. Parameterizing mean aquifer 
permeability and differences from this mean 
value are found to be superior to inverting for 
the permeability of each layer directly. These 
results will be the starting basis for analysis of 
the actual field data. 

INTRODUCTION 

Geologic sequestration of carbon dioxide (CO2) 
is a promising approach for offsetting 
anthropogenic carbon emissions, and deep saline 
aquifers have been identified as potential target 
formations. Several pilot studies are currently 
under way to demonstrate the feasibility of long-
term underground CO2 storage, to assess risks 
associated with it, and to improve the overall 
understanding of CO2 migration in the 
subsurface. A key component in these efforts is 
the integrated analysis of complementary 
hydrological and geophysical monitoring data. 
Whereas traditional hydrological measurements 
are useful for determining the properties 
immediately surrounding boreholes, geophysical 
cross-borehole measurements are sensitive to 

subsurface properties over larger regions, but 
can have lower spatial or temporal resolution 
and can be difficult to interpret quantitatively. 
We combine the advantages of hydrological and 
geophysical data sets in a fully coupled 
hydrogeophysical inversion, using iTOUGH2 
(Finsterle, 2004). 
 
The fully coupled hydrogeophysical inversion 
(Kowalsky et al., 2005) calibrates a hydrological 
flow and transport model simultaneously to the 
hydrological and geophysical data. Performing 
this model calibration and setting up an inverse 
problem involves many steps and decisions 
(Carrera et al., 2005), some of which are implicit 
and therefore easily overlooked. The main steps 
in developing a model can be described as 
follows (Finsterle and Kowalsky, 2011): (1) data 
selection, (2) development of a conceptual 
hydrological model, (3) parameter definition or 
parameterization, (4) choice of an objective 
function and optimization algorithm and (5) a 
posteriori assessment of the appropriateness of 
the choices in steps 1–4, and uncertainty 
analysis for estimated parameters and model 
predictions. Each of these points invites 
extended analysis.  
 
Here, we concentrate on points (1) and (3), 
analyzing the effect and value of geophysical 
data for the inversion process and touching upon 
some aspects of model parameterization. We 
focus on an application involving the 
hydrogeophysical monitoring of CO2 injection in 
a deep saline aquifer. We present a synthetic 
study and show some preliminary results after 
providing a brief overview of a field experiment 
and corresponding data that motivate the study.  
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DESCRIPTION OF THE EXPERIMENT 

Field site and injection experiment  
The synthetic study considered here is based on 
the general field layout, aquifer properties, and 
data availability from a large-scale injection 
experiment at the SECARB-Cranfield CO2 
injection pilot site (Hovorka et al., 2009). The 
experiment involved the injection of 
approximately 1 M tonne of CO2 into a saline 
aquifer at a depth of ~3200 m. The injection 
interval is in a segment of the Lower Tuscaloosa 
Formation referred to as the Tuscaloosa D/E 
sand; this unit ranges from 15 to 25 m in 
thickness across the field and consists of 
relatively permeable fluvial sandstones and 
conglomerates. Injection began on December 1, 
2009, at a rate of 3 kg/s, which was subsequently 
increased to 7 kg/s. 
 
Borehole logs suggest that the Tuscaloosa unit is 
separated into two permeable layers of 
approximately 16 m (top) and 7.5 m (bottom) 
thickness, with the separating aquitard being 
laterally continuous. Based on measurements 
from sidewall cores, the permeability of the 
aquitard is about 50 times lower than that of the 
overlying and underlying aquifer layers. 
 
As shown in Figure 1, the aquifer is accessed by 
three wells, one used as an injection well (F1) 
and two as monitoring wells (F2 and F3), 
allowing for the collection of hydrological and 
geophysical monitoring data. Data availability 
for our synthetic example is mostly based on 
that of the field experiment. 
 

 
Figure 1. Schematic of the two-layer radial model 

used for the synthetic example. The model 
consists of two unconnected layers that 
are accessed by three wells. 

Hydrological data 
A variety of hydrological characterization and 
monitoring data were collected before and 
during the injection experiment (e.g., core and 
geophysical logging data, pressure fall-off tests). 
In this study, we focus mostly on (1) pressure in 
the injection well (F1), which was measured at a 
high temporal sampling rate, and (2) U-tube 
sampling data that provide information on the 
time-varying gas composition of the fluid in the 
monitoring wells, using on-site mass 
spectroscopy (Freifeld et al., 2011). The main 
gas-phase components that were present include 
CO2, CH4, and the injected tracers SF6 and Kr.  

Geophysical data 
Cross-borehole seismic and electrical resistivity 
tomography (ERT) data were acquired between 
monitoring wells F2 and F3.  
 
A continuous active-source seismic monitoring 
system (CASSM, Daley et al., 2011) was 
installed for the Cranfield experiment, but 
stopped operating before the start of the CO2 
injection. Therefore, seismic data were only 
acquired once before the start of the CO2 
injection and once after ~300 days of injection 
(Ajo-Franklin et al., 2012). For the purpose of 
this synthetic study, which is intended to 
examine our parameter estimation methodology, 
we assume that seismic data were acquired daily 
as intended.  
 
The time-lapse ERT monitoring began before 
the CO2 injection started and continued for ~300 
days (Yang et al., 2012). Because directly 
including thousands of electrical resistance 
measurements in a coupled hydrological-
geophysical inverse modeling procedure (see 
Kowalsky et al., 2005) is computationally very 
expensive, we begin by using a reduced form of 
the data that represents an average response of 
the aquifer to the CO2 injection. We calculate an 
average value of electrical resistivity in the 
reservoir as a function of time, which can be 
obtained through traditional tomographic 
inversion of the ERT data. The output of this 
pre-processing step is then used as input in the 
inversion.  
 
Specifically, the reduced form of the ERT data 
that we incorporate in the inversion procedure is 
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the average change in the reservoir electrical 
conductivity (EC) relative to the pre-injection 
value. We assume that the CO2 and CH4 gas 
phase and the host rock are infinitely resistive, 
and no gas phase exists at time zero. Under these 
assumptions, Archie’s law (Archie, 1942) can be 
expressed as 

, 

with the brine saturation Sw and Archie’s 
saturation exponent n. Formulating the 
measurement as the change in electrical 
conductivity makes it unnecessary to know the 
electrical conductivity of the brine, the porosity, 
and the cementation exponent, otherwise 
required for applying Archie’s law. Furthermore, 
the ERT processing and inversion techniques 
handling the changes in EC rather than the 
absolute value of EC are more reliable (e.g., 
Daily et al., 1992). 

APPROACH 

Coupled hydrological-geophysical model  
The hydrological model used to simulate the 
CO2 injection and the corresponding synthetic 
data consists of a two-layer radial model (Figure 
1), with the layers unconnected from each other 
to represent the high permeability layers of the 
saline aquifer, as described above. The injection 
well and monitoring wells are connected to both 
layers to allow for injection to occur into both 
layers and for hydrological measurements, 
which represent an average response over both 
layers, to be simulated. Each layer consists of 99 
cells in the radial direction with a maximum 
radius of 1000 m. The outermost cells in each 
layer are given a constant-pressure boundary 
condition.  
 
Hydrological properties are modeled as 
homogeneous within each layer. However, to 
reproduce the double arrivals of CO2 and CH4 
that are observed in the field data, it was 
necessary to use different values of absolute 
permeability for each layer (1.5 ! 10-13 m2 for 
the top, and 2.2 ! 10-13 m2 for the bottom). The 
simulations were performed using TOUGH2 
EOS7C (Pruess et al., 1999; Oldenburg et al., 
2004), and the resulting synthetic data appear 
consistent with the field data (see Figure 2). 
Note that our intention was to obtain synthetic 

data for examining a coupled hydrological-
geophysical inverse modeling approach. Rather 
than aiming to develop a more complex and 
computationally intensive model that reproduces 
the field data exactly, for this study we chose to 
use a simplified representation of the system that 
reproduces the general characteristics observed 
in the field data.  
 
In the coupled hydrological-geophysical model, 
the ERT data, that is, the change in average EC 
as defined above, is simulated daily as a function 
of the time-varying properties simulated in 
TOUGH2 for a given set of hydrological input 
parameters. The change in EC depends on the 
average gas saturation in the aquifer layers (as 
well as on Archie’s parameter n, which we 
assume to be known and equal to 2) and, 
therefore, becomes a function of the 
hydrological input parameters (e.g., the 
permeability).  
 
Similarly, seismic travel times are calculated in 
the hydrological-geophysical model and are a 
function of the time-varying CO2 saturation, 
among other things (Daley et al., 2011). We 
simulate seismic data for 11 sources in F2 and 
11 receivers in F3, yielding a full data set of 121 
travel times at each time step. The number of 
sources and receivers is varied to look at the 
optimal setup (see below). The conversion from 
CO2 saturation to seismic velocities uses the 
patchy saturation model described by Daley et 
al. (2011). 
 
Gaussian noise was added to the synthetic 
hydrological and geophysical data, based on the 
error level observed in the field data. Table 1 
gives an overview of the available data and the 
assumed errors. The actual field data are 
compared with the simulated data (with and 
without noise) in Figure 2. Observe the double 
arrival in the CO2, CH4, and tracer mass 
fractions; this feature is explained only by the 
two layers of differing permeability, which is 
consistent with the choice of the conceptual 
model used in this study (i.e., the radial model 
that assumes two unconnected layers). 
 
The simulation time for a single forward run on 
a 2.7 GHz single core CPU machine is ~2 
minutes, which enables relatively fast 

  EC(t) EC(0) = Sw
n
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inversions, even when testing many parameter 
sets.  

Inverse modeling approach 
We use the inverse modeling capabilities of 
iTOUGH2 (Finsterle, 2004) for evaluating the 
objective function for many parameter sets and 
studying the inversion performance for different 
combinations of the synthetic data set. Most 
analysis is based on inversions for the absolute 
permeability (or log permeability) of the two 
model layers.  
 
 
 
Table 1. Overview of the available data and assumed 

measurement errors 

Data 
type 

Time 
[days] 

Interval 
[days] 

Number 
of data 

Error  
(std. dev.) 

F1 Press. 0 – 300 10 31 2.00E+04 Pa 
F2 CO2 11.5 – 30 0.25 / 0.5 / 1 46 0.04 
F3 CO2 14.5 – 30 0.25 / 0.5 / 1 18 0.04 
F2 Tracer 11.5 – 30 0.25 / 0.5 / 1 46 2.00E-06 
F3 Tracer 14.5 – 30 0.25 / 0.5 / 1 18 2.00E-06 
ERT 0 – 300 1 300 0.01 
Seismic 0 - 300 2 / 4 / 8 / 16 55 8.00E-06 ms 
 

 

THE EFFECT OF PARAMETERIZATION 
CHOICES ON INVERSION STABILITY  

The process of deciding which parameters to 
estimate and how to formulate the inverse 
problem is critical for successful inverse 
modeling. Inverting for too many parameters 
simultaneously (over-parameterization) can lead 
to a non-unique solution due to the strong 
correlation between model parameters and a lack 
of information independently related to each 
parameter, leading to large uncertainty in the 
parameter estimates. Over-parameterization can 
be caused either by attempting to estimate a 
property with too much geometrical detail (e.g., 
defining unknown permeability values in too 
many pixels or spatial regions) or by estimating 
too many different properties that are not related 
spatially (without sufficiently sensitive data to 
support their estimation). Over-parameterization 
due to high spatial resolution of parameters is 
regularly encountered in geophysical inversions 
and is partly overcome through regularization; 
smoothing and damping techniques stabilize the 
inversion and reduce ambiguity for large-
parameter fields by preventing too much fine-
scale detail (Constable et al., 1987). It is 
potentially more difficult to reduce non-
uniqueness between parameters that are not 
geometrically related. 

 

 
Figure 2. Overview of observed (gray), simulated (lines) and noisy simulated (black and red dots) hydrological and 

geophysical data. The noisy simulated data is used as input for the inversions. 
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For the 2-layer radial model example, properties 
are defined as homogeneous within each layer, 
but the permeability in each layer is unknown. 
An obvious choice for estimating the 
permeability values might be to invert for the 
permeability (or log permeability) of each layer 
directly. However, the parameters are highly 
correlated (>80%) in this example, meaning that 
changes in the permeability of either layer 
similarly affect the simulated data, making a 
unique determination of either parameter 
difficult. Figure 3a illustrates the objective 
function with respect to variation of the log 
permeability of each layer, highlighting the high 
correlation between the two parameters, the 
presence of a local minimum, and the poorly 
defined global minimum for this 
parameterization. 
 
An alternative way to solve the same problem is 
to invert for the mean of the log permeability of 
the two layers, and also for the difference in log 
permeability between the two layers. This 
transformation corresponds to a rotation of 45º 
in parameter space, as is shown in Figure 3b. 
The transformation—although seemingly 
equivalent to the previous formulation—reduces  
 

 

 
Figure 3. Contour plots of the objective as a 

function of (a) log permeability in the two 
layers, and (b) mean log permeability and 
difference in log permeability between the 
two layers. The minimum of the objective 
function is marked by a white ‘+’. 

the parameter correlation and stabilizes the 
inversion. The importance of proper 
parameterization, as shown in this simple two-
parameter problem, is amplified when 
attempting a multi-parameter inversion. Finding 
independent parameters should be viewed as a 
priority when defining the parameterization for 
an inverse problem. It is similarly important to 
determine what types of data should be collected 
to maximize parameter independence.  

THE EFFECT OF DIFFERENT DATA 
TYPES ON INVERSION STABILITY 

For successful inversion, the availability of data 
with sufficient informational content to estimate 
the parameters of interest is key. Parameters can 
only be resolved if the data are sensitive to them 
and, ideally, the correlations between parameters 
are low. Another factor influencing the 
performance of inverse modeling is the shape of 
the objective function. Clearly, the presence of 
local minima can make finding the global 
minimum difficult, especially when gradient-
based optimization algorithms are used. 
 
In general, large-scale measurements tend to 
create smoother objective functions, compared 
to point measurements. We examine how the 
inclusion of geophysical measurements in a 
hydrological-geophysical inversion affects the 
shape of the objective function and overall 
inversion performance. 
 
Figure 4 shows the objective function for the 
different data sets as a function of the difference 
in log permeability between the two model 
layers. The objective functions for the CO2 and 
tracer mass fractions contain local minima and 
will likely hinder an optimization from global 
convergence unless the initial guess is close to 
the global minimum. The objective functions for 
the geophysical data, on the other hand, 
gradually decrease towards a single minimum 
and thus may facilitate easier convergence. 
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Figure 4. (a) Contributions of each data set to the 

objective function and (b) objective 
functions for subsets of the data and for the 
complete data set containing all 
hydrological and geophysical data. 

 
When combining hydrological and geophysical 
data, the geophysical data stabilize the inversion, 
resulting in better convergence to the true 
solution. This effect is illustrated in Figure 5, 
which shows the convergence behavior for 
inversions performed using the same data 
subsets shown in Figure 4b with nine different 
sets of initial guesses for the parameters. 
 
For the cases in which the geophysical data are 
included (Figure 5c and d), the convex shape of 
the objective function helps all inversions, each 
starting from a different initial guess, converge 
to the correct value. On the contrary, few of the 
inversions using hydrological data alone 
converge to the global minimum (Figure 5a and 
b). Note how the objective function for the 
combined data sets (Figure 5d) reflects the shape 
of the contributions from the pressure and 
geophysical data (Figure 5b and c, respectively), 
nicely illustrating the link between the choice of 
data included in a study and the resulting 
objective function character. It should also be 
noted that changing the weights and error 
assumptions of the data sets considered in this 
study could change the objective function shape 
and inversion performance. 
 

 

 

 
Figure 5. Contour plots of the objective function and 

example inversion paths (lines) for nine 
sets of initial values (black dots) using (a) 
CO2 and tracer data, (b) CO2, tracer and 
pressure data, (c) ERT and seismic data and 
(d) all available data. Each inversion results 
is marked with a black “x” and the true 
value with a white “+”. 

 
Due to the high cost and effort of obtaining 
geophysical data for such a field experiment, 
optimizing data collection is a worthwhile 
consideration. For example, the continuous 
seismic data collection using the CASSM 
system (Daley et al., 2011) is very promising, 
but the number of sources is restricted and 
should be minimized. Analysis of the objective 
function for the 121 source and receiver 
combinations shows that it is possible to 
constrain the global minimum with a single 
seismic source if the source position is carefully 
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chosen. Figure 6 shows the contributions of each 
ray to the objective function (gray lines), as well 
as two zero-offset (horizontal) rays through each 
layer. If the source position is chosen close to 
the layer boundary, the difference between the 
two layers can be resolved equally well as with 
the full data set.  
 

 
Figure 6. Objective function for different parts of the 

seismic data. Single-source data can define 
the global minimum if the source position 
is well chosen. 

 

DISCUSSION 

Parameterization and data selection are critical 
components for setting up a successful 
inversion, as they affect the shape of the 
objective function and the likelihood of 
obtaining accurate parameter estimates. In order 
to illustrate the objective function and show the 
inversion paths (Figures 4 and 5), the above 
analysis concentrates on two-parameter 
inversions. When inverting for more than two 
parameters, the objective function gets more 
complex and the inversion problem less unique. 
Choosing a good parameterization and including 
data with reasonable error assumptions and 
weighting thus becomes even more critical. 
 
Even in the two-parameter inversion case, our 
analysis shows how important the geophysical 
data can be for a successful inversion: only 
when the ERT and seismic data are included can 
the inversion converge to the global minimum of 
the objective function, except when the initial 
values are very close to the true parameter 
values. 
 

The results of the particular example discussed 
here may not be directly applicable to other 
problems, but certain characteristics are 
generally valid. For example, geophysical data 
usually have a larger support volume than 
measurements in wells, and their inclusion is 
expected to result in objective functions that are 
more favorable for inverse modeling. 
 
The integration of geophysical and hydrological 
data in an inversion can be made difficult by 
uncertainty or spatial variation in the 
petrophysical relationships that are needed to 
translate geophysical parameters into 
hydrological properties and state variables. 
Uncertainties in the petrophysical models 
translate into uncertainties of the geophysical 
data, and nonlinearity of the petrophysical 
relationships adds further complications. 
However, in some cases uncertainty in 
petrophysical parameters can be accounted for 
by including their estimation in the inversion 
process (Kowalsky et al., 2005).  
 
The number of petrophysical parameters and 
their uncertainty can also be reduced when 
inverting time-lapse data. For example, in our 
ERT formulation, dependence on porosity and 
the cementation exponent was removed, and 
only the relatively well-known saturation 
exponent needs to be determined. 
 

CONCLUSIONS 

In this study, we analyzed the effect of 
parameterization and geophysical data on the 
stability and convergence of coupled 
hydrogeophysical inversions. The analysis is 
based on a synthetic study that mimics a CO2 
injection experiment at Cranfield, MS. 
 
We find that: 

• Geophysical data (ERT and seismic) greatly 
stabilize the inversion and improve 
convergence. 

• Parameterizing mean and difference of 
permeability in different layers rather than 
the permeability of each layer improves 
convergence. 
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• Time-lapse formulation (e.g., for ERT) can 
reduce the number of uncertain 
petrophysical parameters. 

 
Although the analysis is specific to this case 
study, we believe these three points to be 
generally valid. The presented results will be the 
starting basis for analysis and inversion of the 
field data from the CO2 pilot site at Cranfield, 
MS. 
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