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ABSTRACT 

Understanding thermal-hydrologic-mechanical 
(THM) behavior in geomaterials (e.g., porous 
rock), including fracture propagation, is key for 
many engineering underground applications 
such as high-level radioactive waste disposal, 
geothermal energy recovery (e.g., enhanced geo-
thermal systems), petroleum recovery (e.g., 
shale gas and oil extraction), and geologic CO2 
sequestration (cap-rock fracturing and leakage). 
In this paper, a numerical modeling method for 
coupled THM processes, including fracture 
formation and evolution is presented. The 
method is facilitated by a three-dimensional 
(3D) Voronoi-based discretization technique, 
capable of representing discrete fractures and 
fracture damage development within a permea-
ble rock matrix. This approach is illustrated with 
examples of hydromechanical coupled processes 
and fracture formation. Additional computa-
tional examples are also given for flow and 
transport processes in a fractured, permeable 
rock.   

INTRODUCTION 

Geomechanical processes are known to play an 
important role in hydrogeological behavior 
(Neuzil, 2003). Linkage between mechanics and 
hydrogeology occurs in two fundamental ways: 
through feedback between (1) rock strain, the 
geometry of pores and fractures, and their 
permeability and porosity; and (2) fluid pressure 
and rock mechanical stress. Although there have 
been great strides in the capability to compute 
problems involving hydromechanical coupling 
(e.g. Rutqvist et al., 2002), the problem of 
fracture initiation and propagation, and its 
impact on fluid flow processes, remains a major 
difficulty. Such problems are of particular 
importance for mechanically weak rock types 

such as clays and shales, because fractures can 
be relatively transient as a result of fracture self-
sealing processes (Bastiaens et al., 2007). Such 
issues are important, e.g., for geo-environmental 
issues related to nuclear waste disposal (Bossart 
et al., 2004) and geologic carbon sequestration 
(Chiaramonte et al., 2008). 
 
The first part of this paper covers a computa-
tional method applicable to 3D discrete fracture 
networks (DFNs). Fractures are considered as 
discrete features that interact with a porous rock 
matrix. Fracture configurations are mapped onto 
an unstructured, 3D Voronoi grid, which is 
based on a deterministic or random set of spatial 
points. DFNs are represented by the connections 
of the edge of a Voronoi cell. This methodology 
has the advantage that fractures can be more 
easily introduced in response to coupled hydro-
mechanical processes, and it generally elimi-
nates several potential issues associated with the 
geometry of DFN and numerical gridding. In 
this paper, the multiphase fluid-flow simulator, 
TOUGH2, is used to simulate flow and transport 
through discrete fractures in porous rock. 
Fracture cells are introduced at the boundaries of 
Voronoi cells so that flow and transport through 
a DFN interacting with a permeable rock matrix 
can be studied. Analytical solutions of saturated 
flow and transport through a single fracture are 
also developed to verify the numerical results.  
 
The second part of this paper describes a newly 
developed coupling between a mechanical-
damage model and TOUGH2, which allows us 
to compute fracture evolution as well as flow 
and transport through the fractured porous rock, 
thus accounting for dynamically changing THM 
conditions. Elastic response and fracture 
development is modeled by the mechanical-
damage model based on the rigid-body-spring 
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network (RBSN). Spring constants are related to 
elastic rock mechanical properties, and fracture 
initiation is determined using a classical brittle 
approach. Both models share the same geomet-
rical information from a 3D Voronoi grid and 
associated nodes, where the scalar field quanti-
ties (e.g., temperature, pressure, and saturation) 
and the generalized displacements are obtained 
by TOUGH2 and RBSN, respectively. Fractures 
propagate along Voronoi cell boundaries as 
THM-induced stresses evolve and exceed the 
material strength. In particular, an example 
application is presented that addresses the 
modeling of moisture-driven fracture problems, 
such as shrinkage cracking. 

GRID GENERATION 

Voronoi discretization 
Voronoi discretization is an effective approach 
to partition a computational domain into an 
unstructured grid. The defining characteristic of 
the Voronoi cell is that all locations within the 
cell lie closer to the associated nodal point than 
to any other nodal point. In this study, the proce-
dure of Voronoi discretization starts with nodal 
point insertion. Nodal points are sequentially 
placed into the domain by a pseudo-random 
number generator. The use of a random point set 
simplifies mesh generation and increases 
flexibility in the model geometry. Two inputs, 
the dimensions of the computational domain and 
a minimum allowable distance lm between nodes, 
are prescribed to control the mesh size. The 
domain is eventually saturated through a set of 
points with the lm constraint. By connecting 
these nodal points, the Delaunay tessellation is 
generated, after which the dual Voronoi tessella-
tion is constructed. More details about Voronoi 
discretization techniques can be found in 
Asahina and Bolander (2011).  

Discrete fracture representation 
In this study, fractures are considered as discrete 
features that interact with a porous rock matrix. 
An irregular Voronoi grid is used to represent 
the rock matrix as a basic material structure. 
Existing or newly generated fractures are 
directly mapped onto such a Voronoi grid. A 
discrete fracture is represented by a series of 
Voronoi cell boundaries (i.e., edges of polygon) 
as shown in Figure 1 for a two-dimensional (2D) 

case. Fracture geometric data (e.g., fracture 
orientation, length, width, and shape) can be 
obtained by field mapping or by computer-
generated information based on statistical repre-
sentation. A single fracture is represented as 
follows (Fig. 1): 
• Discretize rock matrix based on an irregular 

Voronoi grid. 
• Overlay a reference fracture on top of the 

Voronoi grid. 
• Select node-node connections which cross 

the reference fracture. The Voronoi cell 
boundaries of such node connections are 
defined as a part of the discrete fracture.  

• Connect all segments of the discrete fracture.   
 

 
Figure 1. Mapping of a fracture geometry on top of 

an irregular Voronoi grid. 

By repeating this process for a series of fractures, 
the modeler can generate a network of discrete 
fractures. The grid size must be carefully 
selected or scaled to obtain the required 
accuracy of discrete fracture representations. 
The advantages of this DFN generation method 
include: (1) simple activation and connection of 
new fractures, (2) automated treatment of 
fracture intersections, (3) capability to control 
mesh gradation (node density), and (4) 
straightforward extension to 3D geometry (Fig. 
2). These advantages are especially beneficial 
when simulating fracture damage that develops 
into fracture networks. By automating the 
process of the proposed DFN approach, fracture 
intersections in 3D can be effectively generated. 
Figure 2a shows a fracture intersection mapped 
onto an irregular 3D Voronoi grid. The Voronoi 
cell boundaries tile the discrete fractures. This 
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facilitates the visualization of DFN, especially 
for 3D representation.  

Alternatively, the Voronoi grid can be controlled 
by deterministic point selection to generate 
straight fractures with an intersection as shown 
in Figure 2b. Such grid generation, however, 
becomes cumbersome due to greater limitation 
on the point allocations around straight fractures, 
especially for fracture intersections in 3D. 
 

 

Figure 2. Fracture interface with the representation 
of DFN in 3D Voronoi grid: (a) irregular 
fractures, and (b) straight fractures. 

 

 
Figure 3. Node and connection in the TOUGH2 

simulator: a) ordinary matrix nodes and 
connections, and b) new fracture nodes 
and connections.  

 
 
 

Fracture nodes and connections in the 
TOUGH2 simulator 
The simulations of flow and mass transport 
through discrete fractures, presented in a later 
section, are based on the TOUGH2 EOS7R 
simulator (Oldenburg and Pruess, 1995). As 
discussed in the preceding section, the DFN is 
explicitly represented at the Voronoi cell bound-
aries in a computational domain. To activate 
flow pathways along a discrete fracture, the 
fracture nodes and connections are newly intro-
duced at the Voronoi cell boundary in addition 
to Voronoi cell nodes and connections for the 
rock matrix (Fig. 3). A new fracture node is 
inserted at the intersection of a Voronoi cell 
boundary and the original matrix-matrix connec-
tion. Then, the connection is generated between 
the fracture node and the adjacent matrix nodes. 
Also, the fracture vertex node is added to 
support fracture-fracture connections along the 
Voronoi cell boundary. These additional nodes 
and connections in the TOUGH2 simulator 
permit flow and transport through the DFN. 
Local fracture permeability and porosity are 
based on grid geometry and apertures, which can 
be either assigned as a pre-existing fracture or 
computed by a mechanical-damage model, as 
shown below. Performance of the proposed 
discrete fracture approach was tested against an 
analytical solution, as described in the following 
section. 

NUMERICAL DISCRETE FRACTURE 
MODEL  

A numerical discrete fracture model for a single 
fracture in a porous rock matrix is described 
here. Our current results focus on cases that can 
be verified with an analytical model, in which 
the fracture is a single linear feature that 
connects across the entire domain. The analyti-
cal model used here is an extension of the model 
developed by Houseworth (2006) for flow and 
transport in a single fracture. The model is 
capable of representing flow in the fracture, as 
well as flow in the matrix at an arbitrary oblique 
angle to the fracture. As for the original model 
(Houseworth, 2006), all transport mechanisms 
are represented except for longitudinal diffu-
sion/dispersion.  
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The linear fracture model is a useful simplifica-
tion because numerical results can be verified 
against the analytical model. These results, 
therefore, provide a reliable baseline for flow 
and transport behavior in more complex irregu-
lar fracture geometries. Two cases are presented 
below, involving flow parallel to the fracture 
and flow at an oblique angle to the fracture. The 
numerical solutions for flow and transport were 
conducted using TOUGH2 with the EOS7R 
module (Oldenburg and Pruess, 1995). Flow 
calculations were performed to establish steady-
state flow fields that were used as an initial 
condition for the tracer-transport problem. For 
transport, an instantaneous point release of tracer 
was approximated by including at the beginning 
of the transport calculation tracer mass in one 
cell of the fracture. All problems were solved for 
a two-dimensional rectangular domain. 
 
For parallel flow, the solution is symmetric with 
respect to the fracture orientation, so one bound-
ary is taken along the fracture centerline. The 
domain is 10 m long and about 0.4 m in width, 
with a 0.015 m fracture half-aperture. Flow was 
computed using constant-pressure boundary 
conditions at each end of the 10 m long domain, 
and no-flow boundary conditions for the trans-
verse direction. For the cross-flow case, the 
domain length is also 10 m, but symmetry is 
broken; therefore, the fracture is placed in the 
middle of the domain with a full aperture of 0.03 
m and a domain width of about 1 m. For the 
cross-flow cases, a transverse pressure gradient 
of about 49,000 Pa/m is established. In all cases, 
the longitudinal pressure gradient is about 5000 
Pa/m.  
 
A uniform grid was used in the longitudinal 
direction (along the fracture axis). In the base 
case, a longitudinal grid spacing of 1 cm was 
used for the parallel flow condition and 2 cm for 
the cross-flow condition. Grid spacing laterally 
was 0.002 m near the fracture for these base 
cases, with coarser grids further from the 
fracture. There are three sensitivity cases each 
for parallel-flow and cross-flow conditions. For 
parallel flow, Sensitivity Case 1 uses a 
longitudinal grid spacing of 0.06 m, Case 2 a 
longitudinal grid spacing of 0.1 m, and Case 3 a 
longitudinal grid spacing of 0.1 m and a 
minimum lateral grid spacing of 0.01 m. For 

cross-flow, cases 1 and 3 use a longitudinal grid 
spacing of 0.1 m. Also, for the cross-flow base 
case and Case 3, fine gridding in the transverse 
direction was used for a larger region around the 
fracture than in the parallel-flow case. 
Hydrogeologic parameters are given in Table 1. 
 

Table 1. Linear Fracture Simulation –Parameters. 
Fracture 
permeability 
(m2) 

Matrix 
permeability 
(m2) 

Fracture 
aperture 
(m) 

Fracture 
porosity 

Matrix 
porosity 

Diffusion 
coefficient 
(m2/s) 

2.4 ×10-15 1.0 × 10-18 0.03 0.087 0.2 1.0 × 10-11 

 

 
Figure 4.  Mass concentration for parallel flow 

cases: (a) fracture concentration profile; 
and (b) matrix concentration profile about 
2 cm from fracture. 

 

 
Figure 5. Mass concentration for cross-flow cases: 

(a) fracture concentration profile; and (b) 
matrix concentration profile about 2 cm 
from fracture. 
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Figure 6. Cumulative mass arrival 4 m from release 

point: (a) parallel flow base case; and (b) 
cross-flow base case. 

Results for the simulations are compared with 
analytical solutions in Figure 4 and 5. These 
figures show that the solution is most sensitive 
to grid refinement near the fracture and that 
longitudinal grids may be coarser. Additional 
transverse grid refinement in the matrix near the 
fracture appears to be necessary to achieve the 
same level of accuracy in the numerical model 
for the cases with cross flow. This appears to be 
a result of cross flow moving the peak mass 
concentration from the fracture and into the 
matrix. Steep concentration gradients are associ-
ated with the location of the peak mass 
concentration. The results also show that with 
sufficient grid refinement, numerical results can 
closely match the analytical solution, even 
though the numerical model includes longitudi-
nal diffusion not represented in the analytical 
model. The numerical base-case results are 
compared with analytical results in Figure 6 for 
cumulative mass arrival at a downstream 
position 4 m from the release point. Cross flow 
is seen to slow longitudinal mass transport at 
later times. Cumulative mass arrival is a conven-
ient metric for comparing results for linear and 
irregular fracture cases, which will be done in a 
future report. 

MECHANICAL-DAMAGE MODEL 

Elastic response and fracture development is 
modeled by the mechanical-damage model 
based on the rigid-body-spring concept of Kawai 
(1978). To provide a basic understanding of this 
modeling approach, an overview of the element 
formulation is given here. Geometry of the rigid-
body-spring network (RBSN) is defined by the 
dual Delaunay tessellation of the nodal points. 
The basic unit of RBSN is a 1D lattice element 
consisting of a zero-size spring set located at the 

centroid of the Voronoi boundary (Fig. 7). Each 
node has six degrees of freedom for the 3D case. 
The spring set is formed from three axial springs 
and three rotational springs (referenced to local 
coordinate axes n-s-t) as shown in Figure 7 (the 
rotational springs have been omitted for clarity). 
The local spring coefficients are assigned 
according to 

 
(1) 

in which E is the elastic modulus and  is the 
area of the Voronoi boundary common to nodes 
i and j (Fig. 7). By adjusting  and  in 
accordance with experimental results, macro-
scopic modeling of both elastic constants (E and 
Poisson ratio, ) is possible. The Voronoi 
scaling of the spring constants, Aij/hij, , enables 
the method to be elastically homogeneous under 
uniform modes of straining. Such Voronoi 
scaling also serves energy conserving, grid-size-
insensitive representations of tensile fracture. 
Details and indication of model accuracy can be 
found elsewhere (Bolander and Saito 1998, 
Asahina et al. 2011). 
 

 

Figure 7. Typical lattice element with a zero-size 
spring set located at centroid C of facet 
area Aij. Note that Aij is tha Voronoi cell 
boundary and i and j is the neighboring 
Voronoi cell nodes (matrix nodes). 

COUPLING OF TOUGH AND RBSN 

Basic approach  
TOUGH2 is coupled with RBSN to compute 
fracture damage development, as well as flow 
and transport through the fractured porous rock, 
accounting for dynamically changing THM 
conditions. The general procedure for the two-
code coupling (hydraulic and mechanical code) 
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is similar to the earlier work of Rutqvist et al. 
(2002) who linked TOUGH2 to a commercial 
continuum-mechanics simulator, FLAC3D. In 
this paper, TOUGH2 is used to simulate the 
hydraulic quantities (e.g., temperature, pressure, 
and saturation), while RBSN accounts for the 
mechanical quantities (e.g., stress, strain, 
displacement, and damage). Such primary varia-
bles are coupled through simplified linear 
relationships or through nonlinear empirical 
expressions, which could be estimated by 
laboratory experiments with appropriate calibra-
tion. The main advantage of coupling TOUGH2 
and RBSN is that both models share the same 
unstructured, 3D Voronoi grid and the same set 
of nodes. This greatly simplifies the process of 
exchanging primary variables between two 
codes. At the current stage, TOUGH2 and 
RBSN are linked through an external coupling 
module, which transfers the relevant variables at 
each time step. It is assumed that the local 
changes in hydraulic variables produce strain as 
follows:  

 (2) 
  

 (3) 
  

 (4) 
 
where  is the thermal strain,  is the shrink-
age/swelling strain,  and  is the change 
in temperature and saturation over the time step 
in one lattice element, respectively,  is the 
coefficient of thermal expansion,  is the mois-
ture swelling coefficient, and  is the stress. 
The hydraulic valuables,  and , are taken 
as the average of two neighboring nodes i and j. 
At this stage of model development, hydro-
mechanical coupling is based on one-way 
coupling, in which flow processes affect 
mechanical strain but mechanical behavior does 
not affect flow parameters (e.g., permeability, 
porosity). Since the flow parameters are constant 
during the simulations, mechanical stress is 
computed independent of fluid pressure. 
Examples in subsequence sections only explore 
the effect of saturation change on the mechanical 
response. Future work will include model devel-
opment for more general approaches, such as 
two-way coupling and a fully coupled poro-
elastic model. 

Model validation  
The TOUGH-RBSN simulator is validated by 
comparison with an independent simulation of 
the same process using TOUGH-FLAC 
(Rutqvist 2011). Consider a soil sample 
(20×20×20 mm) wetted at the bottom and fully 
confined mechanically, as shown in Figure 8. 
The model is discretized with 19 lattice elements 
and 20 nodes. Model boundaries are fully 
confined with mechanical fixed supports, and 
there is no flow across the boundaries except at 
the bottom water inlet. Both simulations were 
calibrated using data from an experiment that 
was part of the international collaborative model 
comparison project DECOVALEX III. The 
experiment was conducted for about 10 days at 
isothermal conditions (T=25°C).  Initial 
saturation was 65% with elastic modulus of 60 
MPa. From this information, the moisture 
swelling coefficient, αs (Eq. 3), can be back-
calculated to 0.238, as shown in Rutqvist et al. 
2011.  
 

  

Figure 8.  Time evolution of compressive stress and 
saturation at point P1 for simple swelling 
model. 

Figure 8 shows the simulation results for time 
evolution of compressive stress and saturation. 
The hydraulic primary variables are accurately 
simulated by TOUGH2 as reported in Rutqvist 
et al. 2011. Stress increments are based on the 
saturation changes. The final stress is 5.12 MPa, 
which consists of 5 MPa (calibrated value) on 
top of the initial atmospheric stress of 0.12 MPa. 
Good agreement between the results simulated 
by TOUGH-RBSN and TOUGH-FLAC is 
achieved.  



 

 - 7 - 

Simulation of desiccation cracking 
Desiccation cracking is demonstrated by the 
TOUGH-RBSN simulator. Consider a slab 
subject to drying from the top surface. The 
initial saturation is set to 80%. The convective 
boundary condition is implemented by a thin 
layer of nodes at the top surface with prescribed 
nodal saturation (30%). Model boundaries are 
fixed at the bottom surface, whereas the vertical 
surfaces are only free to move in-plane. The 
vapor diffusion induced by saturation changes 
induces changes in strain within the mechanical 
element. In general, elements closest to the top 
surface shrink the most due to experiences the 
largest changes in saturation. The model is 
parameterized using hydrogeological and 
mechanical properties characteristic of 
expansive clay rock. Here, a classical brittle 
approach is used to break the lattice elements. 
Desiccation of expansive clay produces 
predominantly tensile stress fields due to the 
drying shrinkage. Tensile fracture is based on a 
measure of tensile stress calculated as 
σR=FR/AP

ij, where FR is the resultant force acting 
on the element facet and AP

ij is the projected 
area of the Voronoi cell boundary to the 
resultant force (Asahina et al. 2011). Simulation 
is conducted until no more major changes in the 
crack pattern are observed. 
 
First, the insensitivity of the fracture pattern 
with respect to mesh size is studied using two 
different meshes with 2680 nodes and 297 
nodes. Figure 9 shows the fracture pattern. The 
results show about the same number of major 
crack features, as well as similar spacing 
between the cracks.  
 

 
Figure 9. Fracture pattern with various mesh sizes: 

(a) fine mesh (2680 nodes), and (b) coarse 
mesh (297 nodes).  

 

 
Figure 10. Fracture pattern with various thicknesses: 

(a) 20 mm, and (b) 40 mm. 

Second, the basic aspect of fracture patterns is 
further studied for various slab thicknesses, as 
shown in Figure 10. Model thicknesses of 10 
mm (Fig. 9b), 20 mm, and 40 mm are simulated. 
The resulting number of major cracks is about 4, 
2, and 1, respectively. This general response, in 
which the distance between cracks increases 
with material thickness, has been observed in 
experiments (Colina and Roux, 2000). Bolander 
et al. (2007) have conducted a similar study for 
cement composite materials, where lattice-type 
models are used to calculate both mechanics and 
transport (e.g., moisture transport). Future work 
for desiccation cracking will involve more 
realistic simulations and quantitative compari-
sons with experimental data.  

CONCLUSION 

Computational methods are needed to address 
fracture initiation and propagation as a hydro-
mechanical coupled process. The method 
reported here uses a finite volume method for 
flow processes and RBSN modeling for geome-
chanics. This allows for the coupling to be 
computed on a common grid using a random 
Voronoi gridding approach for two or three 
dimensions. The proposed methodology, in 
which fractures are placed along Voronoi cell 
boundaries, eliminates many issues regarding 
incorporating new fractures into a numerical 
grid, minimizing computational aspects associ-
ated with regridding. This allows for a more 
practical incorporation of fracture initiation and 
propagation into numerical models of coupled 
hydromechanical processes. Examples presented 
here have shown some of the applications of this 
computational strategy for modeling 
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hydrogeological and geomechanical coupled 
processes.  
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