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ABSTRACT

In geothermal simulation processes, MULKOM uses Integrated Finite Differences to solve the corresponding partial differential
equations. This method requires to resolve efficiently big linear dispersed systems of non-symmetrical nature on each temporal
iteration. The order of the system is usually greater than one thousand and its solution could represent around 80% of CPU total
calculation time. If the elapsed time solving this class of linear systems is reduced, the duration of numerical simulation
decreases notably. When the matrix is big (N = 500) and with holes, it is inefficient to handle all the system’s elements, because
it is perfectly figured out by its elements distinct of zero, quantity greatly minor than N2 In this area, iteration methods introduce
advantages with respect to gaussian elimination methods, because these last replenish matrices not having any special distribution
of their non-zero elements and because they do not make use of the available solution estimations. The iterating methods of the
Conjugated Gradient family, based on the subspaces of Krylov, possess the advantage of improving the convergence speed by
means of preconditioning techniques. The creation of DIOMRES (k,m) method guarantees the continuous descent of the residual
norm, without incurring in division by zero. This technique converges at most in N iterations if the system’s matrix is symmetrical,
it does not employ too much memory to converge and updates immediately the approximation by using incomplete
orthogonalization and adequate restarting. A preconditioned version of DIOMRES was applied to problems related to
unsymmetrical systems with 1000 unknowns and less than five terms per equation. We found that this technique could reduce
notably the time needful to find the solution without requiring memory increment. The coupling of this method to geothermal

versions of MULKOM is in process.
INTRODUCTION

The MULKOM family of computer modules for simulating
the flow of mass and heat in reservoirs (Pruess, 1988), uses
a numerical method that generates big systems of algebraic
linear equations. These systems could have some few
elements different from zero irregularly distributed in the
corresponding matrix. The resolution of such sparse
unsymmetrical large systems represents typically 80% of
the total CPU time in any simulation, which could last from
some minutes to some days, depending on the computer and
on the class of problem. Some years ago the linear systems
were resolved by gaussian elimination or by factorization.
But in this type of dispersed systems, the necessary memory
increases a lot, without taking advantage of available
knowledge about the possible solution’s location. The
Jacobi and Seidel iterating methods do not have this
inconvenient, but they can only improve one variable
simultaneously at each iteration.

The Conjugate Gradient iterating procedures vary all the
variables at the same time, seeking the best directions of
change and the best longitude of movement. The method we
are introducing resolves approximately linear systems of the
form: A x = b, where A is the matrix of coefficients, x is
the unknown vector and b, the information vector.
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Let x* be the exact solution; for an approximation X,
corresponding to the n® iteration, the error is given by the
vectorial equation € = x * - x . The residual is defined
by r, = b - A x, . Both become zero when the approxima-
tion attains the exact solution: x,= x*. The methods of the
Conjugate Gradient family (Reid, 1971), which contributed
with several ideas to the construction of our method, are:
ORTHOMIN (Eisenstat, 1983), DIOM (Saad, 1984) and
GMRES (Saad, 1986).

THE DIOMRES (k, m) METHOD

DIOMRES generates approximations that take advantage of
an initial value (x,), combining a set of linearly independent
vectors (V,, Vi, «ooy V), in a similar way as in the
Conjugated Gradient method:

n
X,,=Xo+21§ vy 5+ V, Y,
F

where the columns of matrix V,, are the searching directions
v; and the coordinates y; are chosen by minimizing the
residual’s squared norm R, = rmTrm instead of the error’s
A-norm | | = eTA & which requires that A be
symmetrical and definite positive to converge. Including the
advantages of two well-known techniques, DIOMRES(k,m)



was developed, by modifying the method GMRES(m) with
ideas from DIOM(k). Following the Conjugate Gradient
technique, which produces orthogonal residuals with respect
to the basis: (VT r, = 0), the method DIOM(k) finds the
coordinates solving the system:

HY,=VSAV,Y, = V]

where the elements h; , = v;T (A v,) are the required factors
to orthogonalize Av, with the previous vectorial basis and
h,, . is needed to normalize:

Va1 = (4 Vo~ E Vibj‘,n)/bml,.
The initial vector v, is taken normalizing the initial residual:
V,=15/| 5| and arriving to:

V,= V,H, V] 5=zl

where e, has an element equal to one in the first component
and zeros in all the others. H", is a matrix formed by the
first # columns of matrix H,,,. Generating the basis in this
way, H, has null all its elements below the first inferior
diagonal  (h;;=0, if i>j+1) and if the matrix A is
symmetrical, H, also will be; this means that only is
necessary -to orthogonalize Av, with the two previous
vectors (v, and v,_,) in order to get the same outcomes.

DIOMRES '(k,m) also uses this basis but, minimizing the
norm of the residual, obtains always better approximations
than the foregoing. In this way, this technique could arrive
to be as exact as is allowed by the computer’s rounding
error. Provided that vectors v;,, are obtained as combina-
tions of {v,, v,, ... v;, Av;}, the technic originates that the
subspace generated by the basis {v,, v, ... v,,,} be the
same as the space generated by {v,, Av,, A%,,... A%},
which is known as a Krylov subspace of order n+ 1. These
last vectorial generators have the property of being linearly
independent when the matrix A is non singular.

GMRES(m) contributed with the factorization:
H,=Q,U, where Q, is an adequate orthogonal matrix
(QF@,=1. U, is a matrix composed by a superior

triangular matrix U,,; its line (m+ 1)* contains only zeros,
in order to conceive the squared norm of the residual before
calculating the new vectorial residual. Substituting the
definition of the residual, equations 1 and 4, together with
the orthogonality of the basis, plus this factorization and the
orthogonality of Q,, we arrive to:

Ry=rlr=2"z+z-2v Utz +v U U Y, . (B)
whose minjmrgl is obtainec} from} Y, =U_! Z_ where:
Qa5 &=]Z1 | 2]

DIOMRES(k,m) also uses this factorization, but utilizing an
incomplete orthogonalization; the way to update the solution
is also different. In GMRES(im):
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X=X+ V(U Z) = x)+ V, ¥, weeeeenees 6 ;

this requires to wait for the m™ iteration to accomplish the
backward substitution and resolve Y,; and then update the
solution; this needs to stock the m vectors of the basis v;.
Whereas, DIOMRES(k,m) performs:

Xp= X0+(VHU;1)ZH=X0+ u/17ZL1=X11—1+ Wazp - (7);

where vectors w; are solved by means of a forward
substitution when calculating the columns of U,. These
vectors no longer change, allowing to update the solution
immediately.

Among the analysed methods to solve several kinds of
linear problems, the most rapid was GMRES(m) in some
unsymmetrical cases, and ORTHOMIN (k) for the
indefinite symmetric and the other non-symmetric cases.
Both methods minimize the squared norm of the residual.
GMRES(m) solved the memory problem using frequent
restarts, and ORTHOMIN(k) using incomplete orthogonali-
zation, which is exact in the symmetric case. However,
indefinite matrix systems exist where ORTHOMIN(k)
incurs in a division by zero before arriving to the solution
and could lose its convergence speed if an inferior value
for k is used. DIOMRES(k,m) doesn’t have this risk. This
technique solves the memory problem choosing a small
value for k and the loss of speed is prevented by restarting
the process in an opportune moment. If the matrix is
symmetric, k =2 and m =N are always used.

DIOMRES(k,m) ALGORITHM

Data needed by DIOMRES are: matrix of coefficients (A),
vector (b), an initial approximation (X;), maximum number
of iterations, an acceptable error’s norm (tolerance),
number (k) of orthogonalizations to do and a restart period
(m). The initial residual and its norm are calculated first:

*
nL=b-Axy; 2z =|g|

If its value is sufficiently accurate, x, is accepted as the
solution. Else, the residual is normalized to get the first
vector of the basis: v, =r,/|r, | )]

From this moment, at every m™ iteration of this cycle, the
following steps are carried out:

a) the n® column of H,* and the new basis are calculated:

n

T’ml: AVn—Z Vzbz,n

1

0, isn-k

b=

(10}

V,-TA v,, n-k<i<n

i=n+1 v,

v, 1= le/bml,n



b) The rotations detected before are applied to the new
column of H,*; for j=1,2, ... , n-1, and h*|, = h:

Yo | | 0y %y b, (11)
ﬁjtl,n G Gy sz-,l,n
¢) The new rotation data are found:
2 2 . bn,n bml,a
un,nzvbn,n""bml,n’ ql,,=u—; b~ u . (12)

on nn

d) This last rotation is applied to the right side of the

Z" ql,n q2,n

_q2,n ql,n

*
Zp-1
0

.. (13)

system H™: .
Z n

e) A new vector w, is found and the solution is updated:

n-1
Va2 Wyt ... 14)
— S . -
W,= - s KT X1t W2,
un,a

f) If available iterations were finished or if desired accuracy
(|2,| = Tol) was reached, x, is accepted as the solution.

g) If the cycle of m iterations was completed, the initial
value becomes x, =x,, and the algorithm is restarted.

More details about this algorithm are given in de la Torre
(1990). Information on the previous methods and the
manner of using preconditioning system techniques to
accelerate convergence are also found in the cited
document.

PROPERTIES OF DIOMRES(k,m)
The principal properties of this method are:

i) DIOMRES(m,m) produces the same approximations as
GMRES(m).

ii) DIOMRES(k, ©0) produces the same approximations as
ORTHOMIN(k-1).

iii) The termination in no more than N iterationsis guaran-
teed using k =N when the matrix is symmetric.

iv) Every approximation minimizes the squared norm of the
residual into the subspace generated by the last k vectors
of the basis and transferred by the latest approximation.
This allows to attain the maximum accuracy permitted
by computer’s rounding.

v) Although, for a same value of k, DIOMRES(k,m) could
be in disadvantage in front to another methods (table 1),
using an adequate restart period (m), generally allows to
reduce the needful value of k achieving a minor require-
ment of auxiliary memory and time.
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vi) DIOMRES(k, ) and DIOM(k) have the same time and
memory requirements but, as long as DIOMRES(k,m)
minimizes the residual, it always generates improved
approaches and finishes swifter.

vii) Approximations are updated in each iteration.

viii) It is applicable to both symmetric (and takes advantage

of it) and unsymmetric systems.

NUMERICAL EXPERIMENTS

In the following experiments the convergence speed of the
aforementioned techniques will be compared and the results
illustrated in log-linear graphs. All numerical experiments
were performed in a Micro VAX 11/730 employing a
rounding unit of 1.39 X 107 approximately, in double
precision. The vector zero was always taken as the initial
approached value.

1.- The first test was carried out with a linear system arisen
when resolving numerically the equation of Laplace in two
dimensions V >F(x,y) = O, using finite differences in a
plane region with 30 divisions in the X axis and 50 in the
Y axis. The matrix is of order 1500, symmetric and definite
positive. Figure 1 shows the graphs obtained during the
solution of this system. For this problem, the most rapid
method is Conjugate Gradient, (this type of matrix is its
specialty). However, DIOMRES(2,N) doesn’t stay so far.
GMRES(S) resulted to be the worst technique for this type
of problems.

2.- The second experiment was taken from a problem
proposed by Saad (1984); it corresponds to finite differen-
ces solution of the equation: -V 2f(x,y) +cdf/dx +bf(x,y) =
g(x,y), on a plane with 10 divisions in X and 20 in Y. The
resultant system, of order 200, is unsymmetric and
indefinite. Figure 2 shows that ORTHOMIN(14) takes a
long time to converge and requires much memory.
Conjugate Gradient shoots up, then converges in penultima-
te place. DIOMRES(5,66) results the fastest method,
followed very close by DIOM(5) and GMRES(9).

3.- The third test was fulfilled with a linear system arose in
a real application, when solving a non linear partial
differential equation, from the Electrical Research Institute
of Mexico (de la Torre, 1990). This is the type of system
that introduces more difficulties and is a good example
where Conjugate Gradient diverges and DIOM (k) requires
much time and memory to converge. The corresponding
matrix is unsymmetrical, indefinite, highly dispersed (5
terms per equation) and of order 961. The methods were
proven first without preconditioning. Figure 3 demonstra-
tes that unsymmetrical cases exist where Conjugate
Gradient diverges without hope whatever. DIOM(4)
fluctuates and is the slowest, while the other techniques
differ little in speed.
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TABLE 1.- COMPARISON OF TIME AND MEMORY REQUIREMENTS IN DIFFERENT METHODS.

Method No. Products / Iteration @ Memory Ref.
CONJUGATE MT+5N 4N Hestenes, 1952
GRADIENT Reid, 1971
ORTHOMIN(K) MT+3k+4) N (2k+3) N | Stanley, 1983
1

GMRES (k) MT+(k+3+ N (k+2) N | Saad, 1986
DIOM(k) MT+(3k+2)N (2k+3) N | Saad, 1984

) 3k-1 De la Torre,
DIOMRES (k,m) %Mﬂ (Bk+2- %)N (2k+3) N | 1990

@ N is the number of equations; MT indicates the number of non-zero matrix elements.

4.- The same previous problem was solved in the fourth
experiment, but now with preconditioning. All the methods
improve their speed, however DIOMRES(2,4) results
unquestionably, the fastest and with its superior convergen-
ce speed, it didn’t require more memory than the rest.

CONCLUSIONS

We introduced a brief description and some numerical
results showing the typical behavior of DIOMRES(k, m)
when confronted to Conjugate Gradient, GMRES(k),
DIOM(k) and ORTHOMIN(k), under different conditions
of symmetry, spectrum (set of eigenvalues) and preconditio-
ning. As is appreciated in the graphs, the adequate precon-
ditioning election, the restart period and the number of
orthogonalizations, allows us to solve big, unsymmetrical,
sparse linear systems fast and with few memory. The
method presented herein takes advantage of the available
estimates of the solution avoiding the stalemate provoked by
insufficient orthogonalizationand taking the advantage, with
symmetric matrices, of Av, orthogonalization with the two
more recent vectors. The adequate preconditioning technic
generally diminishes the time required to find the solution
in all methods. Linear systems exist where DIOMRES is
flagrantly faster than the best tested methods. Being a
method that minimizes the norm of the residual in each
iteration, it is possible to reach all the exactness permitted
by the computer’s processor. The coupling of this method
to MULKOM simulator is in process.
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Flg 1.— Computational Work Vs. Residual For a Symmetric,

ite Positive Linear System with 1500 equations.
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