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Understanding residual drainage from the source zone is essential for Modeled drainage rates from the contaminated vadose zone: Isotopic Studies:
predicting attenuation of plumes at contaminated sites such as the _ _ _ o _ o _ _ o -
Savannah River Site (SRS). This understanding is needed to predict Using time trends in groundwater tritium, nitrate, and specific conductance In order to delineate the history of contamination and the current mobility
remediation timeframes. At the SRS F-Area, large contaminant plumes immediately downstream of Basin 3 (Fig. 3) along with their source zone and and fate of contaminants in F-Area groundwater, we analyzed the isotopic
- J . . o . . .
resulted from decades of radioactive waste disposal into seepage basins background values (Table 1), we calculated vadose zone drainage rates (Fig. compositions of U, Sr, Nd, H,0 (d180, dD) and nitrate (3'°N, 680) within the
The objective of this work was to predict groundwater plume attenuation 4), and cumulative drainage (Fig. 5). Vadose zone drainage remains important contaminant plume. This data can be used to trace U transport within the
through characterizing its current status and developing a mass balance because the source zone is large, and because its contaminants occur at plume, evaluate chemical changes of nitrate, and track plume/sediment
model for source zone drainage and dilution. Analyses of the sediments levels much higher than regulatory goals. ;:hemlcal _mte_ractlor:i W: hahvczl_analyzed a Tum: of grolt:ndwaterhsamples
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that early stages of post-closure waste drainage occurred with high water 3 1t | D i anlI" er se mllent gores Ito map out tne ISotopic variation witnin tne piume.
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high concentrations of contaminants it continues to supply to groundwater. Z years (relative to 2-24-91) £0%% USRI iy gl L B
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The model predlctlons compared well with measured tritium and nitrate concentrations measured in the well Fig. 4. Calculations of the time- fluxes into the Upper Aquifer, based 2 oo EZ
concentrations from downstream monitoring wells. The methodology immediately downstream of Basin 3 dependent Basin 3 drainage fluxes on model calculations and early stage 2= P
ted h . | d t itori dat d f T (FSB-95DR). into the Upper Aquifer, using decay- saturated drainage based on hydraulic = 3 FAW-S Plume”
presented here requires only groundwater monitoring data and a few well- il RS NSILE e conductivities (Phifer et al.. 2006). g0 = Badaron
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better understanding of contaminant dissipation at other sites as well. e T mass balance macel. ote Ihal 9900 || onvergence toward predicted Fig. 8. Plot of *SUU vs. =2UPRU,
b, greement was obtained using the drai limit Four different contaminant end- Fia. 10. C ina 87Sr/%6Sr in FAWS
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We also conducted isotopic studies of U, Sr and nitrate to understand the the U isotopic variation of . _ar;ld FAw1fstt:]ggesttsdbott_h thi
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plurpe__s h_|stor¥. _The isotopic analyses give no indication of biotic Contaminant distributions within the current plume: e e s 3 / limestone (low #7Sr/%%Sr) during early
denitrification within the plume, although a surface water sample suggests : . _ L. respectively, contamination from Basin ][fm(;d'ag?n (Ufp,ertzonet,_ grey)l, and
denitrification occurs between the seep i : In order to obtain a more complete picture of contaminant distributions F3. while D likely represents Basin F2/ | | Fig. 9. Depth profiles of 235U/38U uid/sediment interaction (lower
P line and the stream. Both chemical . ! . o D361 11238 zone, white). Upper and lower zones
. . . . ) beyond well FSB-95DR, 5 boreholes were drilled along the plume path and F1. Certain other samples indicate (top) and =*U/=SU (bottom). The defined on the basis of vertical
and systematic isotopic vertical variations of U and Sr isotopes were : . e . dilution by natural U sourced from | | vertical variation in U isotopes et DENeS AN e pas’s OF Veries
. o : . sampled with depth in the Upper Aquifer in order to develop transect maps of sedimentperemaier (FANN  ane implies the introduction of different chemical variations observed in
identified in the upper aquifer. The data suggest that the lower zone : ] . o . . - " FAW-5. The relatively low 87Sr/86Sr
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APPROACHES — = Our seepage basin drainage model demonstrates and explains the
Fig. 6. F-Area Upper Aquifer plume contaminant distributions. (a.) Overview of transect in relation to Basin 3, continued importance of contaminant diSCharge from the vadose zone.
= M bal | f t . ts. b d historical itori monitoring wells, and funnel-gate treatment wall. (b.) tritium distribution. (c.) nitrate distribution. (d.) pH _ ] L
ass Palance ana )]:593 or con amln?n S, fase on nistorical monitoring distribution. (e.) pore water U(VI) distribution. (f.) Carbonate-extracted sediment U(VI) distribution. = Current plume contaminant profiles reflect diminished source zone
data, groundwater flow, and net rainfall infiltration. T . . cep - drainage and pH-dependent U(VI) sorption
Predicting concentrations of contaminants within the plume: g pr=aep (V1) sorp
= Spatially distributed sediment sampling along plume path. Before the transport of reactive = Dilution of source zone drainage by background groundwater and net
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= Geochemical, mineralogical, and isotopic analyses of sediments. contaminants can be predicted, an onk f’ ) T Infiltration adequ_ately predicts tritium and nitrate plumes. Our approach
understanding of the primary = //! — g /ﬂ can help constrain much more complex models of plumes.
AA \ hydrogeological factors controlling — P —— = Sr and U isotopic results indicate migration of U to the top 5 m of the
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| | plume, the key hydrogeologic A wo [ | e
Basin 3 factors are the background Upper z “\ I = Changes in groundwater U isotopic compositions over two years
, z | | rve— Aquifer flow field, net rainfall suggests the migration U from up-gradient portions of the plume at the
well FSB 95DR *B’B, | infiltration (recharge), and Basin 3 o e 0 o0 o s rate of ~100 m/yr. U is contributed to Fourmile Branch at rate of ~ 5 g/day.
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Fig. 1. Mass balance model: The time-dependent N K Fawr dralnageirates. Theflrst 2i7actors™ 1§12 N I * The deepest porewater sample from FAW-6 has U isotopic composition
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FSB 95DR reflect drainage of the contaminated MO x FAWA have been determined by previous ||/ ¢ .. vy || , ; fn consistent with a significant fraction (2/3 rds of the 75 ppb total U) of
vadose zone and dilution by upstream groundwater. FAW-6 % \ SRS researchers. Our recent 1990 109 BRor 2% 20 e gy 005 2010 0 1995 &g 2005 2000 natural U extracted from the sediment.
\@ FSB-110D determination of drainage rates
Mass balance model calculations: The time-dependent FAW-5 * from Basin 3 now permits Fig. 7. Nonreactive contaminants enter the Upper Aquifer
rainage rate from the contaminated vadose zone is \ . at diminishing drainage rates (Tokunaga et al., in press).
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- s ot Al e et : Fig. 2. Map of F Area seepage basin 3 and plume h h : downstream (220 m and 375 m). Predictions (curves) are Wan, J., T.K. Tokunaga, W. Dong, M.E. Denham, and S.S. Hubbard. 2012. Persistent Source Influences on the
%n295 ( q m)_, r‘:r:s © .fpperl q.l:' 6229490 'Y1e POTOSIty region, showing locations Of long-term monltorlng and tested t rough comparisons in generally good agreement with data from monitoring Trailing Edge of a Groundwater Plume, and Natural Attenuation Timeframes: the F-Area Savannah River Site,
(0.25), and v, s the aquiter velocity (124 m y~). wells and boreholes for sediment sampling. with existing data (Fig. 7). wells (Wan et al., 2012). Environ. Sci. Technol. 46, 4490-4497.
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