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ABSTRACT 

1. Estimation of Field-scale Bioremediation Status 
Using Geochemical and Geophysical Data 

2. Understanding Biogeochemical Processes 
Using Coupled RTM and Geophysical Monitoring 

Summary 

Many bioremediation experiments have been conducted at the DOE Rifle (CO) IFRC site to 
facilitate the reduction of U(VI) to U(IV) and to explore the role of the associated coupled 
physical and biogeochemical processes. At the Rifle IFRC and elsewhere, it is common to 
use time-lapse wellbore-based aqueous geochemical data with mechanistic models to assess 
the progress of the remediation-induced system transformations. In this work, we strive to 
identify the diagnostic signatures of biostimulation by using hydrological, geochemical, and 
geophysical data through two different yet complementary approaches: 

• Data-driven statistical (or ‘top-down’) approach. We consider the multivariate 
geochemical concentrations as hidden random processes (observed at borehole locations 
but unknown at other locations) and the time-lapse geophysical data as observations at 
each location along the 2D profiles. We use a Bayesian approach and Hidden Markov 
models to estimate the unknown parameters. The developed statistical approach can 
provide information on the probability of being in each redox stage over time and space 
following biostimulation and on the diagnostic parameters as functions of aqueous 
geochemical concentrations and geophysical attributes.  

• Mechanistic reactive transport modeling (or ‘bottom-up’) approach. We use flowmeter 
and slug test data to set up the initial distribution of permeability. The initial distribution of 
porosity was obtained by assuming a correlation between porosity and IP data at the initial 
time and by matching bromide breakthrough data. We use inverse reactive transport 
modeling of time-lapse geochemical data to determine key parameters that control the 
reactive transport processes. After obtaining a good match with the geochemical data, we 
compare the predicted aqueous and solid phase geochemistry from the reactive transport 
model with the IP data to understand key controls on the IP data and whether the IP data 
are useful for monitoring and diagnosing changes in the biogeochemical processes during 
the biostimulation experiments.  

The data-driven statistical and mechanistic approaches are complementary  to each other. 
The top-down approach is expected to be especially useful for rapid identification of critical 
system transitions based on streaming monitoring data and for constraining mechanistic 
transport models where various reaction pathways are possible. The established methods 
can be used to link geochemical and geophysical signatures and eventually to help 
understand and predict subsurface biogeochemical processes using constraints from different 
types of measurements.  
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• We developed a hidden Markov model (HMM) based on main reaction networks to identify 
statistically important states and transitions associated with field-scale bioremediation 
using multiple borehole aqueous geochemical data. 

• The identified five states (i.e., iron reduction, sulfate reduction, concurrent reduction, iron 
sulfide precipitation, and post injection) have different geochemical features and 
correspond well to the spectral IP data. 
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Figure 3: Identified main reaction networks 
at the Rifle site, from which the state-
dependent models are developed.  

Figure 2: Structure of hidden 
Markov models. The underlying 
redox states at each time are 
unknown but they depend on 
the concurrent geochemical and 
geophysical data. 
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Figure 1: Spectral induced polarization (SIP) 
survey profile (Array A ) and geochemical 
sampling boreholes (D1, D2, D3, and D4). 

• Bioremediation time frame for the field 
bioremediation experiments: 

•  Winchester (2007): starting on 08-Aug-
2007, lasting 31 days. 

•  Big Rusty (2008): starting on 20-July-
2008, lasting 110 days 

•  Buckskin (2009): starting on 20-July-
2009, lasting 30 days. 

• Geochemical and geophysical data: 
• Time-series of aqueous geochemical 

data includes Fe(II), uranium, sulfate, 
sulfide, acetate, bromide concentrations. 

• Time-lapse spectral IP data along the 
profile near boreholes D01-D02-D03-
D04 (red line segment): (1) 2007 and 
2008 IP data have 6 frequencies 
between 0.125Hz and 4Hz at 19 time-
steps; (2) 2009 IP data have 13 
frequencies between 0.0625Hz and 
256Hz at three time-steps.  

Background 

• Geophysical methods can be used to quantify the evolution of biogeochemical end-products 
(precipitates, electro-active ions) in a minimally invasive manner. 
• Field-scale time-lapse geophysical data can be used to identify the spatio-temporal 
distribution of biogeochemical parameters and redox status at the field-scale. 
• The quantified biogeochemical parameters and redox status can be used to guide and 
monitor remedial methods and to constrain/validate RTM. 

Hypothesis 

Understanding subsurface biogeochemical 
processes is challenging due to the heterogeneity 
of porous media and the complexity of reaction 
network. Geophysical methods are often used as 
non-invasive tools for monitoring subsurface 
biogeochemical processes. However, geophysical 
data in general provide “bulk” indication of 
processes instead of mechanistic understanding. In 
this work, we use a biostimulation experiment at 
Rifle, Colorado, as an example to couple reactive 
transport modeling with hydrologic, geochemical, 
and geophysical data. Our objective is to  
• mechanistically understand subsurface 

biogeochemical processes during biostimulation 
experiments, 

• identify key controls that determine geophysical 
signature, 

• examine if and under what conditions 
geophysical signature provide a powerful 
monitoring tool for subsurface biogeochemistry.  

Background 

Figure 6: Well layout at 2010 Rifle field 
experiment. Also shown includes 
background wells (squares), bicarbonate 
injection wells (triangles), acetate injection 
wells (diamonds), and monitoring 
wells(circles). We focus on the CA03-
CG09-CD15-CD17 transect that has  
IP survey data.  

Methodology: Integration of hydrological, geophysical, and geochemical 
measurements with reactive transport modeling 

Figure 8: Comparison 
of modeling outputs 
(solid  lines) with 
breakthrough data 
(circles) of bromide, 
acetate, sulfate, Ca2+, 
U(VI), and Na+ from two 
monitoring wells of 
CD15 (first row) and 
CD17 (second row).   
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Agreement between the modeling and the geochemical field data  indicates the model 
has captured the dynamics of the system.  

U(VI) mobility is controlled by surface complexation due to bicarbonate amendment 
and U(VI) bioreduction is limited to iron-reduced bacteria(FeRB), which is stimulated 
due to acetate amendment.  

Model prediction 

Results and Discussion: 

• Subsurface biogeochemical dynamics can be captured through coupled biogeochemical 
reactive transport modeling and geophysical monitoring.  

• Geophysical signatures can monitor and diagnose changes in the biogeochemical 
processes. 

• Reactive transport modeling, constrained by physical and geochemical measurement data, 
can provide mechanistic understanding on key biogeochemical processes that determine 
geophysical signature.  

Hypothesis 

Figure 9: Comparison between spatiotemporal profiles of predicted effective ionic strength (first row) 
and measured electrical conductivity (second row). Effective ionic strength is defined as              for 
each grid block i. Here cij is the concentration of species j predicted by the mode after fitting the 
geochemical data, and zj is the charge of species j in grid block i. Φi is the porosity in grid block i. N is 
the number of the species.  
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Similarity in spatiotemporal patterns between effective ion strength and bulk electrical 
conductivity (derived from ERT/IP surveys) indicates geophysical methods can provide 
signatures to monitor biogeochemical processes during coupled bicarbonate/acetate 
amendment bioremediation experiments.  

Fluid ion strength and porosity play a vital role in linking geochemical and geophysical 
signatures for better understanding induced biogeochemical transformation.  
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• Hydrologic and geophysical data-based biogeochemical reactive transport modeling 
successfully captures the dynamics of coupled biogeochemical processes at the field-
scale. 

• Similarity between spatiotemporal patterns of effective ion strength and bulk electrical 
conductivity indicates the potential of using geophysical measurements for monitoring of 
subsurface biogeochemical processes. 

• Results indicate that the spatial distribution of porosity and aqueous ionic strength are 
both critical in determining the geophysical signature.  
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Figure 4: Transition matrix 
among five identified states 
based on the current 
models and available data 
sets, where FeS--a state  
dominated by iron 
precipitation, Post--a state 
close to background, 
FeRSR--a state where both 
iron and sulfate reduction 
occur, SR—a state 
dominated by sulfate 
reduction, FeR– a state 
dominated by iron reduction.   

Figure 5: State 
transition sequences  
as a function of time 
at borehole D1.  

Parameter Estimation and Model Selection 
We follow the main steps below to estimate 
parameters and identify unknown states. 
 
• Specify state-dependent models based on 
main reaction networks given in Figure 3 to link 
the underlying states to the concurrent 
geophysical and geochemical data. 
 

•  Estimate unknown model parameters using  
expectation-maximization (EM) methods and 
select the best model using Bayesian 
information criterion. 
 

• Obtain transition matrix between each state 
and transition sequences at each location. 
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