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ABSTRACT Parameter Estimation and Model Selection Methodology: Integration of hydrological, geophysical, and geochemical
measurements with reactive transport modeling

We follow the main steps below to estimate - . Model prediction
Many bioremediation experiments have been conducted at the DOE Rifle (CO) IFRC site to parameters and identify unknown states. o s el
facilitate the reduction of U(VI) to U(IV) and to explore the role of the associated coupled
physical and biogeochemical processes. At the Rifle IFRC and elsewhere, it is common to » Specify state-dependent models based on 5 O oo .
use time-lapse wellbore-based agqueous geochemical data with mechanistic models to assess ' main reaction networks given in Figure 3 to link mo
the progress of the remediation-induced system transformations. In this work, we strive to the underlying states to the concurrent
identify the diagnostic signatures of biostimulation by using hydrological, geochemical, and geophysical and geochemical data.
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geophysical data through two different yet complementary approaches:
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e Estimate unknown model parameters using
expectation-maximization (EM) methods and
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o Data-driven statistical (or ‘top-down’) approach. We consider the multivariate Archie’s Modelf| = | Inverse Reactive

geochemical concentrations as hidden random processes (observed at borehole locations _ _ | | _ :
but unknown at other locations) and the time-lapse geophysical data as observations at select the best model using Bayesian P e =0 f Transport Modeling o
each location along the 2D profiles. We use a Bayesian approach and Hidden Markov . | . . . Information criterion. ‘i
models to estimate the unknown parameters. The developed statistical approach can A 3 Ide_ntlﬁed main reaction networks _ N _ Initial IP survey Porosity field |
provide information on the probability of being in each redox stage over time and space 1L S NS ST, U By WS SiElie: » Obtain transition matrix between each state

following biostimulation and on the diagnostic parameters as functions of aqueous ST SIS SIS 6 A OISl and transition sequences at each location. Results and Discussion: T e
geochemical concentrations and geophysical attributes. . Kinetic parameters

| N | Transition matrix and state-transition sequences T Eomide o rcene T s _ — Figure 8: Comparison
« Mechanistic reactive transport modeling (or ‘bottom-up’) approach. We use flowmeter Figure 4: Transition matrix s Post FeRSR SR FeR 1 wf of modeli.ng outputs
and slug test data to set up the initial distribution of permeability. The initial distribution of among five identified states 70.829 0.111 0.000 0.000 0.000° | - =1 & =i == Sl ¢ =% (solid lines) with
porosity was obtained by assuming a correlation between porosity and IP data at the initial based on the current 0.000 0965 0.022 0013 0.000 ;ﬁiﬁ“ﬁﬁ fér;joungigﬁn:m?aqe HER =l =N ”n — | .. | breakthrough data
time and by matching bromide breakthrough data. We use inverse reactive transport models and available data 0.000 0.000 0.459 0.177 0.364 reduoﬁon, 2nd conourrent L o s I ey e ST PSSl (Gircles) of bromide,
modeling of time-lapse geochemical data to determine key parameters that control the sets, where FeS--a state 0.054 0.000 0.018 0910 0.018 | reduction (see blue values), | o e orar acetate, sulfate, Ca?*,
reactive transport processes. After obtaining a good match with the geochemical data, we dominated by iron (0.000 0.053 0.183 0.000 0.764) comparedtoother pairs. ™1 e el w4 o = U(VI), and Na* from two
compare the predicted agueous and solid phase geochemistry from the reactive transport precipitation, Post--a state Pl T ATe b Y o [ ; p fuml o monitoring wells of
model with the IP data to understand key controls on the IP data and whether the IP data close to background, » Two transition paths: 1N |l 1T e X T N | ¢ e | CDI15 (first row) and
are useful for monitoring and diagnosing changes in the biogeochemical processes during FeRSR--a state where both i‘rfﬁ';itlﬁdfiﬁg%?tgm T Swen 1 wen ] weem ] T Fwen ] T wen 7 wes ] CD17 (Second row).
the biostimulation experiments. Iron and sulfate reduction to post-injection (pink > Agreement between the modeling and the geochemical field data indicates the model
occur, SR—a state path). has captured the dynamics of the system.

: « Sulfate reduction, or
dominated by suliate concurrent reduction to . » U(VI) mobility is controlled by surface complexation due to bicarbonate amendment

system transitions based on streaming monitoring data and for constraining mechanistic JEelaiol, MR ElSIENE ron reduction to post- and U(VI) bioreduction is limited to iron-reduced bacteria(FeRB), which is stimulated

. . . . dominated by iron reduction. injection (brown path).
transport models where various reaction pathways are possible. The established methods y due to acetate amendment.
can be used to link geochemical and geophysical signhatures and eventually to help Borehole D1

* Long sulfate reduction (SR)

understand and predict subsurface biogeochemical processes using constraints from different characterized by persistent. e 3 o,
types Of measurements. elevated sulfide concentrations. D . _ ’ L | § OE- Predicted
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The data-driven statistical and mechanistic approaches are complementary to each other.
The top-down approach is expected to be especially useful for rapid identification of critical

* I[ron reducers remove Fe(lll)- - ' N ' ) 3 a a i a a a o
(1 wes Strength

1. Estimation of Field-scale Bioremediation Status oxides and produce Fe(Ih. They 3 | "\ i o =
entire period of concurrent Flgure o. State : EI:CTECZT

USing Geochemical and Geophysical Data metabolism (.., growth ot iron N ¢ transition sequences | Y b . - e

reducersis concurrent with 1.0E-02

sulfate reducers and our current | as a function Of time 28532 Measured

SIP survey Line conceptual model is that these - Phase ey ' ’ ' — at borehole D1 70E-03
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« Ri 1ti i " R remove uranium while sulfate Conductivit
Bioremediation time frame for the field 1O Mosmen_ _/ reducers are also active. soc y
bioremediation experiments: ¢ postehiulation / although the sulfate reducers
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05 are not reducing/removing the X (m) X (m) X (m) X (m)

* Winchester (2007): starting on 08-Aug- «I" . : uranium). S By ™ 08/10/2010 08/28/2010 09/11/2010 11/14/2010

: > uo1
AUV, EIL) S d.ays. . o X DO W Precipitation (Fes) [ iron reduction (FeR) Sulfate reduction (SR) Figure 9: Comparison between spatiotemporal profiles of predicted effective ionic strength (first row)
* Big RUStY (2008): starting on 20-July- E . xpiﬁ and measured electrical conductivity (second row). Effective ionic strength is defined as Y.c,2#* for
2008, lasting 110 days £0 o each grid block i. Here c; is the concentration of species j predicted by the mode after fitting the
* Buckskin (2009): starting on 20-July- % geochemical data, and z; is the charge of species j in grid block i. @, is the porosity in grid block i. N is

2009, lasting 30 days. 2 2. Understanding Biogeochemical Processes the number of the species.

» Geochemical and geophysical data:

« Time-series of agueous geochemical Using Cou pled RTM and GeophySical Monitorl ng » Similarity in spatiotemporal patterns between effective ion strength and bulk electrical

conductivity (derived from ERT/IP surveys) indicates geophysical methods can provide

. e, s ConeEE s Background S|gnagures t%monltocrl_blc_)geochemlcal processes during coupled bicarbonate/acetate
Time-lapse spectral IP data along the amendment bioremediation experiments.

profile near boreholes D01-D02-D03- , | , o Understanding subsurface biogeochemical » Fluid ion strength and porosity play a vital role in linking geochemical and geophysical
D04 (red line segment): (1) 2007 and Figure 1. Spectral induced polarization (SIP) processes is challenging due to the heterogeneity signatures for better understanding induced biogeochemical transformation.
2008 IP data have 6 frequencies survey protile (Array A) and geochemical of porous media and the complexity of reaction
between 0.125Hz and 4Hz at 19 time- sampling boreholes (D1, D2, D3, and D4). network. Geophysical methods are often used as
steps; (2) 2009 IP data have 13 non-invasive tools for monitoring subsurface
frequencies between 0.0625Hz and biogeochemical processes. However, geophysical
256Hz at three time-steps. data in general provide “bulk” indication of o1 © 3° « We developed a hidden Markov model (HMM) based on main reaction networks to identify
processes instead of mechanistic understanding. In ‘w W 02‘” ry statistically important states and transitions associated with field-scale bioremediation
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HypOtheS|S this work, we use a biostimulation experiment at wmmm - using multiple borehole aqueous geochemical data.

« Geophysical methods can be used to quantify the evolution of biogeochemical end-products Rifle, Colorado, as an example to couple reactive % cens co6  con The identified five states (i.e., iron reduction, sulfate reduction, concurrent reduction, iron
(precipitates, electro-active ions) in a minimally invasive manner. transport modeling with hydrologic, geochemical, 444 sulfide precipitation, and post injection) have different geochemical features and

» Field-scale time-lapse geophysical data can be used to identify the spatio-temporal and geophysical data. Our objective is to Length (m) correspond well to the spectral IP data.

distribution of biogeochemical parameters and redox status at the field-scale. « mechanistically understand subsurface Figure 6: Well layout at 2010 Rifle field Hydrologic and geophysical data-based biogeochemical reactive transport modeling

* The quantified biogeochemical parameters and redox status can be used to guide and biogeochemical processes during biostimulation successfully captures the dynamics of coupled biogeochemical processes at the field-
monitor remedial methods and to constrain/validate RTM. experiments, scale

Hidden Markov Models Structure of Hidden Markov Models L,Oiler?gzrl;ey controls that determine geophysical injection wells (triangles), acetate injection Similarity between spatiotemporal patterns of effective ion strength and bulk electrical
J ! wells (diamonds), and monitoring conductivity indicates the potential of using geophysical measurements for monitoring of
Figure 2: Structure of hidden

) JL Acetate (f) examine If and under what conditions wells(circles). We focus on the CAQ3- subsurface biogeochemical processes.
Markov models. The underlying l

Post-injection (Post) l Concurrent reduction (FeRSR)

data includes Fe(ll), uranium, sulfate,
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experiment. Also shown includes
background wells (squares), bicarbonate

[P-response (t) monitoring tool for subsurface biogeochemistry.

e Hypothesis

Uranium (t)

< S“”‘_'l_d_e ®© « Subsurface biogeochemical dynamics can be captured through coupled biogeochemical Referen CES

reactive transport modeling and geophysical monitoring.
Bioremediation . . . . . . . e Chen, J., S. Hubbard, K. Williams, A. Flores-Orozco, and A. Kemna (in press), Estimating spatio-temporal distribution of geochemical
_)e States (e.g., iron or Geophysmal Slgnatures can monitor and dlagnose Changes in the bIOQEOChemlcal parameters associated with biostimulation using spectral induced polarization data and hierarchical Bayesian models, WRR.

Zi ’ promide (U geophysical signature provide a powerful CG09-CD15-CD17 transect that has Results indicate that the spatial distribution of porosity and aqueous ionic strength are
redox states at each time are
unknown but they depend on
the concurrent geochemical and

geophysical data. H—>
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E sulfate reduction) Processes. . . . . .
 Li, L., N. Gawande, C. Steefel, M. Kowalsky, and S. S. Hubbard (2011), Physicochemical Heterogeneity Controls on Uranium

T Injection states (i.c.. Reactive transport modeling, constrained by physical and geochemical measurement data, Bioreduction Rates at the Field Scale, Environmental Science & Technology, 45 (9959-9966).

with or without acetate) can provide mechanistic understanding on key biogeochemical processes that determine e Wu, H.F, L. Li., C. I. Steefel, K. Williams , and S. S. Hubbard (in preparation), Understanding biogeochemical processes using coupled
geophysical Sig nature. geophysical signature and reactive transport modeling,.

Z3
l IP survey data. both critical in determining the geophysical signature.
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