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Scientific Issues and Goals

* |dentify critical road blocks preventing
advancement

®* Must be able to break down and sub-
catagorize the problem in manageable pieces

* Coordinate research pieces to derive an
overall solution

* Transfer results to end users




Examples of Crosscutting
Roadblocks in Geosciences

° Natural heterogeneity, Scaling, Multi-Property
interaction
= |maging and manipulation
= Coupled processes
Appropriate and adequate theory
Accurate constitutive equations
= Sensors/Data
Processing and interpretation of data
Computation




Examples of Crosscutting Applications

* Fluid extraction from the subsurface
= Qil and gas
= Geothermal
= Contaminant cleanup
= Water supply
* Fluid injection
Disposal of waste
CO2 sequestration
Enhanced geothermal
Hydrofracturing
Oil and gas storage
Water supply

* Atmospheric Changes
= Weather prediction
= Climate change
= Water supply




Example Problem: Bioremediation

* Elements
= Define the microbial community

* Define the critical subsurface properties
controlling the microbial community transport,
survival and growth

=> Fluid content and transport
=> Chemistry
=> Attachment
=> Nutrients
= Define the minimum scale of understanding




Investigating interactions between physical-
biological-geochemical heterogeneity
and coupled processes

Goal: Understand what factors control bacterial transport at the field
scale.

Approach: Using integrated lab and field experiments, investigate
influence of:

=> Physical heterogeneity

Relative sizes of bacteria (~0.1-1 micron) to pore throat sizes
(<0.05 micron clay, >20 micron sand)

= Geo-chemical heterogeneity

Electrostatic interaction between negatively charged
microbes and positively charged iron oxide coatings.

Objectives: Investigate use of Geophysical Data for
estimating hydrogeological-geochemical heterogeneity




Injection Experiments: NC and SOFA

12 sampling ports
in each MLS,
ports spaced ~30
cm apart over 3 m
12 h injection
pulse of
= DAO0O01 at NC
(Comomonos
sp.),
OY107 at
SOFA
(Acidovorax
Sp.) and
= Br
24 h sampling for
7 days
~4600 discrete
samples
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Estimates of Hydraulic Conductivity using different
Density and Type of Data

Hydraulic Conductivity Estimates along Injection flow centerling

PRIOR estimates from flowmeter data only:
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Field-Scale Estimation of Sediment Geochemical Heterogeneity

Radar Attenuation Estimated Fe2




Comparison of K Estimates vs. Chemical Transport Data
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Comparison of K Estimates vs. Bacterial
Transport Data

p Estimated Hydraulic Conductivity
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Microbe-Induced Sulfide Precipitation in Porous Granular Media:
Interactions between hiogeochemical-geophysical-hydrological under
DYNAMIC CONDITIONS

* Controlled
Conditions:

- = Well-defined, saturated
c | ] )
/ © %  prechiatonor sediments of known

) metallic sulfides

Josume S grain size
— o * Introduction of single
"\ s Q) microbial strain
= Infiltration using
defined medium with

fixed substrate and
metal concentrations

= Fixed rate of advection




Acoustic Method:
* Cross-column acoustic pulses (10°- Ex im
105Hz) Xpﬁm____@mzs
B
* Velocity and amplitude information | § / Acotstic

b

- i

Electromagnetic (TDR) Method

= Time Domain Reflectometry (1-
3GHz)

= Velocity and amplitude information
Complex Resistivity (10-1-10°Hz)

in collaboration with Lee Slater, Rutgers | AL

s
T ——

—1 f@;ﬁ1

= Non-polarizing (i.e. low-noise)
Ag/AgCl potential electrodes

= Gold current electrodes
Biogeochemical

* Fluid chemistry (anions, cations,
organic acids, pH)
Biomass sampling (quantitative
AODC, PLFA)

Nanoparticle sampling and analysis
(XRD, SEM, TEM)

Electron microscopy of microbe-
sediment associations




Dynamic processes

Strong spatio-temporal
correspondence in
geochemical-microbial-
geophysical-hydrological
measurements.
Migration of microbial-
encrusted microbes
detectable using
geophysical methods.
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If high resolution
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accurately predict
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Example Problem: C02 Storage

* Elements

= Define the critical subsurface and surface
properties controlling the transport and location of
the CO2.

=>» Static and dynamic properties of matrix
Lithology, pores/fractures,stress tensor, etc.
=>» Fluid partitioning and transport properties
=» Chemical (microbial) interactions
=>» Atmospheric interactions
= Define the minimum scale of understanding




Weyburn Unit

Edmonton

Discovered in 1954 the Weyburn Unit
covers an area of 70 sq. mi1




Weyburn Well Layout




Schematic East-West Geological
Cross-Section
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Simultaneous but Separate

Water and CO, Injection
Hz Producer

Midale Hz CO, Injector Midale

ite Anhydrit
Anhydrit Horz Crosswell \ \nmydmte

Vert Crosswell
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Vertical
Producer

Vertical Water




Model Derived from Reservoi
Simulator and Well Logs
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Plan view P-wave velocity change
compared to CO2 (Year 1)
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Time Lapse studies

Data Acquisition Schedule

CSM-  Encana 3D-VSP X-Well CO, Fluid/Gas Soil Gas
=N 3D sD B

HX-BL O bcf

Monitor 2
Monitor 1
Baseline




Location of Vertical Crosswell (and VSP), and Horz Crosswell
Relative to Surface Seismic
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Seismic Detection
Ro4 of Weyburn Field
CO, Miscible Flood
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Seismic Measurements

Amplitude anomalies at the Reservoir
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Seismic vs. Reservoir Simulation
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Fraction of injected CO2 volume explained by
cells in common between the time-lapse and
simulator model. A much larger percentage of
the volume iIs explained in model iteration 6 than

the first iteration.
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Geochemical Studies

+5 <« carbonate minerals in reservoir
0
“o
X 10
O | |« "pre-injection” produced COz2
. |
© 201 & injected CO2

35 I+ CO2 stream from Beulah, ND

d13C Values. Mineral dissolution drives produced CO, and dissolved CO, (as

bicarbonate) §'3C values to a more positive value. Conversely, dissolution of
injected CO, drives produced CO, §'3C values to a more negative value.




Geochemical studies

R13W2 49.54°N

103.73°W

_13C values

Weyburn Monitor 6

813C (HCO3) (%) AN | | | from the
Monitor 6
survey
(September,

<-10

2002).
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Shear wave
splitting map
for the monitor
2 survey
(2002).
[S=intershoal
facies, S=shoal

facies within
the Vuggy unit




Calcium and C13 results
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Geochemical modeling

CO2 Molar Distribution co,

distribution
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production
data and
20% —{ M Total CO5 in Oil
B Total CO5 in Water

solubility
calculations to
assess the gas
distribution
within the
reservoir
fluids and its
interaction
with reservoir
rock at
subsurface
conditions
through time.
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Lessons Learned

Even at the small scale we cannot adequately predict
many processes

Most progress was made when an interdisciplinary,
diverse in interests team of scientists are coordinated

Most productive when one has a mix of hypothesis
driven science carried through to application
= Theory, lab and field investigations

= Manipulation and process driven work
Almost always limited by sampling (data) and
adequate understanding of coupled processes

Usually we resort to deterministic and/or statistical
solutions

There will always be limitations due to inadequate
technology and/or theory: How do we deal with it!!!




Next Steps

* |dentify the process that will pick the critical
challenges that if overcome will make the most
impact

* Process adopted will identify critical roadblocks and
sub-roadblocks as well as research pathways

= Beyond the usual roadmap
= Specify work from beginning to implementation

=>» Specify how the work will be done not just what work
will be done

= Specify mechanism that will be productive without
hindering creativity

= Some may be fundamentally impossible
* Implement work

= Appropriate scientific oversight

= Adequate resources




