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Abstract Instances of gas leakage from naturally
occurring CO, reservoirs and natural gas storage sites
serve as analogues for the potential release of CO,
from geologic storage sites. This paper summarizes and
compares the features, events, and processes that can
be identified from these analogues, which include both
naturally occurring releases and those associated with
industrial processes. The following conclusions are
drawn: (1) carbon dioxide can accumulate beneath,
and be released from, primary and secondary shallower
reservoirs with capping units located at a wide range of
depths; (2) many natural releases of CO, are correlated
with a specific event that triggered the release; (3)
unsealed fault and fracture zones may act as conduits
for CO, flow from depth to the surface; (4) improperly
constructed or abandoned wells can rapidly release
large quantities of CO,; (5) the types of CO, release at
the surface vary widely between and within different
leakage sites; (6) the hazard to human health was small
in most cases, possibly because of implementation of
post-leakage public education and monitoring pro-
grams; (7) while changes in groundwater chemistry
were related to CO, leakage, waters often remained
potable. Lessons learned for risk assessment associated
with geologic carbon sequestration are discussed.
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Introduction

The injection and storage of anthropogenic CO; in
deep geologic formations is a potentially feasible
strategy by which to reduce CO, emissions and atmo-
spheric concentrations (e.g., International Energy
Agency 1997; Reichle et al. 1999). While the purpose
of geologic carbon storage is to trap CO, underground,
CO; could migrate away from the storage site into the
shallow subsurface and atmosphere if permeable
pathways (such as well bores or faults) are present.
While limited CO, leakage does not negate the net
reduction of CO, emissions to the atmosphere, adverse
health, safety, and environmental risks associated with
elevated CO, concentrations must be evaluated, par-
ticularly if the release at the surface occurs quickly
and/or is spatially focused. Cases of CO, and CH,
leakage from reservoirs to the near-surface environ-
ment as a result of natural and industrial processes
serve as analogues for the potential release of CO,
from geologic storage sites (e.g., Allis et al. 2001; Ste-
vens et al. 2001a, b; Benson et al. 2002; Beaubien et al.
2004; Shipton et al. 2004; NASCENT 2005). Analysis
of these analogues thus provides important insight into
the key characteristics of CO, leakage; the resulting
impact of the leakage on human health and safety,
ecology, surface water, and groundwater; and quality,
and the effectiveness of remedial measures applied.
Lessons can then be learned from natural and indus-
trial analogues for risk assessment associated with
geologic CO; injection and storage.

@ Springer



Environ Geol

The features, events, and processes (FEPs) relevant
to the geologic disposal of radioactive waste have been
compiled and used in systems analysis to assess per-
formance and safety (e.g., NEA/OECD 2000). Based
on this work, Savage et al. (2004) developed a frame-
work for compiling a database of generic FEPs for the
evaluation of CO, storage sites. However, FEPs asso-
ciated with geologic sequestration of CO,, in particular
potential CO, leakage from storage sites, have not
been identified from actual cases of leakage from nat-
ural CO, reservoirs. The purpose of this paper is to
summarize and compare the FEPs of CO, leakage
examples from natural geologic reservoirs and CHy
from natural gas storage sites. To this end, a broad
(although not exhaustive) set of natural and industrial
analogues for CO, leakage is summarized (Appendices
A and B; online supplementary material). In addition,
several examples of CH, leakage associated with
industrial processes are described. Based on this sum-
mary, the causes and consequences of CO, leakage
resulting from natural and industrial processes are
described, with particular emphasis on (a) the geologic
model for CO, accumulation in the reservoir, (b)
events leading to the leakage of the CO, from the
reservoir, (c) pathways for CO, migration to the sur-
face, (d) the magnitude and consequences of the re-
lease, and (e) remedial strategies applied. Implications
for geologic carbon storage and the related risk
assessment work are then discussed.

Overview of natural and industrial analogues

Leakage of CO, has occurred naturally from geologic
reservoirs in numerous volcanic, geothermal, and sed-
imentary basin settings worldwide. These systems serve
as natural analogues for the potential leakage of CO,
from geologic carbon sequestration sites and provide
information on both the short and long-term causes
and effects of CO, leakage. It should be noted, how-
ever, that in some environments the rates of CO; filling
of natural geologic reservoirs may not be comparable
to (i.e., may be lower than) CO, injection rates at
storage sites. In these cases, natural analogues may not
provide information on processes related to relatively
rapid injection rates, such as pressure-induced geo-
mechanical damage.

Leakage of CO, from geologic reservoirs resulting
from industrial processes has occurred relatively
infrequently. A limited number of examples of CO,
and CH, leakage associated with exploration for or
exploitation of geothermal, CO,, natural gas, and wa-
ter resources have been reported in the literature.

@ Springer

Nonetheless, these relatively rare leakage events serve
as analogues for the potential release of CO, from
sequestration sites caused by human-related practices.
Because most reported events of industrial CO, leak-
age are associated with well construction and injection
and withdrawal practices, and few events have been
reported associated with abandoned wells, industrial
analogues usually provide information on short-term
causes and effects of CO, leakage. Although the den-
sities and solubilities of CH4 and CO, are different,
they have similar viscosities and behave as buoyant
fluids. Furthermore, CO, injection rates into storage
reservoirs will likely be comparable to CH,4 injection
rates into natural gas storage sites. Thus, examples of
CH, leakage from natural gas storage sites can serve as
industrial analogues for CO, leakage.

Together, natural and industrial analogues for CO,
leakage provide important information about the key
FEPs that are associated with leakage, as well as the
health, safety, and environmental consequences of
leakage and mitigation efforts applied. Appendices A
and B (online supplementary material) describe these
aspects of natural and industrial analogues, respec-
tively, for CO, leakage. Appendix A begins with a
more detailed summary for Mammoth Mountain
(USA) due to the large amount of data available for
this site, and follows with more generalized descrip-
tions of CO, leakage in other volcanic, geothermal,
and sedimentary basin systems. While the Appendices
(online supplementary material) do not represent an
exhaustive list of natural and industrial cases of CO,
leakage that have occurred worldwide, a suite of well-
documented cases representing a range of geologic
settings is included. In addition, several examples of
CH, leakage related to industrial processes are given.
Focus is placed on CO, leakage cases presented in the
peer-reviewed literature. Also, emphasis is placed on
natural rather than industrial analogues because (1)
they provide information on both the short- and long-
term causes and effects of CO, leakage and (2) a rel-
atively large number of examples of natural CO,
leakage events are reported in the literature.

To compare the key characteristics of CO, or CHy4
leakage associated with natural and industrial pro-
cesses detailed in Appendices A and B (online sup-
plementary material), leakage cases are classified
according to the key features of the CO, or CH,4
accumulation, the events leading to the leakage of CO,
or CH, from the reservoir, and the processes by which
the CO, or CH,4 was released at the surface (Tables 1,
2). In Tables 1 and 2, columns 1 through 3 describe
these key features, including site location, the source of
the CO, or CHy in the accumulation, and the geologic



Environ Geol

orqeordde jou YN

sdoos sed ‘sgurdg

SOTINUI)UOISIP
yoo1 Juofe
o3eyeo] MO[S

parnmydes

Ju9A9 d3eyeo] oyads ON

‘skepo pue sjjis Aq paddes ‘(y3dop

w p¢ 1€ Jun 1oddn) syrun suojspues pue
QUO}SOWI] ‘paxor)s AJ[EOT}IOA OIB SIIOAIISOY

syun ouolsyfis/oreys £q paddeo

sojeu0qIEd JO
uonsodwodop [ewIay ],

909910)
‘urseq eulIo] €IV

s3urds soInjoery poimided ‘SpJOJ [eUronUER POpUNOQq-j[Nej Ul ‘Sjrun S91BU0qIEd JO VSN ‘LN
‘sdoas sed ‘osnyjiq pue sjneJ JuoAd ofeyed] oywads ON  QUOISpUES ‘PIOLIS A[[BOIIIOA I8 SIIOATISIY uonsodwodsp [eWIdY], ‘uiseq Xopeled ‘TIV
QI0YS oye[
WOIy 9sNJIp ‘9oeyIns
9ye[ woiy urqqnq Surxtw pue AuewIon
pue QAISNIIIQ VN UIN)IOAO 9] [BUOSBOS VN onewdelN ‘99§ IoydeeT IV
umouyun Io33Lr
SOAN
‘opI[spue] AQ UNOUOIA uooIewWe))
je paI1933n uonesynens ‘SOAN pue
(oruwy) eandnig VN IoaouIn) oye[ pidey 9[qe)s pue oye[ doap UI UONE[NWNIDY onewSe]y| UNOUOJA SoYeT 0TV
BOUIMND MIN
JUOA ‘seg soInjoery umouyun) umouyun) onewde]y  ended ‘neqey ¢V
soutddrqryq
(sueygodrey) asnygrp ‘SOIZON
‘s3urrds ‘sjuoA sen) synej umouyun umouyun) [RUWLISYI09D) wIyInog gy
suondnro
s3urids ‘. onewnoud,, BISOUOPU]
‘syuoa sed ‘oandnig QINSSI] Aqqissod ‘oruesjo A umouyun) onewdeq ‘Fuoi(q 'LV
saInjoely painjdes (pdop ury 1~) uoneZI[eIOUI Are3unyy
Surrds ‘quoa ‘esngjiq pue sjneJ 1ueAd ofeyeo] ogwads oN IIOAIOSAI JojeM ISIEY Ul Soje[nunode ¢Q)) ourz-roddoo/fewiIoyioon)  ‘oysovIdpeINRIN 9V
SOTUBD[OA PAId)[e A[[ewlIoyloIpAy Aq juouodwod
soInjoely paimydes padded 110a19s01 [RWIOY}093 9)BUOQIRD onjewdew ‘sojeuOqIed ey
Surds ‘quoa ‘esnjyig pue sjnej JuoAd oFeyed] oyads oN ‘pareurwiop-pinbiy ur sojeUNOdE ZQ)H Jo uonisodwooop [ewIoy],  ‘BIOPIED BIAJRT SV
SYO0I AIRJUQWIPISL}OU juouodwos onjewSewr Iourw
soInjoery poimided QUIIRW UT PI)SOY JIOAIISIT [RUWLIOYI09T ‘$}001 ATRJUSWIPASLIdW JO vSn
sSurds ‘syuoa sen pue sjneJ 1uoAd oFeyeo] ogwads oN pejeurwop-pibi| woIy paALdp tQ) uonsodwodep [eWIAY], ‘YD ‘OYeT Ied)) pV
£)1A108
orwsios Aq parogsn
JSBJ SIUSAD A1qissod ‘3urrmooo osfe
666T PUE S66T ‘Tom soInjoery Soseo[aI 98I UAppns JooIpaq AIejuawipas jo sysiy sojeuO0qIEd Jo uonIsoduwodsp Areir
/3urrds ‘yuoa ‘osnyjiq pue sjne, [eISAS UM SOSBI[II MO[S [eInjonmns ut sI1oArasar pozunssaxd doo( [EWIdY) + ONeWIeIN ‘S[ITH TUeq[V €V
yidop wy [e10A9S JB ApOq BWISRW UIY)
saInjoely painydeo ‘s1ojInbe sar1oa0 pue aseyd sed surejuod s9jeuOoqied jo uonisodwodop
JUQA pue asnyJIq pue sjneJ 1uoAd ofeyeo] ogads oN 3001 PaINjoeIj JO dUOZ MO[[RYS A[oATIR[OY [ewIay) + onewdey  A[e)] ‘eIejejos§ TV
uonezrmssaid vSn
Surids soInjoey IIOAISSAI yooxdes Iapun Jo01 paINjoeIy sajeuO0qIRd Jo uonIsoduodap VD ‘URJUNOA
JUoA ‘OsngIIp ‘Iseq pue sjneJj pue A)IATIOR OIWSIOS J/snoiod ur yidop wy g~ je UOHRNWNIOY [ewIoy) + ONeWSeA qlowweN TV
o3e ogeyeo[
-yeo] oorjins Jo odAl, Io] Aemyjed  oFeyeo] SuLo8sLy juoayg uone[NUINIOE 10} [opOoW JIF0[090) 921n0s QD NS

(soouarojar 10y v xipuaddy 29s) Q) Jo o3eye9] [einjeu JO sdd. JO ATewuung | d[qelL

pringer

Qs



Environ Geol

S9IpOq saInjoey soreys £q paddeo uonenunode
Iojem doeyIns ySnoiyy Iojem pue sed Surroskon pue [[OAA  INOMO[] [[OA W )06°C~ 18 II0AIOSOI AIBJUQUWIPAS sed [eImeN  vSN MO ‘1oysysury ‘gg
ydop
S[Tom Suiseo [jom w ()OQ‘T e Ioymbe 9)jnwojop pue VSN ‘AM ‘Aioey
IeaU SAIPOq I9jem doeyins ynoiy) sed urqqng SIPM JO UOISOII0))  QUOISPUBS POULUOD OJUI PIda[ur sen) sed [ernjeu pajosluy oFe101s sed ko1 Lg
S[[oM pauopueqe saInjoey Surseos ydop w 0z VSN ‘v ‘Lioey
woIj 19)em pue sed JurrosAo3/3uimor 991,]  pue S[[OM [[oM payoeI) —(G] 1B SUIOAED }[eS OJUl pajoalur sen sed [einjeu pojoofug o8e101s sed £33ex ‘9g

syool Arejuowipas Ajfiqeswrad
-mo[ £q paddes ‘110A10801 SNOQUST
aatsnIjur pue orgdiowelawr (W OO0y

—000°c) doop SuIA[10A0 SIIOAISAI A®1] ‘PIoy
[[oM WOJJ Se3 pue wed)s SUIMOp 29I IPA  MoMoIq [[PM Krejuowipas (w OOO‘1>) MO[[RYS [BULISYJ09D) [ewIoy1093 J[eARL], 'Sq
SouOIsaWI|
pue ‘spreur ‘sofeys jo soouonbos
[[oA punoie punoisd woij £q paddes ‘yadop w (99~ 1€ deo A[®1] ‘pIoy [ewIoy)093
SUOISSIW ISNYJIP ‘[[oM WOIJ Sed ZO)D) SUIMOP 221 IPAA  MOMOIq [P SOD ST B 3IM JIOAISII [BULISYIOID) [BULISY}09D) BUYY 2LI0T, bq

sAe[o pue sifIs £q
paddes ‘(yadop w p¢ e 3tun 1oddn)
[[oM pPUNOIE UONJBULIO] S)}IUN QUOJISPULS PUB JUOISIWI] s91BUOQIED JO
10od pa[y-I91EM ‘S[TOS WOIJ 9Feyed] sed (0D AL IMOMO[q TIOM ‘poyor)s AJ[EOT}IOA Ik SIIOAISSOY —UONISOdWOd9p [BUIIAY], 9099If) ‘UIskq eULIO[] ‘€
Sjrun QUOISIIS
/oreys Aq poddes ‘spjoj [eurponue

popunog-j[nej ur ‘sjiun ouojspues s91BUOQIED JO vsSn
s10s403 p1oD S[IPAA  SINOMOIQ [[OA\ ‘poaxor)s A[[EOT)IOA OTB SIIOAISSYY —Uonisodwoosp [ewrroyy, ‘LN ‘urseq xopered 7d
Y3[od3e]

B pue sjuowiIpas aulrewr Aq padded
‘w 00ST Yadop -oAe ‘ouojspues

9IS [[LIP 9AOQE SOINJOBIJ WOIJ Iney 1snIy) Aq 9pIs oUO UO S91BUOQIED JO VSN
geyeol ¢0) ‘[[om wolJ sed (D Suimoy 291 [[°PAA  INOMOIQ [[PAA  POpUnNoq ‘pIoj [eUIDNIUE SI JI0AIOSY uonisodwodop [ewray], ‘QD ‘urejunoy dooys 1q
ogeyeo] 10¥ ageyeo]
ogeyeo[ oeyIns Jo odAT, Kemyieq SuLIog3LI) JUOAT uone[NUWINIOE 10} [opOoW JI0[090) 921n0s YHD 10 ¢0D Mg

(soouarojar 10J g xipuaddy 99s) YHD 1o ¢QD Jo oFeyed] [etnsnpul Jo sdgq Jo ATewring g d[qeL

pringer

Qs



Environ Geol

o[doad 03 Jjo pasolo eare ageyea|

SUOT}BIIUIUO0D ¢())) duraydsouwje Jo SjuawaInseaj

pnw £4q pomo[[0} duLIq PAONPaI-eIp Jo uondd[ur srueukq
AI)STWIAYD 19)EMPUNOIS JO SIUSUWIAINSBIA

A1STWOYD I19)eMPUNOI3
Surrojruowr (soxny ¢ JI0S JO S)UAUIAINSBIIA
9I0US pue 90eJINs
9%e[ WOIJ SUOTIBIJUIIUOD pUE SAXNY QD) SULIOIUOIA

uoneonpa o1qnd ‘Ansmuoyd
9ye[ Jo Surrojiuow ‘sodid ursn Fuisse3op axe[ po[0IIU0)D)

VN

SISA[eUE [eSTWOYD SBS OSNJJIP PUB JUIA

SISA[BUE [BOIWAYD SBS JUIA

uoneInpd

o1iqnd ‘s[eAd] ZQ)) SnopIezey YIIM SOy JO UOTH[OWP
‘SOUWIOY UI PI[[BISUI SIJIAIP [OIIUOD PUB UOT)IIAP 0D

Suirddew prezey ‘sfoAIns UOIIBIIUOUOD SBF [10S
orqnd 03 pasoo jood [eIouT ‘SUOTIBIIUAIUOD

pue soxnpg QD JUSA PUR [I0S JO SJUIWAINSEIA]
sweigoid uoneonps o1qnd jo juowdoosop pue
‘sme[Aq Suruoz Jo Juowdo[oaap ‘YSII J8 SeoIR [BJUIPISIL
JO UOT)ROYNUAPT ‘ATISTWAYD IojempunoIs Surioyruou

{SUOTIRIIUOIUOD PUE SAXN[ ¢OD) [I0S JO SYUAUIAINSBIIA

uoneINpo

orqnd 3ULIO)IUOW UOT)BULIOJOP PUE JIWSIAS ‘AT)STUISYD

sed o[orewiny Jo SULIOJIUOW ¢9SBI[AI JBaY JO FULIOIUOUW
‘saxny <O 108 jo Surojuowr [eneds pue [erodwa],

uoneonpa o1qnd {AnNsmuoyd I19jeMpunoI3
JO SJUSWIOINSBOW SBAIR [[IY 99I) UI SOXN[J pue
SUOT)eI)UQOU0D D) Jo Surrojruow [enjeds pue rerodwo],

uoszad suo jo yiea(q

VN
VN

VN

VN

VN
aSewrep uonelasoa

‘(o380 JO spuesnoy} “39)
9] TewIUE pue (PoUIqUIOd

0081~) uBwWNY JO SSOT
P

spa1q ‘paqrry ofdoad saryy,
PI[[y s[eurue

T IO SSaI)s UOT)BIOTOA
[11Y 0 ssa1)s

uoneodoa ‘payy ordoad ¢y~
ordoad
[eI0A9S JO [IBAP ‘SoWOY

ul SUOIIBIIUaOU0d ¢O)) YIIH

[I1Y] IO SSaI)s UOTBIOTOA

pory ordoad inoyg
syjeop
uewny jsed {(Juaad ggET)
J[00)SQAI] JO SYIBOP ‘SoWOY
ul SuUONBIIUAIUO T YSIH

BaIR
ursse3op ur Uone}AFIA ON

Pl

ordoad 1noj ‘uonerxAydse

jo swoyrdwiAs yym uosiad ouo
‘seaIe [ 991} JO UOTJBULIO]

umouyun)
-Aep 1 ge~ aaskan [eIsh1)
umouyun)
umouyun
umouyun djer
uoIssIWD [e303 :_Aep, w 8 00T
01 dn sexny ¢QD [10S
-Aep 1y~
JuoAd
eandnie ut {0 1 000°0+T SOAN
umouyun)
umouyun)
umouyun)
(umousun eore uisse3op
1e103) _Kep w3 00p—00C~
xnj ¢Q)D 95eIoAy
umouyun
ﬂl%ﬁﬁu 11~
I9)em punoild

MO[[BYS UL $Q)) PIAJOSSIP SB

—&ep 1 90¢ pue (eare w (00'T9)
SUOISSTIUD sed odejns se _Aep ) 4/,

vaIE Uy G'() WOy | Aep 3 00S°T

BaIE (W (0008 Woly |_Aep ) ST~

SUMO] [[eWs ‘TeIny

SUMO) [[BWS ‘[eIny]

soge[[Ia ‘TRIny

a3e[Ia ‘eore TRINY

SUMO]) [[eWS ‘TeIny

BAIE [RUOT)ROIOOY

IS ‘)S910] [eUOTIRU
S(]) BaIR [RUONEBIINDY

(1) 299019
‘uiseq eULIO[] *€q
(D vsn ‘Ln
eIy ‘uiseq xopeied ‘7dq

(D vsn ‘00
ey  ‘ureyunoly dooys ‘rg
(N) 202210
‘uised eULIO[] "€IV

(N) vsn “1n
ey  ‘uiseg xopered ‘TIV

(N) Auewrron
ey 00§ I197dRRT TIV

(N) uoorewe)
‘SOAN pue
UNOUOJA SoYeT 0LV
BOUIND) MIN
reany ended ‘[neqey 6V
sourddryiyq
[eIny ‘soISoN UIOYINOS YV

(N)
[einy eisouopu] ‘Fudl( LV

(N) Are3unyg

‘9ysoaIapeIRIA 9V
(N) Ao

‘eIopled vIdeT SV
(N) vsn

[pIny VO ‘9YeT 1R[] PV

(N)
voIe ueqiny A[eI[ ‘S[IH [UBQIV €V
BoIE
ueqin AQ popunoins
(punoi3dures
/red oyeard) (N)

ATer] ‘erejejios TV

(110891 (N)
VSN VO ‘ureiunop
JIoWweN TV

SOINSBOWI [BIPOWAL pue JULIOJIUOIA

a3eyeo]

asea[al Jo seouanbosuo) YHY 10 ¢QD odeyns jo opnituSeiy

asn pue/3unjes

orydeigoen s

(sooua1ojor 10] g pue y sodrpuaddy 99s) sossoooid (T) ersnpur pue (N) [eInjeU Y3m pajerdosse ageyed] YHD 10 Q) Jo sioadse [euonippy ¢ dqe]

pringer

Qs



Environ Geol

Monitoring and remedial measures

Magnitude of surface Consequences of release

CO, or CHy leakage

Geographic
setting/land

use

Table 3 continued

Site

@ Springer

Cementation of exploration well; borehole installation to focus subsurface gas flow

NA

Rural ~25,000 t

B4. Torre Alfina

and vent CO, at height in atmosphere; atmospheric CO, concentration monitoring

geothermal field,

Italy (I)

B5. Travale

Well allowed to discharge fluid, monitoring of fluid temperature, pressure, and

NA

Unknown

Rural

chemistry

geothermal field,

Italy (I)
B6. Yaggy gas storage Small town

Gas explosions, two people Geophysical monitoring, wells plugged

Unknown

killed, buildings

damaged

NA

facility, KA, USA

Tracer tests, decreased injection pressures

~1.8 x 10’ m®

B7. Leroy gas storage Rural

facility, WY, USA
B8. Kingfisher, OK,

Geophysical, geochemical monitoring. Well plugged.

NA

Unknown

Rural

USA

NA not analysed

model for CO, or CH4 accumulation, for example, the
reservoir, reservoir depth (if known), and capping
rocks. Column 4 in Tables 1 and 2 describes the event
triggering the leakage of CO, or CH4 from the reser-
voir. Columns 5 and 6 give the processes by which the
CO, or CH, was emitted at the surface, including the
pathway(s) for leakage and the style of surface emis-
sion. References for each of the leakage analogues are
given in Appendices A and B (online supplementary
material).

Common FEPs

As shown in Tables 1 and 2, several key similarities
exist between the FEPs of different natural and
industrial cases of CO, or CH, leakage. First, the
sources of CO, in natural accumulations are most
commonly thermal decomposition of carbonate-rich
sedimentary rocks and/or degassing of magma bodies
at depth (analogues A1-AS5, A7-A13, B1-B5). Second,
CO, from these sources often accumulates in highly
fractured and/or porous rocks (e.g., sandstones, lime-
stones) under low-permeability cap rocks (analogues
A1-A6, A12, A13, B1-B5). The cap rocks may be low-
permeability rock units (e.g., shale and siltstone) or a
zone of hydrothermal alteration.

In the case of natural CO, leakage, once the CO,
leaks from the storage reservoir, fault and/or fracture
zones are the primary pathways for CO, migration to
the surface (analogues A1-A9, A12, A13). These high-
permeability zones may be pre-existing, or be created/
enhanced due to seismic activity associated with, for
example, fluid migration and pore-fluid pressurization.
In the case of CO, or CH4 leakage associated with
industrial activity, the event triggering the release is
commonly a well blowout, related to injection/with-
drawal practices or a defect in a well (analogues B1-
B8). Also, the pathway for CO, or CH4 migration to
the surface is usually the well bore and/or fractures that
have formed around the well bore.

Differing FEPs

There are several key differences between the FEPs of
the various examples of CO, or CH, leakage (Tables 1,
2). The depth of the CO, or CH, source and the res-
ervoir(s) in which the CO, accumulates or is injected
varies widely from <1 km (e.g., analogues B3-B7) to
multiple km (e.g., analogues Al, B1, BS8). At an indi-
vidual site, CO, may accumulate in a single reservoir
(e.g., analogues Al, A4-A6, B4), or within multiple



Environ Geol

vertically stacked and/or horizontally compartmental-
ized reservoirs (analogues A12, A13, B2, B3, BS). Cap
rocks and/or low-permeability fault zones can serve to
separate multiple CO, reservoirs at a given site.

Some examples of natural CO, leakage have been
correlated with specific triggering events, such as seis-
mic activity or magmatic fluid injection (analogues Al,
A3, A7, A10, A11), while other events have not been
correlated with such events. However, the lack of
correlation in the latter cases may be due to the ab-
sence of observations or data collection at the time of
the leakage event. Where a trigger event was identi-
fied, it was commonly an event that caused geome-
chanical damage to cap rocks sealing the CO,
IesServoir.

Finally, the style of natural CO, leakage at the
surface varies widely between different sites, as well as
within individual sites. Surface releases occur in the
form of diffuse gas emission over large land areas, fo-
cused vent emissions, eruptive emissions, degassing
through surface water bodies, and/or release with
spring discharge (analogues Al1-A6, A8, A9, Al10-
A12). In rare cases, the CO, release may have been a
self-enhancing or eruptive process (analogues A7,
A10). In the case of CO, or CH, leakage associated
with well failures, the gas may be emitted at the surface
in a focused form, free flowing or geysering from the
well and/or diffusely through soils, water pools, or
fractures around the well site (analogues B1-B8).

Additional considerations

The magnitude and consequences of CO, or CHy
leakage events, as well as the type and success of
strategies that were implemented to monitor and/or
remediate the leakage, are important additional con-
siderations that should be taken into account in risk
assessment associated with geologic carbon sequestra-
tion. Table 3 and Appendices A and B (online sup-
plementary material) detail these aspects for the
natural and industrial leakage analogues, showing that
the magnitude of the surface CO, or CH, release
varies widely between different cases and does not
necessarily depend on the style of the release. For
example, the magnitude of diffuse CO, emissions from
soils varies greatly between different, as well as within,
individual sites. At sites where groundwater chemistry
was monitored, chemical changes were sometimes ob-
served related to CO, leakage (e.g., analogues Al, A3,
All, A12) and resulting groundwater acidification and
interaction with host rocks along flow paths. However,
groundwaters remained potable in most cases.

In many of the leakage examples, CO, was moni-
tored in the near-surface environment within and
around CO, leakage areas, often on a regular basis
(analogues A1-A6, A8-Al12, B2, B4). Monitoring
strategies include measurements of soil CO, flux using
accumulation chamber or eddy covariance methods
and soil, atmospheric, or vent gas CO, concentration
using gas analyser or chromatography techniques.
Controlled degassing of CO,-rich lakes has also been
carried out to mitigate CO, buildup (analogues A10).
In many cases, public education programs were
implemented to advise people visiting or living near
the CO, release areas of potential health, safety, and
environmental hazards (e.g., analogues A1-A3, A6,
A10). Zoning bylaws have also been established in
some cases to control development near high CO,
emission areas (e.g., analogues A3, A6). The hazard to
human health was small in most examples of surface
CO;, releases; this could be attributed in part to public
education and CO, monitoring programs.

Conclusions and lessons learned

Leakage of CO, has occurred naturally from geologic
reservoirs in numerous volcanic, geothermal, and sed-
imentary basin settings. In addition, CO, and CH4 have
been released from industrial reservoirs as a result of
well defects and/or injection/withdrawal processes.
These systems serve as natural and industrial analogues
for the potential release of CO, from geologic storage
reservoirs and provide important information about
the key FEPs associated with releases, as well as the
health, safety, and environmental consequences of re-
leases and monitoring and mitigation efforts that can
be applied. While the detailed characteristics of CO, or
CH, leakage are unique to each case, five general FEPs
were identified based on analysis of a range of natural
and industrial analogues for CO, and CH, leakage,
from which lessons can be learned and should be ap-
plied to risk assessment associated with geologic car-
bon storage:

1. Carbon dioxide can both accumulate beneath, and
be released from, primary and secondary reservoirs
with capping units located at a wide range of
depths. Both primary and secondary reservoir
entrapments for CO, should therefore be properly
characterized at potential geologic carbon seques-
tration sites.

2. Many natural releases of CO, have been correlated
with a specific event that has triggered the release,
such as magmatic or seismic activity. The potential
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for processes that could cause geomechanical dam-
age to sealing cap rocks and trigger the release of
CO, from a storage reservoir should be evaluated.

3. Unsealed fault and fracture zones can act as fast
and direct conduits for CO, flow from depth to the
surface. Risk assessment should therefore empha-
size determining the potential for and nature of
CO, migration along these structures.

4. Wells that are improperly constructed or aban-
doned, and become structurally unsound over
time, have the potential to rapidly release large
quantities of CO; to the atmosphere. One focus of
risk assessment should therefore be an evaluation
of the potential for both active and abandoned
wells at storage sites to transport CO, to the sur-
face, particularly in depleted oil or gas reservoir
systems, where wells are abundant.

5. The style of CO, release at the surface varies
widely between and within different leakage sites.
In rare circumstances, the release of CO, can be a
self-enhancing and/or eruptive process; this possi-
bility should be assessed in the case of CO, leakage
from storage reservoirs.

Furthermore, analysis of natural and industrial
analogues has demonstrated two important points re-
lated to human health and safety and groundwater
quality. First, the hazard to human health was small in
most examples of CO, leakage. This could result from
implementing public education and CO, monitoring
programs; these “remedial” programs should therefore
be employed to minimize potential health, safety, and
environmental effects associated with CO, leakage.
Second, while changes in groundwater chemistry can
be related to CO, leakage caused by acidification and
interaction with host rocks along flow paths, waters
remained potable in many cases. Groundwaters should
be monitored for changes in chemistry that could result
from CO, leakage from storage sites.
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