
Abstract Instances of gas leakage from naturally

occurring CO2 reservoirs and natural gas storage sites

serve as analogues for the potential release of CO2

from geologic storage sites. This paper summarizes and

compares the features, events, and processes that can

be identified from these analogues, which include both

naturally occurring releases and those associated with

industrial processes. The following conclusions are

drawn: (1) carbon dioxide can accumulate beneath,

and be released from, primary and secondary shallower

reservoirs with capping units located at a wide range of

depths; (2) many natural releases of CO2 are correlated

with a specific event that triggered the release; (3)

unsealed fault and fracture zones may act as conduits

for CO2 flow from depth to the surface; (4) improperly

constructed or abandoned wells can rapidly release

large quantities of CO2; (5) the types of CO2 release at

the surface vary widely between and within different

leakage sites; (6) the hazard to human health was small

in most cases, possibly because of implementation of

post-leakage public education and monitoring pro-

grams; (7) while changes in groundwater chemistry

were related to CO2 leakage, waters often remained

potable. Lessons learned for risk assessment associated

with geologic carbon sequestration are discussed.
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Introduction

The injection and storage of anthropogenic CO2 in

deep geologic formations is a potentially feasible

strategy by which to reduce CO2 emissions and atmo-

spheric concentrations (e.g., International Energy

Agency 1997; Reichle et al. 1999). While the purpose

of geologic carbon storage is to trap CO2 underground,

CO2 could migrate away from the storage site into the

shallow subsurface and atmosphere if permeable

pathways (such as well bores or faults) are present.

While limited CO2 leakage does not negate the net

reduction of CO2 emissions to the atmosphere, adverse

health, safety, and environmental risks associated with

elevated CO2 concentrations must be evaluated, par-

ticularly if the release at the surface occurs quickly

and/or is spatially focused. Cases of CO2 and CH4

leakage from reservoirs to the near-surface environ-

ment as a result of natural and industrial processes

serve as analogues for the potential release of CO2

from geologic storage sites (e.g., Allis et al. 2001; Ste-

vens et al. 2001a, b; Benson et al. 2002; Beaubien et al.

2004; Shipton et al. 2004; NASCENT 2005). Analysis

of these analogues thus provides important insight into

the key characteristics of CO2 leakage; the resulting

impact of the leakage on human health and safety,

ecology, surface water, and groundwater; and quality,

and the effectiveness of remedial measures applied.

Lessons can then be learned from natural and indus-

trial analogues for risk assessment associated with

geologic CO2 injection and storage.
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The features, events, and processes (FEPs) relevant

to the geologic disposal of radioactive waste have been

compiled and used in systems analysis to assess per-

formance and safety (e.g., NEA/OECD 2000). Based

on this work, Savage et al. (2004) developed a frame-

work for compiling a database of generic FEPs for the

evaluation of CO2 storage sites. However, FEPs asso-

ciated with geologic sequestration of CO2, in particular

potential CO2 leakage from storage sites, have not

been identified from actual cases of leakage from nat-

ural CO2 reservoirs. The purpose of this paper is to

summarize and compare the FEPs of CO2 leakage

examples from natural geologic reservoirs and CH4

from natural gas storage sites. To this end, a broad

(although not exhaustive) set of natural and industrial

analogues for CO2 leakage is summarized (Appendices

A and B; online supplementary material). In addition,

several examples of CH4 leakage associated with

industrial processes are described. Based on this sum-

mary, the causes and consequences of CO2 leakage

resulting from natural and industrial processes are

described, with particular emphasis on (a) the geologic

model for CO2 accumulation in the reservoir, (b)

events leading to the leakage of the CO2 from the

reservoir, (c) pathways for CO2 migration to the sur-

face, (d) the magnitude and consequences of the re-

lease, and (e) remedial strategies applied. Implications

for geologic carbon storage and the related risk

assessment work are then discussed.

Overview of natural and industrial analogues

Leakage of CO2 has occurred naturally from geologic

reservoirs in numerous volcanic, geothermal, and sed-

imentary basin settings worldwide. These systems serve

as natural analogues for the potential leakage of CO2

from geologic carbon sequestration sites and provide

information on both the short and long-term causes

and effects of CO2 leakage. It should be noted, how-

ever, that in some environments the rates of CO2 filling

of natural geologic reservoirs may not be comparable

to (i.e., may be lower than) CO2 injection rates at

storage sites. In these cases, natural analogues may not

provide information on processes related to relatively

rapid injection rates, such as pressure-induced geo-

mechanical damage.

Leakage of CO2 from geologic reservoirs resulting

from industrial processes has occurred relatively

infrequently. A limited number of examples of CO2

and CH4 leakage associated with exploration for or

exploitation of geothermal, CO2, natural gas, and wa-

ter resources have been reported in the literature.

Nonetheless, these relatively rare leakage events serve

as analogues for the potential release of CO2 from

sequestration sites caused by human-related practices.

Because most reported events of industrial CO2 leak-

age are associated with well construction and injection

and withdrawal practices, and few events have been

reported associated with abandoned wells, industrial

analogues usually provide information on short-term

causes and effects of CO2 leakage. Although the den-

sities and solubilities of CH4 and CO2 are different,

they have similar viscosities and behave as buoyant

fluids. Furthermore, CO2 injection rates into storage

reservoirs will likely be comparable to CH4 injection

rates into natural gas storage sites. Thus, examples of

CH4 leakage from natural gas storage sites can serve as

industrial analogues for CO2 leakage.

Together, natural and industrial analogues for CO2

leakage provide important information about the key

FEPs that are associated with leakage, as well as the

health, safety, and environmental consequences of

leakage and mitigation efforts applied. Appendices A

and B (online supplementary material) describe these

aspects of natural and industrial analogues, respec-

tively, for CO2 leakage. Appendix A begins with a

more detailed summary for Mammoth Mountain

(USA) due to the large amount of data available for

this site, and follows with more generalized descrip-

tions of CO2 leakage in other volcanic, geothermal,

and sedimentary basin systems. While the Appendices

(online supplementary material) do not represent an

exhaustive list of natural and industrial cases of CO2

leakage that have occurred worldwide, a suite of well-

documented cases representing a range of geologic

settings is included. In addition, several examples of

CH4 leakage related to industrial processes are given.

Focus is placed on CO2 leakage cases presented in the

peer-reviewed literature. Also, emphasis is placed on

natural rather than industrial analogues because (1)

they provide information on both the short- and long-

term causes and effects of CO2 leakage and (2) a rel-

atively large number of examples of natural CO2

leakage events are reported in the literature.

To compare the key characteristics of CO2 or CH4

leakage associated with natural and industrial pro-

cesses detailed in Appendices A and B (online sup-

plementary material), leakage cases are classified

according to the key features of the CO2 or CH4

accumulation, the events leading to the leakage of CO2

or CH4 from the reservoir, and the processes by which

the CO2 or CH4 was released at the surface (Tables 1,

2). In Tables 1 and 2, columns 1 through 3 describe

these key features, including site location, the source of

the CO2 or CH4 in the accumulation, and the geologic
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model for CO2 or CH4 accumulation, for example, the

reservoir, reservoir depth (if known), and capping

rocks. Column 4 in Tables 1 and 2 describes the event

triggering the leakage of CO2 or CH4 from the reser-

voir. Columns 5 and 6 give the processes by which the

CO2 or CH4 was emitted at the surface, including the

pathway(s) for leakage and the style of surface emis-

sion. References for each of the leakage analogues are

given in Appendices A and B (online supplementary

material).

Common FEPs

As shown in Tables 1 and 2, several key similarities

exist between the FEPs of different natural and

industrial cases of CO2 or CH4 leakage. First, the

sources of CO2 in natural accumulations are most

commonly thermal decomposition of carbonate-rich

sedimentary rocks and/or degassing of magma bodies

at depth (analogues A1–A5, A7–A13, B1–B5). Second,

CO2 from these sources often accumulates in highly

fractured and/or porous rocks (e.g., sandstones, lime-

stones) under low-permeability cap rocks (analogues

A1–A6, A12, A13, B1–B5). The cap rocks may be low-

permeability rock units (e.g., shale and siltstone) or a

zone of hydrothermal alteration.

In the case of natural CO2 leakage, once the CO2

leaks from the storage reservoir, fault and/or fracture

zones are the primary pathways for CO2 migration to

the surface (analogues A1–A9, A12, A13). These high-

permeability zones may be pre-existing, or be created/

enhanced due to seismic activity associated with, for

example, fluid migration and pore-fluid pressurization.

In the case of CO2 or CH4 leakage associated with

industrial activity, the event triggering the release is

commonly a well blowout, related to injection/with-

drawal practices or a defect in a well (analogues B1–

B8). Also, the pathway for CO2 or CH4 migration to

the surface is usually the well bore and/or fractures that

have formed around the well bore.

Differing FEPs

There are several key differences between the FEPs of

the various examples of CO2 or CH4 leakage (Tables 1,

2). The depth of the CO2 or CH4 source and the res-

ervoir(s) in which the CO2 accumulates or is injected

varies widely from <1 km (e.g., analogues B3–B7) to

multiple km (e.g., analogues A1, B1, B8). At an indi-

vidual site, CO2 may accumulate in a single reservoir

(e.g., analogues A1, A4–A6, B4), or within multipleT
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vertically stacked and/or horizontally compartmental-

ized reservoirs (analogues A12, A13, B2, B3, B5). Cap

rocks and/or low-permeability fault zones can serve to

separate multiple CO2 reservoirs at a given site.

Some examples of natural CO2 leakage have been

correlated with specific triggering events, such as seis-

mic activity or magmatic fluid injection (analogues A1,

A3, A7, A10, A11), while other events have not been

correlated with such events. However, the lack of

correlation in the latter cases may be due to the ab-

sence of observations or data collection at the time of

the leakage event. Where a trigger event was identi-

fied, it was commonly an event that caused geome-

chanical damage to cap rocks sealing the CO2

reservoir.

Finally, the style of natural CO2 leakage at the

surface varies widely between different sites, as well as

within individual sites. Surface releases occur in the

form of diffuse gas emission over large land areas, fo-

cused vent emissions, eruptive emissions, degassing

through surface water bodies, and/or release with

spring discharge (analogues A1–A6, A8, A9, A10–

A12). In rare cases, the CO2 release may have been a

self-enhancing or eruptive process (analogues A7,

A10). In the case of CO2 or CH4 leakage associated

with well failures, the gas may be emitted at the surface

in a focused form, free flowing or geysering from the

well and/or diffusely through soils, water pools, or

fractures around the well site (analogues B1–B8).

Additional considerations

The magnitude and consequences of CO2 or CH4

leakage events, as well as the type and success of

strategies that were implemented to monitor and/or

remediate the leakage, are important additional con-

siderations that should be taken into account in risk

assessment associated with geologic carbon sequestra-

tion. Table 3 and Appendices A and B (online sup-

plementary material) detail these aspects for the

natural and industrial leakage analogues, showing that

the magnitude of the surface CO2 or CH4 release

varies widely between different cases and does not

necessarily depend on the style of the release. For

example, the magnitude of diffuse CO2 emissions from

soils varies greatly between different, as well as within,

individual sites. At sites where groundwater chemistry

was monitored, chemical changes were sometimes ob-

served related to CO2 leakage (e.g., analogues A1, A3,

A11, A12) and resulting groundwater acidification and

interaction with host rocks along flow paths. However,

groundwaters remained potable in most cases.

In many of the leakage examples, CO2 was moni-

tored in the near-surface environment within and

around CO2 leakage areas, often on a regular basis

(analogues A1–A6, A8–A12, B2, B4). Monitoring

strategies include measurements of soil CO2 flux using

accumulation chamber or eddy covariance methods

and soil, atmospheric, or vent gas CO2 concentration

using gas analyser or chromatography techniques.

Controlled degassing of CO2-rich lakes has also been

carried out to mitigate CO2 buildup (analogues A10).

In many cases, public education programs were

implemented to advise people visiting or living near

the CO2 release areas of potential health, safety, and

environmental hazards (e.g., analogues A1–A3, A6,

A10). Zoning bylaws have also been established in

some cases to control development near high CO2

emission areas (e.g., analogues A3, A6). The hazard to

human health was small in most examples of surface

CO2 releases; this could be attributed in part to public

education and CO2 monitoring programs.

Conclusions and lessons learned

Leakage of CO2 has occurred naturally from geologic

reservoirs in numerous volcanic, geothermal, and sed-

imentary basin settings. In addition, CO2 and CH4 have

been released from industrial reservoirs as a result of

well defects and/or injection/withdrawal processes.

These systems serve as natural and industrial analogues

for the potential release of CO2 from geologic storage

reservoirs and provide important information about

the key FEPs associated with releases, as well as the

health, safety, and environmental consequences of re-

leases and monitoring and mitigation efforts that can

be applied. While the detailed characteristics of CO2 or

CH4 leakage are unique to each case, five general FEPs

were identified based on analysis of a range of natural

and industrial analogues for CO2 and CH4 leakage,

from which lessons can be learned and should be ap-

plied to risk assessment associated with geologic car-

bon storage:

1. Carbon dioxide can both accumulate beneath, and

be released from, primary and secondary reservoirs

with capping units located at a wide range of

depths. Both primary and secondary reservoir

entrapments for CO2 should therefore be properly

characterized at potential geologic carbon seques-

tration sites.

2. Many natural releases of CO2 have been correlated

with a specific event that has triggered the release,

such as magmatic or seismic activity. The potential
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for processes that could cause geomechanical dam-

age to sealing cap rocks and trigger the release of

CO2 from a storage reservoir should be evaluated.

3. Unsealed fault and fracture zones can act as fast

and direct conduits for CO2 flow from depth to the

surface. Risk assessment should therefore empha-

size determining the potential for and nature of

CO2 migration along these structures.

4. Wells that are improperly constructed or aban-

doned, and become structurally unsound over

time, have the potential to rapidly release large

quantities of CO2 to the atmosphere. One focus of

risk assessment should therefore be an evaluation

of the potential for both active and abandoned

wells at storage sites to transport CO2 to the sur-

face, particularly in depleted oil or gas reservoir

systems, where wells are abundant.

5. The style of CO2 release at the surface varies

widely between and within different leakage sites.

In rare circumstances, the release of CO2 can be a

self-enhancing and/or eruptive process; this possi-

bility should be assessed in the case of CO2 leakage

from storage reservoirs.

Furthermore, analysis of natural and industrial

analogues has demonstrated two important points re-

lated to human health and safety and groundwater

quality. First, the hazard to human health was small in

most examples of CO2 leakage. This could result from

implementing public education and CO2 monitoring

programs; these ‘‘remedial’’ programs should therefore

be employed to minimize potential health, safety, and

environmental effects associated with CO2 leakage.

Second, while changes in groundwater chemistry can

be related to CO2 leakage caused by acidification and

interaction with host rocks along flow paths, waters

remained potable in many cases. Groundwaters should

be monitored for changes in chemistry that could result

from CO2 leakage from storage sites.
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