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AN EMBEDDED BOUNDARY METHOD
FOR THE NAVIER–STOKES EQUATIONS

ON A TIME-DEPENDENT DOMAIN

GREGORY H. MILLER AND DAVID TREBOTICH

We present a new conservative Cartesian grid embedded boundary method for

the solution of the incompressible Navier–Stokes equations in a time-dependent

domain. It is a Godunov-projection fractional step scheme in which hyperbolic

advection and a variety of implicit and explicit Helmholtz operations are per-

formed on time-stationary domains. The transfer of data from one fixed domain

to another uses third-order interpolation. The method is second order accurate

in L1 and first order in L∞. The algorithm is verified on flow geometries with

prescribed boundary motion.

1. Introduction

The incompressible Navier–Stokes equations on a time-dependent domain

∂u
∂t

+ u · ∇u = −∇ P + ν�u (1.1a)

∇ · u = 0 (1.1b)

approximate fluid behavior in a range of important applications. Here u(x, t) is

the velocity of the fluid, whose density is assumed to be unity, x is the spatial

coordinate, t is time, P is pressure, and ν is the kinematic viscosity. We are partic-

ularly concerned with reaction-diffusion equations in porous media where reactive

transport can alter the subsurface pore structure due to precipitation or dissolution.

Other motivating applications include the dynamics of biological membranes and

lipid bilayer analogs, and modeling rod-climbing and die-swell behavior of certain

viscoelastic fluids. In these examples, the evolution of the fluid domain is coupled
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to the motion of the fluid. Prescribed domain motion occurs in pumps, stirred

vessels, and other mechanical systems.

There are two categories of approaches to discretizing moving domains: (i) grid-

ding schemes that conform to the domain boundary, e.g., unstructured grids obey-

ing Lagrangian dynamics; and (ii) structured, Cartesian grids where the domain

influences the solution through a forcing as in the immersed boundary method [30]

or the immersed interface method [19], or through cut cell methods where the finite

volume quadrature is modified on those Cartesian cells overlain by the domain

boundary, otherwise known as embedded boundary methods. Cut cell methods

are confronted by a small-cell stability problem: finite volume discretizations are

unstable on cells whose volume fraction vanishes. Approaches to this problem

include cell merging techniques (Noh’s “blending” [27]), the h-box technique that

references a cell of nonvanishing size [2], and hybridization — use of a stable but

nonconservative quadrature with subsequent reestablishment of conservation in a

neighborhood [4]. Our approach is an embedded boundary method, with cut-cell

stability through hybridization. This strategy has proven accurate, robust, and scal-

able in large scale simulations of reactive transport in fixed irregular domains [33].

Projection methods [7; 9; 8] use the unique Hodge decomposition of a vector

field to determine the divergence-free component, and the gradient of a potential

that can be associated with the pressure gradient. Godunov-projection methods

are fractional step methods that first compute an intermediate velocity with a high-

order Godunov approach, which is made discrete divergence-free by a Hodge pro-

jection. Other approaches can achieve high order without reference to the interme-

diate state, for example computation of u · ∇u via an Adams–Bashforth approach.

Our approach is based on the second-order projection method of Bell et al. [1],

with a second-order unsplit Godunov method for the intermediate velocity [11],

and using approximate projections after Lai [17]. For hyperbolic flow problems,

high-order Godunov methods do a superior job of resolving steep gradients. Min-

ion and Brown [3] compare a number of approaches to solving incompressible

Navier–Stokes. Their examples show that the Godunov-projection approach does

a good job of resolving incompressible Navier–Stokes flows with steep gradients

without introducing spurious high-frequency oscillations created by some other

approaches. This is a significant benefit for reacting flows where steep gradients

exist and reaction rates can be sensitive to high-frequency oscillation.

There have been many recent developments in projection methods for the mov-

ing domain Navier–Stokes problem. Pan and coworkers [28] use a Godunov-

projection method with multiblock structured ALE (arbitrary Lagrangian–Eulerian)

grids. Udaykumar et al. [39] use an Adams–Bashforth projection approach with

finite volume discretization. They locate the interface with Lagrangian marker
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particles, and address the small cell problem with cell merging. Marella et al. [22]

employ a similar method, with interface information derived from a discrete level

set. Tan et al. [36] also use level sets to represent the interface, and combine the

immersed interface method with an Adams–Bashforth projection method. Liau

et al. [20] combine an Adams–Bashforth projection method with the immersed

boundary method. Chiu et al. [5] use the immersed boundary method with a

different second-order projection discretization. All of these methods claim or

demonstrate second-order accuracy. Strict conservation is necessary to accurately

capture wave behavior [18], a property essential for combustion and reactive flows.

Such conservation is readily obtained with ALE and finite volume methods but is

a very delicate issue for immersed boundary methods [16].

In this work we present a new conservative Godunov-projection method on

Cartesian grids for the solution of the incompressible Navier–Stokes equations

(1.1a) on a time-dependent domain �(t), with boundary conditions

u = s(x, t) (1.2a)

on moving walls, where s is the velocity of the boundary;

u = uin(x, t) (1.2b)

on inflow boundaries; and

n · ∇u = 0 (1.2c)

on outflow boundaries where n is normal to the domain boundary. We represent

the domain boundary as the zero of a distance function level set, and derive all

geometric descriptions at the moving front from the discrete level set. In this work,

the boundary motion is prescribed.

We discretize space in uniform Cartesian cells which we label with index i , an

integer vector in D space dimensions. The center of cell i has spatial coordinate

x = h(i + 1
2
1) where h is the length of the cell, and 1 is the vector of ones in �D .

Time is discretized in uniform increments �t , and tn = n�t is the time at step n.

un
i denotes the value of fluid velocity u at the center of cell i at time tn , and with

ed the d-th unit basis vector, un+1/2

i+1/2ed
denotes the fluid velocity at the half time step

tn+1/2 and the center of i’s cell face in direction +d. With this discretization, an

outline of the approach is:

(1) Extrapolate un
i to �n+1/2 , the fluid domain at time tn+1/2 . For those cells i in

�n+1/2 \�n (Figures 1 and 2), this extrapolation is based on the algorithm pro-

posed by McCorquodale et al. [25]: three cells, whose centers together with

i are collinear and approximately aligned with the interface normal, define a

quadratic interpolation function determining ui .



4 GREGORY H. MILLER AND DAVID TREBOTICH

✓

✓

✓

✓

✓

✓

✓ ✓ ✓ ✓

✓

✓

✓

Figure 1. Newly uncovered cells. Domain boundary δ�n is shown with a dashed curve;

�n is the enclosed volume, and domain boundary δ�n+1 is shown with the solid curve.

The region �n+1 \�n (shaded) contains fluid at tn+1 but not at tn ; it is a newly uncovered

region. If a cell contains a newly uncovered region, and also contains fluid at time tn ,

then the value of the field in �n+1 is copied from the same cell in �n . But, if a newly

uncovered region does not contain tn values, the values in the extended domain must be

estimated by extrapolation. Such cells are indicated with check marks.

Figure 2. Extrapolation to newly uncovered cells. δ�n is shown as a dashed curve, and

δ�n+1 is a solid curve. Symbol X indicates the cell center of a newly uncovered cell.

The arrow is aligned with the vector comprised of values 0 and ±1 that is most nearly

parallel the normal to δ�n+1. Points along that arrow (open circles) are used to construct

a quadratic, i.e., third-order, extrapolation polynomial.

(2) On �n+1/2 , use high-order Godunov methods to compute time- and edge-

centered values un+1/2

i+1/2e j
, j = 1, . . . , D [11], and make this field discrete

divergence-free with a MAC projection [15].

(3) Compute a nonconservative but stable flux difference, a conservative but un-

stable flux difference, and a stable hybrid flux difference for the hyperbolic

treatment of ut = −u · ∇u [4].
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(4) Modify the hybrid field u · ∇u so that it obeys global conservation, i.e., so

that ut + u · ∇u = 0 is equivalent to the mathematically identical conservation

form ut + ∇ · (uu) = 0 in the weak sense.

(5) Extrapolate u · ∇u and lagged estimate ∇ Pn− 1
2 to �n+1. On �n+1 solve the

heat equation ut = ν�u + f with source term f = −∇ P − u · ∇u;

ũ = �TGA

(
un, −(∇ P)n−1/2 − (u · ∇u)n+1/2

)
, (1.3)

where �TGA is a particular discretization of the heat operator defined later by

(2.49).

(6) Make un+1 discrete divergence free with a cell-centered projection � (to be

defined by (2.6)). The projection computes ∇ Pn+1/2 on �n+1:

u∗ = ũ + �t (∇ P)n−1/2, (1.4a)

un+1 =�(u∗), (1.4b)

(∇ P)n+1/2 = 1

�t
(I −�)(u∗). (1.4c)

In Section 2 additional details of the algorithm will be presented, with emphasis

on those aspects that are new to this work. We will emphasize the algorithm as

implemented on a single grid. The components of this algorithm have been shown

elsewhere to operate on a hierarchy of nested grids, enabling an adaptive mesh

capability. Our implementation includes this capability, and runs in 2D and 3D with

SIMD parallelism. A numerical demonstration of convergence rates is presented

in Section 3.

2. Algorithm details

In Section 2.1 the existence of a Hodge decomposition for the moving domain

problem is described. This discussion justifies the projections used in outline steps

(2) and (6). The implementation of the projection for cell-centered u has been

described in [37] and implementation details related to adaptive meshes are given

by [23; 24].

Next, in Section 2.2 the high-order Godunov approach to computing edge- and

time-centered values un+1/2

i+1/2ed
, outline step (2), is described.

In Section 2.3 the treatment of u · ∇u as a hyperbolic update is described. This

includes the stable and conservative forms mentioned in outline step (3), and the

conservation property enforced in outline step (4).

The moving domain heat problem employed in outline step (5) was first pub-

lished by McCorquodale et al. [25]. They demonstrate numerically that on a single

domain �n+1 one can discretize the heat problem on time interval [tn, tn+1], using
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specially constructed boundary conditions and extrapolated source terms and initial

conditions. In Section 2.4 we present a theoretical justification for that method.

Finally, in Section 2.5 we present some details on the construction of geometric

terms used to define the quadratures underlying the solution to Poisson’s equa-

tion (projection), the Helmholtz equation (heat), and the treatment of u · ∇u as a

hyperbolic source term on a moving domain. We use an idea due to Ligocki et

al. [21] that derives geometric information using a hierarchical application of the

divergence theorem. Our implementation is entirely new and differs from theirs

by including some relevant inequality constraints. The specialization of that ap-

proach is described in the case that the primary source of geometric information is

a discretized distance function.

2.1. Hodge projection on a moving domain. To implement a projection method

on a moving domain, Trebotich and Colella [12; 37] decompose a vector field w

into three components:

w = v+ ∇θ︸ ︷︷ ︸
u

+∇φ, (2.1a)

�θ = 0, (2.1b)

∇ · v = 0. (2.1c)

In the context of incompressible Navier–Stokes, u is a divergence-free velocity

field, consisting of a vorticity-carrying component v and an incompressible poten-

tial flow ∇θ . ∇φ is the gradient of a potential, which can be used to determine

∇ P . The boundary conditions for this decomposition are

(1) moving walls:

n · v = 0, (2.2a)

n · ∇θ = n · s, (2.2b)

n · ∇φ = n · (w− s); (2.2c)

(2) inflow boundaries:

v = 0, (2.3a)

n · ∇θ = u0(x, t) (prescribed), (2.3b)

n · ∇φ = n · (w− u0); (2.3c)

(3) outflow boundaries:

n · ∇v = 0, (2.4a)

n · ∇θ = ūout, (2.4b)

φ = 0. (2.4c)
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Here ūout is the average outflow velocity given by conservation over the entire

domain. These boundary conditions with u = v+∇θ are equivalent to the boundary

conditions (1.2) of our problem. The Trebotich–Colella decomposition is solvable:

the θ equation is well posed without null space, and w−∇θ has boundary condi-

tions compatible with the Hodge decomposition (e.g., [6]). Therefore, v, ∇θ and

∇φ can be determined uniquely. A projection in this framework is accomplished by

φ : �φ = ∇ · (w− ∇θ), (2.5a)

v = (w− ∇θ) − ∇φ. (2.5b)

The existence of decomposition (2.1a) does not require explicit determination

of potential θ . Instead,

φ : �φ = �(φ + θ) = ∇ ·w, (2.6a)

u = w− ∇φ, (2.6b)

or

u =�(w), (2.6c)

follows directly by application of (2.1b) to (2.5). The boundary conditions for

projection (2.6) are

(1) moving walls:

n · u = n · s, (2.7a)

n · ∇φ = n · (w− s); (2.7b)

(2) inflow boundaries:

n · u = u0(x, t) (prescribed), (2.8a)

n · ∇φ = n · (w− u0); (2.8b)

(3) outflow boundaries:

n · ∇u = 0, (2.9a)

φ = 0. (2.9b)

These match (1.2) on u, and for φ are identical to (2.1a).

Trebotich and Colella raise two concerns regarding the application of the Hodge

decomposition to moving domains [12; 37]. The first is over boundary conditions,

but as shown above, the existence of their velocity decomposition makes a Hodge

decomposition with boundary conditions (2.7)–(2.9) viable. Second, they object

to the use of a discrete projection that does not commute with the discrete PDE

operators. While it is true that these discrete operators do not commute because of

the boundary conditions on the discrete divergence, that property is not essential
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to the success of the method. If we assume that the mixed derivative uxt exists

and is C0, then the differential operators ∇· and ∂/∂t commute [35] and, without

recourse to discretization, the governing PDE gives

�P = ∇ · (ν�u − u · ∇u) (2.10)

with boundary condition

n · ∇ P = n ·
(

ν�u − u · ∇u − ∂u
∂t

)
. (2.11)

This assumption on uxt is required as well in the fixed-domain case (e.g., [8, Equa-

tion (2′)]).
If

w = u∗ ≈ un + �t (ν�u − u · ∇u)n+1/2 (2.12a)

= un+1 + �t∇ Pn+1/2 + �(�t3) + �(h2) (2.12b)

(see (1.4a)), then with φ ≈ �t P and u = s on δ�, the linear problems

φ : �φ = ∇ ·w, (2.13a)

n · ∇φ = �tn · ∇ Pn+1/2 on δ�n+1, (2.13b)

n ·w = n · [sn+1 + �t∇ Pn+1/2] on δ�n+1 (2.13c)

and

φ : �φ = ∇ ·w, (2.14a)

n · ∇φ = 0 on δ�n+1, (2.14b)

n ·w = n · sn+1 on δ�n+1 (2.14c)

are equivalent to �(�t3) + �(h2). The former (2.13) is the physical problem to

be solved; the latter (2.14) is the Hodge decomposition we implement, and whose

existence and uniqueness is addressed above. This approach amounts to placing the

inhomogeneous boundary condition due to the moving domain in the divergence of

velocity on the right-hand side of the Poisson’s equation and solving the homoge-

neous (Neumann) problem for the pressure. The same approach maps true inflow

conditions to n ·w = u0 and n · ∇φ = 0. For the outflow, conditions n · ∇w = 0

and φ = 0 are literal. This discussion has used the time centering corresponding to

the cell-centered projection of outline step (6). The MAC projection (outline step

(2)) is entirely analogous.

2.2. High-order Godunov advection. The computation of un+1/2

i+1/2ed
is based on an

adaptation of the embedded boundary method for hyperbolic PDEs [11]. It is a

three-step process:
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I. In the first step, cell-centered velocities un
i are averaged to edges un

i+1/2ed
, and

this velocity field is used to resolve Riemann problems in an advective calcu-

lation. First, the velocity is extrapolated to faces with upwind characteristics:

u±d
i = un

i ± 1

2
min

(
1 ∓ (ed · un

i )
�t
h

, 1
)
(δd un)i + �t

2
(ν�un)i . (2.15)

This initial extrapolation does not include transverse derivatives or the pres-

sure gradient. δ is a difference operator using van Leer [40] limiting:

δd(u) =
{
δvL

d (u) if (u i+ed − u i )(u i − u i−ed ) > 0,

0 otherwise,
(2.16)

δvL
d (u) = sign(u i+ed − u i−ed )

× min
(
2

∣∣u i − u i−ed

∣∣ , 2
∣∣u i+ed − u i

∣∣ , 1
2

∣∣u i+ed − u i−ed

∣∣). (2.17)

Further, u+d
i is the value of velocity extrapolated to the right side of cell i

in direction d , and u−d
i+ed

is the value extrapolated to the same edge from cell

i + ed . A single-valued result is obtained by resolving the Riemann problem,

which amounts to upwinding:

ūn+1/2

i+1/2ed
=

⎧⎪⎪⎨
⎪⎪⎩

u+d
i if (ed · u)n

i+1/2ed
> 0,

u−d
i+ed

if (ed · u)n
i+1/2ed

< 0,

1
2

(
u+d

i + u−d
i+ed

)
if (ed · u)n

i+1/2ed
= 0.

(2.18)

The output of this Riemann problem is used to provide transverse flux cor-

rections. In 2D (see Figure 3),

u±d
i := u±d

i − �t
2h

(
ūn+1/2

i+1/2ed′ − ūn+1/2

i−1/2ed′
)
, d ′ �= d, (2.19)

followed by another Riemann solution. In 3D the transverse flux correction

is more complicated [32].

II. A discrete MAC projection is used to make the advected velocities divergence-

free:

	 : �	 = ∇ · ū; (∇ · ū)i = 1

h

∑
d

(
ūn+1/2

i+1/2ed
− ūn+1/2

i−1/2ed

)
, (2.20a)

ed · u = ed · ū − ∇d	. (2.20b)

This projection only affects the normal component of the edge velocities.

III. The third step repeats step I, but the velocity used to judge upwind direction in

the Riemann problem is the divergence-free edge velocity computed in step II.

In this step the normal velocity components are not changed, but the transverse
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Figure 3. Transverse flux correction in 2D. Double-valued edge states u±d are indicated

by filled circles, and single-valued states ū are indicated by open circles. Differences in ū
across a given cell provide flux correction to the states u±d associated with that cell, but

in transverse directions.

ones are. Finally, these transverse components are corrected to account for the

pressure gradient computed in II. In 2D,

ed ′ · un+1/2

i+1/2ed
:= ed ′ · un+1/2

i+1/2ed
− 1

4

[
(∇d ′	)i+1/2ed′ + (∇d ′	)i+ed+1/2ed′

+ (∇d ′	)i−1/2ed′ + (∇d ′	)i+ed−1/2ed′
]
, (2.21)

where d ′ �= d is the transverse direction. The generalization to 3D is straight-

forward.

The extension of this algorithm to embedded boundary geometries is described

in [11]. One change is to employ one-sided differences where the data does not

support centered stencils. Another concerns the determination of so-called covered-

edge values. Covered edges are those edges of irregular cells which are not in con-

tact with the fluid. For these edges, the upwind characteristic tracing step provides

a single edge value on the fluid side of the edge. The value on the side opposite the

fluid is obtained by extrapolation from edge values interior to the domain (Figure 4);

see [11, §5.2] for details.

2.3. Hyperbolic step. We are interested here in a formulation of u · ∇u that is

consistent with the hyperbolic split of the Navier–Stokes equations

∂u
∂t

+ ∇ · F = 0 (2.22)

with F ≡ uu, ∇ · F = u · ∇u when ∇ · u = 0. For this hyperbolic equation, one

has a discretization

un+1
nonconservative = un − �t

h
(DF)nc (2.23)
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Figure 4. Covered edge calculation, illustrated in 2D for the case of ŷ-side edges. Closed

circles indicate edge values calculated by the 1D advection algorithm described here,

though modified to use one-sided differences near boundaries. The open circle indicates

an exterior covered edge, in this case on the right side of an edge. This right-edge covered

value is extrapolated from right-edge uncovered values by interpolation (dashed line), and

extrapolation in the direction of the interface normal (arrow), using the cell-centered gra-

dient. When the uncovered values are modified to account for transverse flux correction,

this calculation is repeated so the covered edge value also includes transverse corrections.

with DF a flux difference which we approximate by

(DF)nc
i =

D∑
d

1

h

(
un+1/2

d,i+1/2ed
un+1/2

i+1/2ed
− un+1/2

d,i−1/2ed
un+1/2

i−1/2ed

)
. (2.24)

This discretization is second-order accurate in regular cells, but not consistent in

cut cells. It is stable in both cases.

A conservative discretization of the conservation law on the irregular control

volume comes from the space-time integration over the fluid in an irregular cell:

0 =
∫ tn+1

tn
dt

∫
�i (t)

dV
(

∂

∂t
, ∇

)
· (u, F)

≈ κn+1
i hDun+1

i − κn
i hDun

i

+�thD−1
D∑
d

(
αi+1/2ed Fd,i+1/2ed −αi−1/2ed Fd,i−1/2ed

)+Ai,EBni,E B ·(u, F)i,EB,

(2.25)

where

�i (t) = �(t) ∩ [h i, h(i + 1)] (2.26)

is the fluid-occupied volume of cell i at time t . Subscript EB denotes that the object

is located on the embedded boundary, and EB will be used also as an abbreviation.
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Here κ denotes a volume fraction,

κn
i = 1

hD

∫
�i (tn)

dV ; (2.27)

α a space-time area fraction (also known as “aperture”),

αi−1/2ed = 1

hD−1�t

∫ tn+1

tn
dt

∫
δ�i (t)∩{x|xd=hid }

d A; (2.28)

and AEB is the space-time area of the EB. nEB is the unit normal in �D+1. The

D + 1 components of AEBnEB can be determined from the condition div(ei ) = 0

for each of the D + 1 directions i , giving

κn+1
i u

cent

n+1
i = κn

i u
cent

n
i − �t

h

D∑
d

(αi+1/2ed Fd,i+1/2ed − αi−1/2ed Fd,i−1/2ed )

− (κn
i − κn+1

i )ui,EB − �t
h

D∑
d

(αi−1/2ed − αi+1/2ed )Fd,i,EB. (2.29)

Here we have written u
cent

to emphasize that the centering is at the centroid x
cent

for

(2.29) to be consistent (Figure 5);

x
cent

n
i = 1

hDκn
i

∫
�i (tn)

xdV . (2.30)

However, the elliptic operators we use are based on a cell-centered discretization

u
cc

, which suggests the modification

u
cc

n+1
i − u

cc

n
i = −�t

h
(DF)c, (2.31)

x

t

Figure 5. Centerings: centers (open circles) and centroids (crosses). In regular domains,

the discretization relies on centered quantities. A convergent stencil in irregular domains

uses centroid-centered quantities.
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(DF)c = 1

κn+1
i

[
h
�t

(
κn

i (x
cc
−x

cent
)n

i ·(∇u)n
i −κn+1

i (x
cc
−x

cent
)n+1

i ·(∇u)n
i +(κn+1

i −κn
i )u

cc

n
i

)

+
D∑
d

(αi+1/2ed Fd,i+1/2ed − αi−1/2ed Fd,i−1/2ed )

+ h
�t

(κn
i −κn+1

i )ui,EB+
D∑
d

(αi−1/2ed−αi+1/2ed )Fd,i,EB

]
. (2.32)

Equation (2.31) has �(h) discretization error in irregular cells (when κ < 1), and

is second-order in regular cells. The velocity at the centroid of the EB is s(x, t),
the prescribed boundary condition (1.2a). Fluxes at the centroids of cell faces are

calculated by interpolating the velocity field to the centroid

x
cent i−1/2ed = 1

hD−1�tαi−1/2ed

∫ tn+1

tn
dt

∫
δ�i (t)∩{x|xd=hid }

x d A, (2.33a)

t
cent i−1/2ed = 1

hD−1�tαi−1/2ed

∫ tn+1

tn
tdt

∫
δ�i (t)∩{x|xd=hid }

d Ak. (2.33b)

The data interpolated is taken from all available data in a 5D-cell region centered

at the point where F is required. This makes F on an irregular edge, say i + 1/2ed

independent of the cell, i or i + ed , that shares it. Interpolation is second order

in space and time, and implemented by solving an overdetermined set of linear

equations with Householder decomposition.

To make the method stable we employ the hybridized flux difference

un+1 = un − �t
h

(
κn+1(DF)c + (1 − κn+1)(DF)nc

)
. (2.34)

In the limit that cells become regular on [tn, tn+1] the conservative, nonconserva-

tive, and hybrid flux differences are all equivalent to the stable second-order result,

and (2.34) reduces to (2.31).

The generalized mass difference is redistributed. The mass excess is

δm = hDκn+1(un+1 − un+1
unstable)

= �thD−1κn+1(1 − κn+1)
(
(DF)c − (DF)nc

)
. (2.35)

The negative of this quantity is to be distributed in a volume-weighted sense to

neighboring cells [4; 29; 26]. Let ũ be un+1 evaluated by (2.34), then modified

by redistribution. Then h(un − ũ)/�t is what we refer to in outline step (4) as a

conservation-preserving calculation of u · ∇u.
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2.4. The time-dependent heat problem. For the problem

ut = K�u + f x ∈ �(t), (2.36a)

u(x, tn) = u0(x) x ∈ �(tn), (2.36b)

u(x, t) = ubc(x, t) x on δ�(t), (2.36c)

McCorquodale et al. [25] propose the following algorithm:

(1) Interpolate the boundary conditions ubc(x, tn) to the boundary δ�n+1 with

uinterp
bc (x′) = ubc(x, tn) + (x′ − x) · ∇u0(x′, tn), (2.37)

where x′ on δ�n+1, x on ��n , and |x − x′| is �(h). Specifically, let i be the

cell containing x, and let i ′ be the cell containing x′. For a given i , cell i ′ is

chosen to be the neighbor of i with greatest boundary area (Figure 6).

(2) On δ�n+1, boundary conditions for any time in [tn, tn+1] are obtained by

linear interpolation of uinterp
bc (x) and ubc(x, tn+1).

(3) Extrapolate u0 to �n+1 using the approach described in outline step (1).

(4) Extrapolate f (x, tn+1/2) from �n+1/2 to �n+1 with this same procedure.

(5) On �n+1, solve the heat equation by the method of Twizell et al. [38]:

un+1 = (I − μ1�t�h
1)

−1(I − μ2�t�h
2)

−1

× (
(I + μ3�t�h

3)un,extrap + (I + μ4�t�h
4)�t f n+1/2,extrap

)
, (2.38)

with μ1 = μ2 = 1 − 1/
√

2, μ3 = √
2 − 1, and μ4 = √

2 − 3/2. Here un,extrap

is the field u centered at time tn , but extrapolated from �n to �n+1, and

Figure 6. Extrapolation of boundary conditions. The dashed curve is δ�n , and boundary

conditions are known at the centroid of EB segments in each cell. The solid curve is

δ�n+1, and boundary conditions are needed at the centroids of this EB in each cell. For

each tn+1 centroid (e.g., the open circle), the neighboring cell with the greatest boundary

area is chosen. In this picture there are two candidates (closed circles). The boundary

condition is then extrapolated using the inner product of the cell-centered gradient in the

tn cell and the relative coordinates (arrow).
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likewise f n+1/2,extrap is the source term f centered at tn+1/2 and extrapolated

from �n+1/2 to �n+1. �h
1 is the discrete Laplacian on �n+1 with boundary

conditions at tn+1; �h
2 has boundary conditions at tn+1 − μ1�t (by interpola-

tion); and �h
3 has boundary conditions at tn . The boundary conditions on �h

4

are homogeneous Dirichlet.

A justification of this algorithm follows.

The ODE

u′ = A(t)u + f (t) (2.39)

has solution

un+1 = R(�t)un + R(�t)
∫ �t

0

R−1(s) f (s) ds, (2.40)

where R is an integrating factor:

R(�t) = exp

(∫ tn+�t

tn
A(τ ) dτ

)
. (2.41)

Expanding A in a Taylor series,

A(tn + s) =
∞∑

i=0

Ai si , (2.42)

facilitates constructing an approximation to R:

R(�t) ≈ 1 + μ3α3�t
(1 − μ1α1�t)(1 − μ2α2�t)

, (2.43)

where

μ1 = μ2 = 1 − 1/
√

2, (2.44a)

μ3 = √
2 − 1. (2.44b)

These coefficients μi minimize the discretization error of this approximation in the

case that A is independent of time, which is the case described by Twizell et al. [38].

(Those authors introduce a factor ε of order machine precision to lift the degeneracy

of (2.44a) and enable a partial fraction representation of (2.43). McCorquodale et

al. [25] include this ε factor but do not use partial fractions.) The factors αi are

different time centerings of A(t):

α1 = A0 + A1c1�t, (2.45a)

α2 = A0 + A1c2�t, (2.45b)

α3 = A0 + A1c3�t, (2.45c)
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with coefficients ci to be determined. When A is time-varying, the approximation

to R(�t) differs from (2.41) by �(�t3) provided

(c1 + c2)(2 − √
2) + 2c3(

√
2 − 1) = 1. (2.46)

The solution (see [25])

c1 = 1, (2.47a)

c2 = 1/
√

2, (2.47b)

c3 = 0 (2.47c)

satisfies this consistency requirement, but not uniquely. Expanding f (t) in a Taylor

series about tn+1/2 leads to a discretization of that source term. Combined,

un+1 = (1 − μ1α1�t)−1(1 − μ2α2�t)−1

× (
(1 + μ3α3�t)un + (1 + μ4α4�t)�t f n+1/2

)
, (2.48)

where μ4 = √
2 − 3/2, and α4 is an arbitrary centering of A.

The choice c1 = 1 is optimal in that the final implicit solve will satisfy its given

boundary conditions exactly. An interpretation of this result is that the α3 operation

carries un to un+μ3 , then the α2 operation carries the solution to un+1−μ1 , with the

final operation α1 terminating at un+1. This suggests that 0 ≤ c3 ≤ μ3/2 in order

that μ3 ≤ c2 ≤ μ3 +μ2, i.e., that the boundary conditions lie within the interval of

the associated operation.

Connecting ODE (2.39) to the heat PDE by the method of lines, this analysis

suggests

un+1 = (I − μ1�1�t)−1(I − μ2�2�t)−1

× (
(I + μ3�3�t)un + (I + μ4�4�t)�t f n+1/2

)
, (2.49a)

which we abbreviate as

un+1 = �TGA

(
un, f n+1/2

) : (2.49b)

the solution at tn+1 to ut = �u + f . When � is a negative definite operator, this

discretization is L0 stable and second-order accurate in time. Since

μ1 + μ2 + μ3 = 1,

the principle of superposition requires that boundary conditions on �4 be homo-

geneous. It remains to be shown that all operators �i can be discretized on the

domain �n+1 to �(h2). The operators �i must be centered correctly, as given by

(2.45) and (2.47), to second-order in time, except for �4, which may be first-order

in time.
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Consider the heat equation

ut = K�u + f, (2.50)

u(x, 0) = u0(x),

u(x, t) = ubc(x, t) on δ�.

Let x0 be a point on δ�, and let x1 be an arbitrary point �(h) away from x0. Then

a Taylor series expansion gives

u(x1, t) = u(x0, t) + (x1 − x0) · ∇u(x0, 0) + �(h2) + �(h�t). (2.51)

Therefore, if �n+1 and �(t) are close (in the sense that for any point x on

δ�n+1 there is a point x′ on δ�(t) with |x − x′| = �(h)), and if one uses Dirichlet

boundary conditions on �n+1 given by

ubc(xn+1, t) := ubc(x(t), t) + (xn+1 − x(t)) · ∇u0,

and if �t ∝ h, then the solution at x(t) on δ�(t) will be obtained to second order

in h.

The solution on the interior of a domain � is a linear functional of its boundary

conditions, initial conditions, and forcing. For example,

u(x, t)=
∫

�

dV ′G(x | x′, t)u0(x′) +
∫ t

0

dt ′
∫

�

dV ′G(x | x′, t−t ′) f (x′, t ′)

+
∫ t

0

dt ′
∫

δ�

d S′n′ · ∇′G(x′ | x, t − t ′)ubc(x′, t ′) (2.52)

solves (2.50), where G is the Green’s function solving

Gt = K�G + δ(x − x′), (2.53)

G(x | x′, 0) = 0,

G(x | x′, t) = 0 for all x on δ�.

Therefore, on a domain � differing from �n+1 by �(h), where u0 and f are con-

tinued by high-order interpolation, and where ubc is second-order accurate, the

solution interior to � will be second-order accurate. Solved by a discrete method,

the error will be the lower of the order of the method or h2, in the present case

O(h2)+O(�t) for the solution by forward or backward Euler, and O(h2)+O(�t2)

embedded in the Twizell et al. framework (2.49a).

The discretization of this heat solver is based on the conservative but unstable

discretization of the Laplacian for time-stationary geometries

�u = ∇ · F, F = ∇u, (2.54a)

un+1 = un + �i (u), (2.54b)
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�i (u) =
ν�t
κi h

D∑
d

((
αi+1/2ed Fn+1/2

i+1/2ed
− αi−1/2ed Fn+1/2

i−1/2ed

) + (
αi−1/2ed − αi+1/2ed

)
Fd,i,EB

)
.

(2.54c)

Note that while �i is unstable in the limit κi → 0, κi �i is stable. The overall

sequence can be written in a stable manner as follows:

ψ1 = κ(I + μ4�) f n+1/2, (2.55a)

ψ2 = κ(I + μ3�)un, (2.55b)

ψ3 = �tψ1 +ψ2, (2.55c)

ψ4 = [κ(I − μ2�)]−1 ψ3, (2.55d)

ψ5 = κψ4, (2.55e)

un+1 = [κ(I − μ1�)]−1 ψ5. (2.55f)

2.5. Computation of space-time geometry. We base our geometry calculation on

a hierarchical application of the divergence theorem proposed by Ligocki et al. [21],

here specialized to the case where geometric information is to be determined from

cell- and time-centered discrete values of a level set function ψ . This method as-

sumes only that ψ is a sufficiently differentiable level set, not necessarily a distance

function.

2.5.1. Governing equations. In D dimensions use the multiindex convention

x p = x p1

1 x p2

2 · · · x pD
D , (2.56a)

p! = p1!p2! · · · pD! , (2.56b)

∇ r = ∂r1

∂xr1

1

∂r2

∂xr2

2

· · · ∂rD

∂xrD
D

, (2.56c)

and in this application all components of a multiindex are nonnegative. We will

say multiindex integer p is even if all pi are even, and for the magnitude, P =
| p| = ∑

pi , etc.

Consider the volume integral of ∇ · (x ped) = pd x p−ed with the divergence the-

orem:

pd

∫
V

x p−ed dV =
∫

A+
d

x pd A −
∫

A−
d

x pd A +
∫

AEB

x pn · edd A (2.57)

where EB denotes the embedded boundary, and n is the unit normal vector. With

the boundary having curvature, n is spatially varying. Account for this spatial

variance with a truncated Taylor series:
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pd

∫
V

x p−ed dV − nd

∫
AEB

x pd A

=
∫

A+
d

x pd A −
∫

A−
d

x pd A +
∑

1≤|r|≤R

∇ rnd

r!
∫

AEB

xr+ pd A + �(hD+R+P). (2.58)

Here V designates a generalized volume, and A designates a codimension-1 sub-

space — a generalized area. In (2.58), n is the normal to the EB in the space

of volume V . This equation expresses moments on [−h/2, h/2]D and on the

codimension-1 EB in terms of higher moments on lower-dimensional spaces. Each

of these lower-dimensional spaces can be analyzed with a similar specialization of

(2.58). For example, if the area Ad+ is bounded by subspaces L (lines), we have

pd ′

∫
Ad+

x p−ed′ d A − nd ′

∫
LEB

x pd L

=
∫

L+
d′

x pd L −
∫

L−
d′

x pd L +
∑

1≤|r|≤R

∇ rnd ′

r!
∫

LEB

xr+ pd L + �(hD′+R+P), (2.59)

where n is the interface normal in the subspace Ad+ , and D′ = D −1 if we consider

pd (the component of p in the dimension orthogonal to space Ad+) to be zero. (This

assumption can be made without loss of generality. If M( p) is a given moment on

surface Ad± with pd = 0, then M( p + ked) = (±h/2)k M( p): the generation of

moments for which pd �= 0 is trivial.) Equation (2.58) can be applied as many times

as needed until the subspaces contain trivial normal vectors n: when the space V
of (2.58) is 1D, the normal vector is ±1 and has no derivative.

To interpret the order D′ + R + P , begin by specifying S as the desired order of

accuracy. On the original space R = S − 1, and P = 0, 1 is required at a minimum

to obtain the centroid of the EB. However, with R = 1 and P = 1, EB moments

with P = 2 are required on the right hand sides. This causes the maximum P , Pmax,

to depend on S and D′ in a systematic way:

Pmax(D′) = S − 1 + [D − max(D′, 2)] D ≥ 2, (2.60)

and, for each magnitude P = 0, . . . , Pmax,

R = max(S − 1 − P, 0). (2.61)

Table 1 displays some convergence results in multiple dimensions for the case

S = 2.

2.5.2. Order of operations. For each dimension, the system of equations implied

by (2.58) is overdetermined and nonsingular. Ligocki et al. propose evaluating this

hierarchical system in a particular way, grouping equations on a common subspace

and with common P . This makes each overdetermined set small, minimizing the
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2D

1/h error rate

16 –8.143 · 10−4

32 –2.226 · 10−4 1.87

64 –5.409 · 10−5 2.04

128 –1.378 · 10−5 1.97

(2+1)D

1/h error rate

16 –6.705 · 10−5

32 –1.796 · 10−5 1.90

64 –4.416 · 10−6 2.02

128 –1.115 · 10−6 1.98

3D

1/h error rate

16 –3.108 · 10−3

32 –7.873 · 10−4 1.98

64 –1.958 · 10−4 2.01

128 –4.898 · 10−5 2.00

(3+1)D

1/h error rate

16 –2.107 · 10−4

32 –5.330 · 10−5 1.98

64 –1.327 · 10−5 2.01

128 –3.315 · 10−6 2.00

Table 1. Convergence of EB area for sections of a hypersphere for order S = 2. In 2D

the area of a unit circle is computed on one quadrant. In 3D, the area of a unit sphere

in one octant. In 2+1D, a section of the unit sphere from the midplane to x2 = 1/16. In

3+1D, the area of a unit hypersphere from the midplane to x3 = 1/16. Calculations used

cell-centered values of the signed distance function to derive all quantities.

cumulative cost of the associated linear algebra. Here, we first describe the order of

operation as described by Ligocki et al., then discuss constraints and modifications

to the operation order that are made to accommodate them.

To illustrate these ideas, consider the 2D case. Let us write as a subscript [··]
to indicate that the volume being integrated over is [−h/2, h/2] × [−h/2, h/2],
and [+·] to indicate the +x0 edge on which the integral runs [−h/2, h/2] in the

x1 direction (Figure 7). We will write (p0 p1) to represent a given moment. Thus,

a

b c

df

e
[··][-·]

[·-]

[·+]

[+·]

{··
}

Figure 7. Notation for 2D example. The fluid region abcde is denoted [··]; the EB {··},
e f , separates the fluid from the shaded exterior region de f . The 1D subregion [+.] is the

line segment cd, etc. The calculation begins with P = 0 moments on the 1D subregions,

e.g., (00)[·−] = a f , then the P = 1 moments; e.g., (10)[·−] = x2
f /2−h2/8, and (01)[·−] =

−(a f )h/2 which is simply (00)[·−] multiplied by the x1 coordinate of the edge, −h/2.
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(10)[·−] is the first x moment of the bottom edge of the cell.

In support of the 2D computation, we need the P = 0 and P = 1 moments over

each edge (each of the four 1D bounding spaces). These quantities are determined

by interpolation of the discrete level set data using stencils and methods described

below (Section 2.5.4).

Once these 1D moments are known, one can proceed to evaluate the moments

in 2D. In volume [··] we are interested in the P = 0 moment (00)[··] which gives

the volume fraction. We are also interested in the P = 0 and P = 1 moments over

the EB, which together specify the centroid. The EB in volume [··] will be written

{··}. The first block of equations come from (2.58) with P = 1. In order, these are

from p = (1, 0) with d = 0, then d = 1, followed by p = (0, 1) with d = 0, then

d = 1:

1(00)[··] − n0[··](10){··} = (10)[+·] − (10)[−·],
−n1[··](10){··} = (10)[·+] − (10)[·−],
−n0[··](01){··} = (01)[+·] − (01)[−·],

1(00)[··] − n1[··](01){··} = (01)[·+] − (01)[·−].

(2.62)

With the unknowns on the left hand side, there are 4 equations to determine 3

variables. The next set of equations come from (2.58) with P = 0, p = (0, 0), with

d = 0 followed by d = 1:

−n0[··](00){··} = (00)[+·] − (00)[−·] + n(10)
0[··](10){··} + n(01)

0[··](01){··},

−n1[··](00){··} = (00)[·+] − (00)[·−] + n(10)
1[··](10){··} + n(01)

1[··](01){··};
(2.63)

two equations in one unknown. This system requires the normal and its gradient,

which may be constructed from a degree-2 Taylor series expansion of the level set.

From these computations, volume fraction, centroids and apertures are, e.g.,

κ = (00)[··]
h2

, (2.64)

xcent
[−·] = 1

(00)[−·]

(
(10)[−·]
(01)[−·]

)
, (2.65)

xcent
{··} = 1

(00){··}

(
(10){··}
(01){··}

)
, (2.66)

α[−·] = (00)[−·]
h

; (2.67)

see (2.27), (2.33a), (2.28). While an EB area is calculated by this method, finite

volume discretizations use the projected area and the normal that come from the

requirement that ∇ · (ei ) = 0 [29].
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Figure 8. Recentering to improve accuracy. When the 1D edges of a given volume are

evaluated, the intersections of the edges with ψ = 0 are discovered (filled circles). In the

evaluation of higher-dimensional volumes, here a 2D face, the mean of the intersection

points of those edges associated with this face gives a centering point (open circle) which

approximates the centroid of the EB.

Ligocki (personal communication) noted that the quality of the least squares

solutions can be dramatically improved by recentering the calculation from the

center of a given [−h/2, h/2]D volume to a point close to the centroid of the EB.

Specifically, we recenter the linear equation systems and the constraint equations

prior to solution of the over-determined data fitting equations by Householder re-

duction, then recenter the computed result to the center of the given volume. The

estimated centroid is the average of the intersections of ψ = 0 with the 1D edges

of the volume being evaluated (Figure 8).

2.5.3. Incorporation of constraints. The moments appearing in this expansion are

subject to certain inequality constraints. If p̄ is even, then the corresponding vol-

ume integral is nonnegative and, if not on the EB, can be bounded from above:

0 ≤
∫

V
x p̄dV ≤ h P+D p!

2P( p + 1)! . (2.68)

If p differs from an even multiindex p̄ by addition of a unit basis vector e j , then

min
V

(x j )

∫
V

x p̄dV ≤
∫

V
x p̄+e j dV ≤ max

V
(x j )

∫
V

x p̄dV, (2.69)

by the mean value theorem.

In the second-order 2D example above, simple positivity constraints are

(00)[··] ≥ 0, (2.70a)

(00){··} ≥ 0, (2.70b)

and there is a physical constraint

(00)[··] ≤ h2; (2.70c)



BOUNDARY METHOD FOR NAVIER–STOKES ON A TIME-DEPENDENT DOMAIN 23

volume fraction is positive but less than or equal to one, and the EB area is positive.

Constraints of the second type are

− h
2
(00){··} ≤ (10){··} ≤ +h

2
(00){··}, (2.71a)

−h
2
(00){··} ≤ (01){··} ≤ +h

2
(00){··}. (2.71b)

Constraints of type (2.68) can be implemented with any organization of the

divergence theorem hierarchy. However, to incorporate those derived from the

mean value theorem (2.69) while minimizing the overall least squares problem, it

is necessary to solve for all necessary moments of a given volume simultaneously.

This can be seen by noting that constraints (2.71) combine EB area values (00){··}
and EB moment values (10){··} and (01){··} which are determined in different blocks

(2.63) and (2.62), respectively, of the Ligocki et al. algorithm.

Incorporation of constraints in that setting means that the first linear system

is solved without constraints, then constraints may be incorporated in subsequent

solves. This would be analogous to weighing system (2.62) in preference to (2.63).

This relative priority cannot be justified. To correct this weighting problem we

solve simultaneously for all moments of a given subspace: (i) 1D moments as

above, (ii) solve system (2.62), (2.63) together. We explicitly weigh each equation

by h−P so that, unconstrained, they carry similar weights as in the Ligocki et

al. method.

All linear systems are solved with Householder Q R reduction. The constrained

least squares problem is equivalent to the constrained positive definite quadratic

programming problem solved by Goldfarb and Idnani [13; 14]: minimize

(Ax − b)T (Ax − b)

with respect to x subject to linear inequality constraints. Their method begins

with the Cholesky LLT decomposition of the Hessian ATA, and with Q unitary

the setup phase of their method is trivial: L = RT , the transpose of R from the

Householder decomposition. The quadratic form (Ax − b)T (Ax − b) never need

be explicitly constructed.

2.5.4. Stencils. Here algorithms are described that determine the moments on 1D

subspaces, and derivatives of the normal vector, from cell- and time-centered level

set discretizations.

Nominally, we assume that the EB ψ = 0 will intersect each 1D edge at most

once. If this is true, then interpolated values of ψ at the corners of a cell determine

which edges are intersected by the EB, which are covered (by the wall), and which

are regular. It is important to the robustness of the method that these corner values

be accurate, and that each edge’s notion of the corner be identical: the corner
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( ) ( ) ( )

(a) (b) (c)

Figure 9. Stencils for the construction of 1D moments for the case where all dimensions

are spatial, illustrated in 2D for the case of order S = 3 or 4. To achieve a final order S,

stencils of half width K = �S/2� are constructed. (a) To compute the moments on the left

edge of the center cell (bold line), a stencil consists of 2K points transverse to the edge,

and 2K +1 points in the direction of the edge (open circles). The first step is to interpolate

to the line in the transverse direction. The points being interpolated lie on the dashed lines,

and the resulting interpolants are given by crosses. The calculation of the derivatives of

n for the center cell is based on a least squares fit of all (2K + 1)D cells (the squares) to

determine Taylor coefficients in a centered expansion of ψ . (b) The top 2K interpolants

are interpolated to deduce the value at the top end of the bold line segment (filled circle).

The polynomial given by this filled circle and the bottom 2K crosses is identical to the

polynomial given by all crosses alone, so the top cross may be dropped when the filled

circle is added to the list of support points. Similarly, the bottom 2K points are used to

interpolate the value at the bottom of the line segment. The result is that the corner values

of the cell are computed from a symmetric (2K )D set of points, and for all cells that share

a given corner the stencil is identical (e.g., the value at the corner indicated by the filled

circle is determined by the set of points in the bold square, regardless of the edge under

consideration). (c) The resulting 2K + 1 interpolation points — equivalently, the 2K + 1

crosses of part (a) — define an interpolation polynomial whose roots are the intersection

of ψ = 0 with the given edge.

x

t

n+1

n

x

t

n+1

n

(a) (b)

Figure 10. Stencils for the case where one dimension is temporal, illustrated in 1D+1D

for the case of order S = 4. Let K = �S/2�. Because data is centered at time levels, stencils

for time and space edges are different. (a) To find moments on a temporal edge (bold

line segment) S time levels are interpolated (crosses) each from 2K spatial interpolations

(circles on dashed lines). (b) For a spatial edge, data on a single time level is treated by

the stencil described in Figure 9. To evaluate derivatives of ψ at the center of a space-time

volume, the stencil uses 2K + 1 points in each spatial direction and S + 1 time levels.
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values must be cell- and edge-invariant. In order that quantities like the aperture α

be invariant, it is also important that the intersection point of ψ = 0 with a given

edge be cell-invariant. These symmetry considerations impact the interpolation

algorithms by rounding up the stencil width in some cases.

To compute the moments on 1D edges, one finds the intersection of the edge

with ψ = 0 (say a point ζ ), then constructs the moments explicitly. In a frame

where the cell center is at the origin, one has, for example,

(p0 p1)[−·] =
(

−h
2

)p0

×
{∫ ζ

−h/2 y p1dy if ny = −1,∫ h/2

ζ
y p1dy if ny = +1,

(2.72)

The intersection point ζ is determined by constructing an interpolating poly-

nomial using data interpolated to the line coincident with the edge. We seek its

roots with bisection until Smale’s criterion [34] indicates that Newton–Raphson

will converge quadratically. Roots are then refined with Newton–Raphson.

For the general case of arbitrary dimension D and arbitrary order S, �(hS) ac-

curacy on the 1-dimensional subspaces requires an interpolation polynomial with

S support points. The symmetry invariance requirement of the method modifies

this stencil. If K = �S/2�, then 2K support points are required in the transverse

direction and 2K + 1 in the normal direction (Figure 9).

The support requirements in the case of space-time interpolation are simpler

since data exists on the time edges so interpolation to integer time levels is not

required (Figure 10).

To achieve order S accuracy, S − 1 order derivatives of the normal vector are

required, which are based on S order derivatives of the discrete level set using

n( p) = d p

dx p
∇ψ√

(∇ψ) · (∇ψ)
. (2.73)

These derivatives are based on a Taylor series centered at the center of the relevant

subspace, fit to data with stencil width S + 1. Where possible the stencil is made

symmetric by rounding up to width 2K + 1.

2.5.5. Underresolved and nonconforming geometry. Underresolved geometries may

fail under the standard algorithm. The geometry in Figure 11 will fail because

the interpolated value of ψ at the corners of the square cell are all positive. The

algorithm therefore misses the fact that the EB crosses the left edge twice. One

way to detect these problems is to estimate the minimum and maximum values of

ψ on the cell. If these have different signs, then the cell is irregular even when the

corner values have uniform sign, and even if ψ is not a distance function.

An algorithm to estimate the range of values the differentiable function ψ takes

on the cell is given by Rivlin [31]. The basic idea is to sample the domain �i by
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Figure 11. Irregular cells whose interpolated corner values have uniform sign. In this

example, the cell is a square of length h and ψ = 0 is a circle centered 51/2h units to the

left of the cell center. The radius is chosen so the circle intersects the left cell boundary at

±h/4. The area to be measured is ≈ 2.08 × 10−3h2.

overlaying it with a grid of length δ. If ψ(ξ) is an extremum in cell i , and xk is a

point on the δ-grid, then

ψ(xk) = ψ(ξ) +
∑
|r|=2

(xk − ξ)r

r! ψ r(χ), (2.74a)

max
x∈�i

|ψ(x) − ψ(ξ)| ≤ � ≡ δ2

4
max
χ

∑
|r|=2

1

r! |ψ
(r)(χ)| (2.74b)

for some χ ∈ [xk, ξ ], and so

min
x∈�i

ψ(x) > min
xk

ψ(xk) − �, (2.75a)

max
x∈�i

ψ(x) < min
xk

ψ(xk) + �. (2.75b)

We estimate � using the Taylor series, which we center at the center of cell �i :

ψ(x) =
∑

P

∑
| p|=P

x p

p! ψ
( p)(0), (2.76a)

� = δ2

4
max
χ

∑
|r|=2

1

r!
∣∣∣∣∑

P

∑
| p|=P

χ p−r

( p − r)!ψ
( p)(0)

∣∣∣∣, (2.76b)

≤ δ2

4

∑
|r|=2

1

r!
∑

P

∑
| p|=P

( 1
2

h) p−r

( p − r)!
∣∣ψ( p)(0)

∣∣ (2.76c)

where h is the vector cell edge lengths. In support of (2.73), derivatives of ψ

through order S are known. So, for any order S ≥ 2 sufficient information will be

available to employ Rivlin’s method. Given a desired tolerance �, (i) approximate

the Taylor series by least squares, (ii) estimate δ from (2.76c), then compute the
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order S relative error

2 –0.595

3 –0.0281

4 –0.0304

5 0.00832

6 –0.000256

Table 2. Relative area error (Ah − A)/A (where A is exact and Ah is computed) using

one level of bisection to resolve Figure 11. Without subdivision, the relative error is 1.

bounds by sampling the polynomial. If the product of bounds ψminψmax is negative,

then subdivision is applied. Otherwise, the cell is regular κ = 1 or covered κ = 0.

For the situation in Figure 11, a single bisection (in all directions) permits iden-

tification of the cell as an irregular one. The resulting volume calculations are

summarized in Table 2.

3. Results

We demonstrate the method and show its convergence by computing the flow past

a sphere in a bounded domain, Figure 12. In arbitrary units, the domain has length

4 and height 2. The top and bottom boundaries are stationary no-slip walls, the

right boundary is outflow, and the left domain boundary is inflow with velocity

having a Poiseuille profile with maximum velocity 1.5. Viscosity is 0.1. A sphere

centered at (1, 1) obstructs the flow. Its radius depends on time as

0.2 + 0.1 cos ωt,

with ω = π/1.2. The finest discretization of the domain is 1024 × 512, with �t =
1.5 × 10−3 fixed. To determine rates of convergence we also use coarser grids:

a 512 × 256 grid with δt = 3.0 × 10−3, etc., through the coarsest discretization

Figure 12. Flow past a shrinking sphere on 2:1 domain. Circles represent initial and final

sphere surface. Curves are streamlines. Color corresponds to |u| from 0 (blue) to 1.7 (red).

Note that the streamlines attach to the sphere because it is moving. Times are 0.6 and 1.2,

respectively.
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Nx ‖ux error‖∞ rate ‖ux error‖1 rate

64/128 5.28 × 10−1 4.37 × 10−3

128/256 2.24 × 10−1 1.24 9.24 × 10−4 2.24

256/512 8.76 × 10−2 1.35 2.22 × 10−4 2.06

512/1024 4.64 × 10−2 0.92 5.36 × 10−5 2.05

Nx ‖uy error‖∞ rate ‖uy error‖1 rate

64/128 4.01 × 10−1 3.12 × 10−3

128/256 1.86 × 10−1 1.11 7.07 × 10−4 2.14

256/512 8.28 × 10−2 1.16 1.68 × 10−4 2.07

512/1024 3.97 × 10−2 1.06 3.95 × 10−5 2.09

Table 3. Richardson error convergence study for flow past a shrinking sphere.

of 64 × 32 with �t = 2.4 × 10−2. The maximum CFL over the course of this

simulation is 0.8.

Errors and rates of convergence are shown in Table 3 after 352 time steps on the

finest grid through 22 time steps on the coarsest. In L1 the velocity is second-order

accurate, while in L∞ it is first-order. The errors reported are Richardson estimates

obtained by comparing computations with different resolution:

‖u‖h,2h
1 = 1

V

∫
�

|uh − u2h|dV =
∑

i κi |uh − u2h|i∑
i κi

, (3.1a)

‖u‖h,2h
∞ = max

x∈�
|uh − u2h| = max

i
|uh − u2h|i . (3.1b)

In these expressions, i is a cell index in the 2h-grid, and

|uh − u2h|i =
∣∣∣∣u2h

i − 1

2D

∑
j

κh
j

κ2h
i

uh
j

∣∣∣∣ (3.2)

with the sum being over h-grid cells j that lie in the 2h-grid cell. The convergence

rate is given by

r = 1

ln 2
ln

‖u‖2h,4h

‖u‖h,2h . (3.3)

The first-order convergence in L∞ is expected because of the discretization error

of the quadrature formula (2.31) for the hyperbolic part of the governing equations.

As anticipated by Colella [10], the truncation error in irregularly shaped finite vol-

umes is lower order than regularly shaped volumes. Thus, any fully conservative

and consistent finite volume hyperbolic method based on a quadrature rule consist-

ing of one point per bounding surface will be first-order in L∞. This expectation

applies also to approaches like cell merging.
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