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PREFACE

This report is one of a series documenting the results of the Swedish-

American cooperative research program in which the cooperating scientists
explore the geological, geophysical, hydrological, geochemical, and structural
effects anticipated from the use of a large crystalline rock mass as a
geologic repository for nuclear waste. This program has been sponsored by
the Swedish Nuclear Power Utilities through the Swedish Nuclear Fuel Supply
Company (SKBF), and the U. S. Department of Energy (DOE) through the Lawrence
Berkeley Laboratory (LBL).

The principal investigators are L. B. Nilsson and 0. Degerman for

SKBF, and N. G. W. Cook, P. A. Witherspoon, and J. E. Gale for LBL. Other
participants will appear as authors of the individual reports.

Previously published technical reports are listed below.
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ABSTRACT

The report concerns thermal conduction calculations for the three in-situ
heater experiments at Stripa which constitute part of the Swedish-American
Cooperative Program on Radioactive Waste Storage in Mined Caverns. A semi-
analytic solution based on the Green's function method has been developed for
an array of arbitrary time-dependent finite line heaters in a semi-infinite
medium. This method as well as a three dimensional numerical model using IFD
(Integrated Finite Difference) technique has been applied to model the field
situations at Stripa. Comparison has demonstrated that the finite line source
solution for the rock temperature is in excellent agreement with the numerical
model solution as well as with a closed form finite cylinder source solution.
It was found that maximum temperature rise in the rock within the two year
experiment period will be 178°C for the 3.6 kW full-scale heater experiment,
345°C for the full-scale experiment with a 5 kW central heater and eight 0.72
kW peripheral heaters, and less than 200°C for the time-scaled experiment. The
ring of eight peripheral heaters in the second full-scale experiment will
provide a nominally uniform temperature rise within its perimeter a few weeks
after turn-on. The high temperature zone is localized throughout the duration
of all three experiments. Nevertheless, the effect of different spacings on
the thermal interaction between adjacent radioactive waste canisters will be
demonstrated by the time-scaled experiment. Detailed results are presented
in the form of tables, temperature profiles and contour plots. Predicted
temperatures have been stored in an on-site computer for real-time comparison

with field data.
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1. BACKGROUND

A potential solutdon to the problem of isolating radioactive wastes may
lie in burying them in repositories excavated deep below the surface of the
earth in hard rock. Several important questions must be answered before the
effectiveness of such a solution can be assessed, or the design of a repository
commenced. In addition to those questions which normally arise in conmection
with any major underground excavations, the disposal of radioactive wastes
introduces a number of new issues of which there is now virtually no experience.
Important among these are the effects on a repository of the heat released by

the radioactive decay of the wastes.

In the short term, this heat is apt to result in significant increases in
the temperature of the rock around the canisters containing the wastes and of
the waste canisters themselves. In the long term, the temperatures in a limited
volume of rock around the whole repository will increase. The magnitude of
these temperature changes will affect the entire strategy of the use and
design of such a repository. The maximum temperatures that can be tolerated
in the rock immediately around each canister will limit the size and heat
output of each canister. These depend upon the nature of the radiocactive waste
(spent fuel or reprocessed waste, for example) and the period it may have to
be cooled before burial. For any chosen specific heat output, the spatial
distribution of canisters has a significant effect on the density with which

the repository can be loaded.

2. PRELIMINARY CONSTIDERATIONS

The significance of specific heat output and spatial distribution of
canisters can be illustrated using classical solutions to the equations of
heat conduction (Carslaw and Jaeger, 1959). For example, consider the tem-
perature increases, AT, at periods of 2 years and 30 years after burial of
heat sources approximating a point, a line, or a plane. The relevant solutions

for sources of constant heat output are as follows:



i) Point source:

AT = :?2; erfc-——ELﬁr (L
(4xt)™?
where th = heat output of point (W);
r = radius (m);
k = thermal conductivity (W/m°C);
k = thermal diffusivity (mz/s); and
t = time (s).

ii) Infinite line source:

QQ det
AT = ik [}n ( rz > - 0.58 (2)

(for large values of t), where QQ = heat output per unit length (W/m), and

the remaining symbols are as defined above.

iii) Infinite plane source:

. X
ierfc —— (3)

where pr = heat output per unit area (W/mz), x = distance from the plane (m),

and the remaining symbols are as defined above.

For heat outputs of 1 kW for the point source, 0.1 kW/m for the line
source, and 0.01 kW/m2 for the plane source, the resulting temperatures at
different distances from these sources have been calculated for periods of
2 years and 30 years after emplacement; these are plotted in Fig. l.* For the
purposes of these calculations, typical thermal properties for hard rock have

been used, namely, a conductivity of 2.5 W/m°C, a density of 2600 kg/m3, and

*Because of the vast amount of results obtained, only selected figures essen-—
tial to the understanding of the report have been included in the text. For
the convenience of those readers who wish to read off numerical values from
the charts, a full set of figures is supplied in Vol. 2 of this report which
may be obtained from National Technical Information Service, 5285 Port Royal
Rd., Springfield, VA 22151.
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Fig. 1. Temperature rise at various distances from point, infinite line and
plane heat sources. Subscript indicates time (years) after emplace-
ment of the heat source. Thermal conductivity = 2.5 W/m°C, thermal

diffusivity = 1.1 x 10 0 m%/s.

a specific heat of 0.9 kJ/kg°C. These correspond to a thermal diffusivity of

1.1 x 107° m2/s.

The most important characteristic to emerge from these results is the

extent to which the temperatures vary around the three different kinds of

sources. This variation is greater than a factor of 2, even though the heat
output for each source has been chosen to correspond to a constant thermal
loading of 0.01 kW/mz, assuming that the point or line sources have a center-
to-center spaéing of 10 m. These variations in temperature are exaggerated
in these simple calculations because the interaction of adjacent point and
line sources has not been taken into account. However, the decrease in tem-
perature with distance away from point and line sources is so great that the
effects of interaction would not obscure the character of the source after a

period of 2 years, not even after 30 years.



Tt is important to recognize the dominance of geometrical attenuation of
the temperatures around these three different kinds of sources over distances
of the order of 10 m and time periods of up to 30 years. The thermal effects
on a potential repository cannot be defined adequately in terms of an average
thermal loading (kW/mZ). An evaluation of these effects must take into
account the geometrical disposition of the canisters within the repository
and of the interaction between the temperature fields generated by these heat

sources.
3. MOTIVATION FOR A COMBINED THEORETICAL AND EXPERIMENTAL STUDY

The above preliminary considerations are concerned mainly with the heat
effects on the scale of the whole repository. But more drastic thermomechani-
cal effects around each heat source are to be expected during the initial
period when temperatures near the sources are estimated to rise quickly by
200-300°C or more, this amount decreasing with distance. The thermomechanical
response of rock under such a temperature distribution has not been adequately

studied.

Thus two types of problems arise in the heat effects of radioactive waste
isolation in rocks:
1) the thermomechanical response of rock around each heat source,

2) the interaction among an array of heat sources.

In both cases, many critical issues have to be addressed. These range from
in-situ rock property determination, heat conduction, presence of fractures,
and occurrence of water flow in fractures to thermally induced displacements

and stresses.

At the University of California Lawrence Berkeley Laboratory we have been
developing various semi-analytical and numerical models to simulate heat con-
duction, thermal convection, fracture flow and thermomechanical problems.
These are to be applied to model rock behavior when the rock is used as a
radioactive waste repository. However, in reality, rock properties at the
expected temperatures are not sufficiently well known; therefore the tempera-
ture fields around heat sources in rock may well differ significantly from
those predicted. Also, the thermomechanical response of the rock to these

temperatures is not well understood. To improve the adequacy of theoretical




models and to validate them, it is necessary to collect comprehensive data on
temperatures and rock deformation and fracture in field experiments. Further-
more, these experiments will also identify the crucial physical phenomena that
should be included in a numerical model. A tested and validated numerical
model or procedure will be constructed, hopefully to describe expected rock

behaviors for any given site considered for radioactive waste storage.

4. THREE EXPERIMENTS BEING MODELED

One of the more important practical limitations is that any reasonable
experiments should not last more than two or three years. Furthermore, many
national decisions concerning nuclear waste isolation will have to be made
within the next two to five years. As can be seen from the results shown in
Fig. 1, significant changes during the first few years in the temperatures
around point or line sources of heat, which approximate individual waste can-
isters, are confined to within a short distance of each source. It follows
that vital measurements of the temperature fields and rock behavior immediately
around individual sources of heat, representing waste canisters, can be made
within such a period of time, but that such measurements cannot be used to

evaluate interaction between adjacent sources of heat.

Fortunately, the dimensionless factor governing heat conduction has the

form r/(&Kt)%, cf Egs. (1), (2) and (3). Geometrically identical temperature
fields can be generated around arrays of heat sources in shorter periods of

time by appropriate reductions in linear scale. For example, if the linear
scale of the heat sources is reduced to one-~third, then the time scale must be
accelerated by (1/3)“2 = 9 to maintain the same value of the dimensionless
factor r/(4Kt}%. Furthermore, by scaling the output of the heat sources
appropriately, the actual values of the temperatures in these fields can be
made identical. These properties make possible a time~scaled experiment in
which the effects of interaction between adjacent heat sources over equivalently
much longer periods of time than a few years can be measured in field experi-

ments of moderately reduced linear scale.



Three separate experiments are underway at the Stripa mine in Sweden
(Witherspoon and Degerman, 1978) (Fig. 2) to provide field data to develop
and validate our understanding of the effects of heat sources on the behavior
of a granitic rock. These comprise two experiments using full-scale electrical
heaters to simulate the heat output of canisters of radioactive wastes of dif-
ferent ages and a time-scaled experiment to study the thermal interaction be-
tween waste canisters in a repository. These experiments form an integral
part of LBL's contribution to the Swedish-American Cooperation Program on

Radioactive Waste Storage in Mined Caverns.

Full-scale
keater drift

Y heater

-~ Instrument
boreholes

(a)

(b)

Fig. 2. Cut-away views of the LBL full-scale (a) and time-scaled (b) heater

experiments at Stripa (after Witherspoon and Degerman, 1978).



One of the full-scale experiments involves the burial of an electrical

heat source about 0.3 m (1 ft) in diameter by 2.5 m (8 ft) in length into a

vertical borehole 0.4 m (16 inches) in diameter drilled 5.5 m (18 feet) into

the floor of a tunnel 338 m below surface.

The second full-scale experiment

is identical to the first, save that there are 8 peripheral heaters situated

at a radius of 0.9 m (3 ft) around the main heat source (Fig. 3).

The purpose

of these peripheral heaters is to enable the ambient temperature of the rock

around the main heat source to be raised at an appropriate stage of the experi-

ment, in order to reproduce the higher ambient rock temperatures that are

expected in the long term as a result of interaction between adjacent heaters.

Finally, the time-scaled experiment (Fig. 4) has been designed using a linear

scale of 0.32, which corresponds to a time scale of approximately 10.2, to

provide a means of measuring the interaction between adjacent canisters over

periods of time corresponding to decades rather than years.

Practical con-

siderations limit the number of time-scaled heat sources which can be emplaced,
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but 8 heaters have been arrayed to provide measurements with a high degree of
geometrical symmetry. Two spacings of heaters, namely 3 m and 7 m apart,

correspond to spacings of about 9.6 m and 22.4 m on the full scale.

The first stage in the evaluation of these experiments has been to evalu-—
ate the temperature fields that may be expected in the rock around these heat
sources at different times during the experiment on the basis of simple thermal
conduction. In addition to being the first step toward the ultimate goal of
developing viable theoretical models for radiocactive repositories, these con-
duction calculations have (1) provided a rational basis for design of heaters,
instrumentation and layout of the instruments, (2) been used as input for
thermomechanical analysis, and (3) been stored in an on~site computer for
instant graphic comparison with field data. Thus the work of the present
authors involves not only the calculations but also writing the predicted data
on magnetic tapes in a readily readable format and file structure. The file
manipulatdion and graphics package implemented on the Modcomp computer at
Stripa includes input programs specially tailored to read these predicted
data tapes. Description of the data acquisition system, which includes the

Modcomp computer, can be found in a report by McEvoy (1978).

Prior to the LBL heater experiments, a pilot heater experiment was carried
out at the Stripa mine by Carlsson (1978) under the direction of Professor O.
Stephansson, University of Lulel. This has provided valuable information for

the planning of the LBL experiments.
5. SCOPE OF PRESENT WORK

The work reported here consists of thermal conduction modeling using
semi-analytic and numerical methods. Section 6.1 contains the derivation of
the solution for an array of finite-length line heaters in a semi-infinite
medium, while Section 6.2 gives a brief review of the integrated finite-
difference numerical technique. Results are presented in Section 7 for the
various cases studied. These include a test case and two series of models for
the in-situ heater experiments at Stripa. The test case was modeled using
both semi~analytic and integrated finite-difference methods and served to
verify the various computer programs by numerical comparison. The field cases

were mostly modeled by the semi-analytical method. Series 1 of the field



cases, using average granite properties, was undertaken at a pre-design stage,
whereas Series 2, using small specimen laboratory data for the thermal proper-
ties of Stripa granite, is intended for numerical comparison with field data.

Results and implications are presented in Section 7.

6. THEORY

6.1 Semi-Analytic Solution

In order to render the heat transfer problem tractable by analytic methods
for the field situations described above, we made the following assumptions:
1) conduction is the only mode of heat transfer,
2) the rock medium is homogeneous and isotropic,
3) the heaters and the rock medium have the same constant thermal
properties,
4) the heaters are in direct thermal contact with the rock,
5) the rock medium can be considered infinite with uniform initial
temperature or semi-infinite with the heater drift idealized as
an isothermal or adiabatic boundary.
Under these assumptions the mathematical problem reduces to the solution of

the heat diffusion equation:

VT - = 2= = - = (4)

where T = temperature

Q = heat generation per unit time per unit volume (in general

a function of space and time)
t = time
k = thermal conductivity
Kk = k/pc = thermal diffusivity
p = density
¢ = specific heat capacity per unit mass.

This inhomogeneous partial differential equation is to be solved with appro-

priate initial and boundary conditionms.
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6.1.1 Green's Function Method

The Green's function method is a general technique to obtain closed form
representations of the solutions to inhomogeneous linear partial differential
equations with homogeneous or inhomogeneous boundary conditions. This method
is well known among mathematical physicists and engineers and has been applied
to a wide variety of physical problems (Morse and Feshbach, 1953; Carslaw and
Jaeger, 1959; Chan and Ballentine, 1971). It can be shown (Morse and Feshbach,
1953) that the solution to the heat diffusion Eq. (4) is given by

t

T(r,t) =%fo(£',t') G(r,t; r',th)av'dt’
o "V
l | 1 ?
+E fT(E ,0) G(x,t; r ,0)dv
v
t oT(x',t") BG(E,t;E',t')
+ —— G(r,t;r',t") - T(c',t')[ds'dt’
0 s on'

(5)

where G is the Green's function, r,t and r',t' are the spatial and time vari-
ables of the field and source points, respectively, V' denotes the volume
occupied by the distributed source, and S encloses the domain V over which the
solution is sought. The first term in Eq. (5) represents the temperature field
due to a distributed volume source Q(r',t'), the second term represents the
effect(s) of the initial condition, and the third term the boundary conditions
(prescribed temperature or normal temperature gradient). This last term, in-
cidentally, forms the basis of the boundary integral equation method (Cruse

and Rizzo, 1975). Formally, therefore, a solution in the form (5) can be found
to the heat diffusion equation for an arbitrary heat source subject to any set
of compatible initial and boundary conditions. The problem is to find the

Green's function and to evaluate the integrals.

For the field situations studied in this report, under the assumptions
stated above, it is necessary to evaluate only the first term in (5). The
uniform initial temperature just corresponds to a shift in the temperature

scale and an isothermal or adiabatic boundary condition can be simulated by images.
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The Green's function in an infinite domain, or the temperature rise
G(r,t;xr't"') at position r at time t due to an impulse source of strength k at

r' at time t' is (Morse and Feshbach, 1953)

~Jzr']?

6(x,t5x',t") = s D e ey 6)
8[mc(t-t")]

where H(t,t') =0, t <t
1, t>t!

is the Heaviside step function.

6.1.2 Tinite Line Source with Arbitrary Time-Dependent Power

For a line source of length 2b and arbitrary time-dependent heat genera-
tion rate Qz(t') per unit length per unit time, choosing a coordinate system
such that x' =y' =0, -b < z' < b the temperature rise AT(x,t,z,t) is obtained

by substituting Eq. (6) into the first term of (5) as

t b (z-z')2 _ (X24'Y2)

Q (t') - ] ]
AT(x,y,2,t) = K 3/2[ L o J o 4 (e-t'") o Ak(t-th) dz'de!
8k (k) o (t-t")

~b 7

1
Introducing variables U = t-t' and r = (x2 + y2)2 into Eq. (7),

2

2

t b (z-z") T

Q, (t-u) - _

AT (r,z,t) = K 3/2f % i J e W T AU gy (8)
8k (k) U b

From the definition of the error function and a simple change of variables, it

is easily shown that

b (z—z')2
f e ficl dz' = (TI'KU)/Z erf _z_+13__; - erf i-b-—;{ 9)
2 (k) 2(ku)*

-b
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Substituting back into (8) yields

t

AT(x,y,2,t) = 8$k'[ Q (t- u)[}rf
0

zb
2(Ku)

z-b
i
2(cp)

e— 4KU
- erf m du (10

In the special case of a constant power line source, the temperature rise

can be expressed in an alternative form as follows. From (8) we have

2
e 4K(t t')
AT(x,y,2,t) = — 373 de'dz’
8k(ﬂK) % o (et
2 2
— K \J
= 3/2 f f dtdz (1D
4k () J o i
1
where s2 = x2 + y2 + (z—z')2 = r2 + (z-—z')2 and T = (t-t') 2 Now, from the

definition of the complimentary error function, erfc, it follows that

52T2

S 2
f e 4K dt = ('m;) erfc 3 (12)
- Yaxt

t

Inserting (12) into (11) we obtain

2 2\%

b r° + (z-2")°)*

Q erfc[( >]
AT(r,z,t)= f bkt dz!

z (13)
e (e + (-2

b

For points in the mid-plane (z=0) of the heater,

dz' (14)

1

b ]:2+z'2/2
R i AT
AT(r,0,t) = Tn X
0 (1‘2+z'2)/2

The special case, Eq. (14), was the expression used by Backblom (1978) to

predict mid-plane temperatures for the pilot heater experiment at Stripa.
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6.1.3 Finite Cylinder Source with Arbitrary Time-Dependent Power

Closed form integral solutions involving double integrals of Bessel func-
tion can be derived in a manner similar to that in the previous subsection for
a constant, exponentially decaying (Mufti, 1971; Hodgkinson, 1977) or arbi-
trary time-dependent cylindrical heat source of finite height and finite

radius (Chan and Remer, 1978).

6.1.4 Dimensionless Forms

In the present application where actual temperature measurements will be
available for comparison, it is convenient to evaluate the dimensional expres-—
sions for temperature rises given above. TFor general usage it is often more
convenient to reduce the expressions to dimensionless forms. Inserting

dimensionless parameters

z
* = 2
5y
r* = %
Kt KU
t* = —— . w =
b2 T2 (15)
« Q,(t) ,
Q,(t%) = , where Q, = Q,(0)
& QSZo 20 2
Q
AT 20
* = eee— o ——
AT = , where TR 87k
R
into (10) for the finite line source gives
% r+?
© k41 z#1\|e *H*
AT* (r*,z%,t%) = Q*z(t*—u*) erf —) - erf __) T du¥* (16)
2/ 2%

0
which is entirely independent of material properties or heater length. Simi-
2 '
" 4+ (g%-z%)

2 )
Ltk

AT* (r*,z%,t%) = 2/ T dz*' (17)
’ -1 [+ + (2% - 2'9)7] 7

larly, Eq. (13) reduces to
1 erfc[
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Equations (15) to (17) allow one to convert the temperatures for one
particular set of heater power and thermal properties to those for another
set. Thus, for example, the temperature rise is directly proportional to heater
power per unit length and the quasi-steady state temperature rise is inversely

proportional to the thermal conductivity.

6.1.5 An Array of Heaters in a Semi-Infinite Medium

Consider first an array of H parallel (finite line or finite cylinder)
heaters in an infinite medium. Let Qh(t) be the heat generation rate per unit
dimension (per unit length for line, per unit volume for cylinder); 2bh be the
length, and a be the radius (only for the finite cylinder case) for the hth
heater; th be the time at whieh it is switched on; and (xh,yh,zh) be the
Cartesian coordinates of the mid-point of its axis in a chosen coordinate
system with the z-axis oriented parallel to the heaters. The temperature rise
AT(x,v,z,t) at a point (x,y,z) in an infinite medium at time t is then given
by

H
ATtotal(x,y,z,t) = &E& ATh(rh,z—zh,t—th‘Qh,bh,ah) (18)

_ 2 2.5 : .
where r = [(x—xh) + (y—yh) 1° and ATh(r,z,t—th|Qh,bh,ah) designates the tem-
perature rise caused by the h™ heater obtained by substituting the appropriate
variables and parameters into AT of Eq. (10) or the corresponding cylindrical

source solution, given in Chan and Remer (1978).

The effect of a plane adiabatic or isothermal boundary at z = z  can be
simulated with positive or negative images, respectively. Thus the tempera-

ture rise caused by the array of heaters in a semi-infinite medium is

H
Miotal T 24 ATy (e s zmzp oty [Qby 2p)
H
+ &é& ATh(rh,z-ZzO + oz, t—thliQh,bh,ah) (19)

Here the positive or negative sign applies to an adiabatic or isothermal

boundary, respectively.
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On the basis of the theory presented above, two computer programs, FILINE
and CYNDER, have been developed. FILINE calculates the temperature distribu-
tion in a semi-infinite medium arising from 5 three-dimensional array of finite-
length line heaters with arbitrary time-dependent heat generation rate by

evaluating Eqs. (10) and (19). CYNDER does a similar calculation for

cylindrical heat sources of finite length and finite radius by evaluating the
double integral solution given in Chan and Remer (1978) instead of Eq. (10).
Initial results have been presented by one of the authors (T.C.) at the

Stripa Project Review Meetings in Berkeley, August 1977 and January 1978.

Comparison of numerical results using FILINE and CYNDER (see Section 7)
has demonstrated that the finite line model is sufficiently accurate for all
practical purposes. Consequently, the majority of field situations have been
modeled using FILINE which is computationally very efficient. As an illustra-
tion, the temperature field at 8000 points in three-dimensional space at 150
values of time, due to the eight-heater array in the time-scaled experiment,
requires 3000 C.U. (LBL CDC-7600 computing unit) to compute, corresponding to

1/400 C.U. per space-time point.

Computational efficiency is an important issue since the predicted tem-
peratures are to be stored in an on-site computer for contour plotting. Since
the temperature field for two of the experiments is three-dimensional, each data
file for contour and time-history plotting has to contain around lO6 space~
time points. Another distinct advantage of this semi-analytical method is that
if the temperatures at a few specific points are required it is necessary only
to do the calculations for these points. By contrast, in numerical methods, such
as finite difference or finite element, the temperatures have to be calculated
over the whole domain. Furthermore, it may be difficult to construct a numerical
model to ensure an output value for every location of interest and, therefore,
one must sometimes resort to interpolation which adversely affects the accuracy.
Thus the amount of human as well as computational effort involved may differ
by orders of magnitude. This point is especially important during the design
stages when decisions on the geometrical configuration of the experiments and
instrumentation have to be made on the basis of prompt response from the

modeler.
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6.2 Numerical Model '"ccCC"

The numerical model "CCC" (for Conduction-Convection-Consolidation)
developed at the Lawrence Berkeley Laboratory (Lippmann et al., 1977) for geo-
thermal modeling has been used for heat conduction calculations for some of
field situations. This program solves coupled equations of heat and fluid
transport by means of an integrated finite difference method with an efficient
explicit-implicit iterative scheme for time integration (Edwards, 1972;
Narasimhan and Witherspoon, 1976). Vertical consolidation or rebound is incor-
porated assuming the one dimensional consolidation theory of Terzaghi. The
model is capable of handling one-, two-, or three-dimensional steady-state or
transient, nonlinear (conductive and convective) heat and fluid flow in a
heterogeneous isotropic, nonisothermal, saturated porous rock or soil medium.
Thermal and hydraulic properties may be temperature and/or pressure dependent;
deformation parameters may be nonlinear and nonelastic. The theoretical basis

and numerical techniques are described in references quoted above.

In the present application only heat conduction problems are considered.
When ground water is present, as appears to be the case for the Stripa site,
it may be necessary to invoke the full capability of the "CCC" program. At
present the CCC program cannot handle time-dependent heat sources or radiative

heat transfer but only minor modifications are mnecessary to incorporate these.
7. RESULTS AND DISCUSSION

7.1 Test.Case

To verify the program FILINE, based on the finite line source solution,
a test case was analyzed. This test case consists of a 1 kW constant power
cylindrical heat source approximately 2.5 m in length and 0.2 m in radius
(corresponding to the dimensions of the full-size heater and heater hole
respectively) implanted in granitic rock. Thermal properties, of Set 1 in
Table 1, were assumed for both the heater material and the rock medium, unless
otherwise stated. Temperature rise above ambient was calculated using the
following three models:

Model Tl: Constant power finite cylinder in infinite medium using

program CYNDER based on Green's function solution
Model T2: Constant power finite line in infinite medium using

program FILINE based on Green's function solution
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Table 1. Material Properties of granite used in thermal calculations.

Propertya Unit Set 1b set 2°
Density, p kg/m 2600 2600
Specific heat, c J/ (kg°C) 897 837
Thermal conductivity, k W/ (m°C) 2.5 3.2
Thermal diffusivity, K n’/sec 1.078 x 107° 1.47 x 107°

aOnly thermal conductivity and thermal diffusivity are required for the
calculations. The other two are also given since thermal diffusivity
is usually deduced from measured values of conductivity, density, and
specific heat.

bAverage granite properties used in Model Series 1.

®Based on laboratory data for Stripa granite (Pratt et al.,1977) used in
Model Series 2. Thermal conductivity decreases with temperature. The
value of thermal conductivity used here corresponds to the laboratory
data at approximately 100°C.

Model T3: Constant flux* finite cylinder model using the CCC program

with boundary conditions as illustrated in Fig. 5.

fe3m—ste—7m——]
c pl5 ¥
3 meters 2
3
A B =
3 meters '3
o
i, Aaad
25 | kW heoter —
meterS? (constant flux) l;.’
Fig. 5. System geometry and boundary £ g 20
conditions for CCC model of the E Enwtem
test case. ABC - Newton's Law of ” @
Cooling with heat transfer s s <
. N o »
coefficient 3.4 W/m2 C; CEDF - meters,, E
isothermal or adiabatic boundary. = S
< (a3
Constant temperature
(10°C) boundary
i tOm { XBL782~232

*A constant flux CCC model was used mainly to demonstrate that the details of
the heater assembly (whether behaving as constant power or constant flux source)
had little effect on the rock temperature. The two kinds of sources differ only
by a transient of very short duration compared with the time of interest.
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Comparison of temperature rises at the wall of the heater hole (where the
difference is expected to be largest) as predicted by Tl and T2 (see Table 2)
shows that except at very short times, there is excellent agreement, as one
may expect from the short thermal diffusion time (td W'a2/4K \10.22/4 X 10_6sec.
= 10 sec. v 0.1 day) across the radius of the heater and the small heat

capacity of the heater assembly.

Table 2. Comparison of temperature rises at the wall of heater-hole
(r =0.203m, z = 0) due to a % kW finite cylinder source?
and a 1 kW finite line source.”s®

Time -—— Temperature Rise (°C) — ~—— Difference —
(day) Cylinder Line °C %
1 22.586 23,210 0.624 2.7
2 30.768 31.099 0.331 1.1
3 35.458 35.689 0.231 0.6
5 40.947 41.102 0.155 0.4
10 47.281 47.386 0.105 0.2
50 56.812 56.889 0.077 0.1
100 59.199 59.276 0.077 0.1
730 62.879 63.031 0.152 0.2

aLength = 2.44 m, radius = 0.203 m.
Backblom (1978) has made a similar comparison.

“Material properties of Set 1 in Table 1 were used.

Various profiles of temperature rise from Model T2 have been plotted in
Figs. 6-8. 1In these as well as in other figures, r,z and R,Z have been used
interchangeably. Temperature rise, AT, rather than actual temperature, T, has
been plotted because the former quantity is directly proportional to heater
power. It is observed that there is a very steep radial temperature gradient
within a radius of 0.5 m from the heater centerline throughout the 730 day

period (Fig. 6). 1In general, temperature increases with time, while thermal



-19-

190
Z=0.0m
120§
100 t= 730 days
§ 80 {= 90 days
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XBL70i- 2346

Fig, 6. Temperature rise in an infinite medium
as a function of radial distance from 1 kW,
2.5 m-long line heater at different times.
Thermal conductivity = 2.5 W/m°C, thermal
diffusivity = 1.078 X 10-6 m%/s.

B 2+0.0m Re0.2m

Fig. 7. Temperature rise in an
infinite medium due to a

E 1 kW, 2.5 m~long line heater
. as a funtion of time at
= various radial distances.
] Thermal conductivity
H = 2.5 W/mn'C, thermal 6
K] diffusivity = 1.078 x 10
m</s. ‘
° lIO 100 1000
Time {doys) XBL701-6836
70}
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)
. . R .2
Fig. 8. Temperature rise in an < 50 *0.2m

infinite medium as a function R=0.5m

of axial distance from the é 40 R=1.0m
mid-plane of a 1 kW, 2.5 o 30} R=2.0m
m—-long line heater at various 5 Rz 3.0m
radial distances two years g 20 R=5.0m
after emplacement. Thermal e R = 10.0m
conductivity = 2.5 W/m C, © 10

thermal diffusivity
= 1.078 x 1070 n?/s.

XBLT7BI-6697
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gradients at the outer boundary of the heated zone decrease with time. There
is little change in the temperature field between 90 and 730 days (Fig. 6).
In fact, the temperature does not change by more than 2°C anywhere over the
time interval 200-730 days (Fig. 7). Table 3 lists the time required for the
temperature rise at various radial distances to reach 50%, 75%, and 907 of
its value at the end of 730 days. Evidently, the temperature field within a
radius of 2 m of the heater may be said to have attained a quasi-steady state
in less than one year. Figure 8 illustrates the rapid drop of temperatures

beyond the top of the heater for small radial distances.

Table 3. Time required for temperature rise (AT) at various radial distances
(r) to reach 50%, 75% and 907 of the value at the end of 730 days~—-
Test Case (1 kW full-scale heater).

Time, Days

AT
r,m - (730 days) 507% 757% 907
0.2 63.0 2.0 8.4 45.0
0.5 40.2 4.8 20.0 80.0
1.0 24.5 12,5 40.0 140.0
2.0 13.0 36.0 105.0 300.0

Results from Model T3 in which Newton's law of cooling with a heat
transfer coefficient of 3-4 W/m2°C was assumed at the drift boundary ABC,
Fig. 5, and isothermal boundary condition was applied at CDEF, Fig. 5, are
presented in Figs. 9-11. A slightly different set of thermal properties
(k = 2.5W/m°C, K =1.15 x 10_6 m?/sec) has been used. Consequently, the
numerical values given in these figures are not exactly comparable to the
other two models. Certain qualitative features, however, can be noted.

o The temperature field is asymmetric due to the convective

boundary at the periphery of the drift (Figs. 9 and 11).
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Fig. 9. TIsotherms of temperature rise on day 88 and day 364 for the
model depicted in Fig. 5 with CDEF as isothermal boundary; vertical

section. Thermal conductivity = 2.5 W/m°C, thermal diffusivity =
1.15 x 1076 m2/s.

o There are only slight temperature increases in the rock around
the drift implying that isothermal boundary condition would
be a reasonable first approximation (Fig. 9).

0 The heated zone is localized throughout the modeled period
(Fig. 9, see also Fig. 6 and Fig. 13). This is due to the low
thermal diffusivity of granite. Although granite has relatively
high thermal diffusivity among crystalline rocks, it is still
a poor thermal conductor compared with other materials. It can
be seen from Fig. 6 (also Fig. 16 below) that the 50% and 25Y%
(of the maximum AT in the rock) incremental isotherms migrate by
less than 1 m and 2 m respectively in a radial direction from

the heater in two vyears.
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Fig. 10, a & b. Temperature rise as a function of radial distance along
heater mid-plane for the same model as in Fig. 9, (a) linear scale,
(b) semilog scale. Thermal conductivity = 2.5 W/m°C, thermal
diffusivity = 1.15 x 1070 m?/s.

0 A steady-state is reached in 364 days as a result of the
artifact of an isothermal boundary CDEF of Fig. 5, at a finite
radial distance, acting as a spurious heat sink.*

The temperature rise along mid-plane exhibits a logarithmic
r-dependence in the range 0.2 < r < 2m in qualitative agree-
ment with Eq. (2), Fig. 10b.

For the purpose of numerical comparison, two additional runs, with iso-
thermal and adiabatic boundary conditions respectively at CDEF, were made,
this time using thermal properties Set 1 of Table 1. The very close agreement
between the predictions of Models T2 (constant power finite line source) and
T3 (constant flux cylindrical source), as shown in Fig. 12, confirms the con-

sistency between the programs FILINE and CCC, which are based upon entirely
different algorithms.

The agreement between the two models can be understood by examination of

*This spurious effect could have been avoided by moving the boundary CDEF to
a sufficient distance from the heater. However, this line of approach has not
been pursued further in the present work.
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Fig. 11. Axial profile of tempera-
ture rise near heater for the
same model as Fig. 9. Thermal
conductivity = 2.5 W/m°C, thermal
diffusivity = 1.15 x 10~0 m?/s.
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Fig. 12. Comparison of mid-plane radial pro-
files of temperature rise on day 364 as
predicted by different models. Thermal con-
ductivity = 2.5 W/m°C, thermal diffusivity
= 1.078 x 106 n?/s.
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Fig. 7 for the constant power source. Except for the first few days the

thermal gradient over r = 0.2 to 0.5 m remains practically constant. Physi~
cally what happens is that because of the small heat capacity of the heater
assembly (or the cylinder of rock that replaces the heater in the models), the
thermal gradient right next to the heater rises rapidly with consequent increase

in the heat flux into the rock, so that a balance between the heat generated

by the heater and the amount dissipated as flux across the heater surface is
almost immediately achieved. From this one may hypothesize that the details

of the heater assembly have little effect on the rock temperature. Furthermore,
if the annulus of rock between r=0.2 and 0.5 m decrepitates, there would only
be minor perturbations in the form of a short transient on the temperature
field in the rock outside unless the decrepitated rock acts as a nearly perfect
thermal insulator. A similar conclusion cannot be reached regarding the tem—

peratures of the heater, and detailed numerical analyses are necessary.

7.2 Tield Cases

The three field cases in the Stripa mine described in Section 4 were
modeled. Two series of thermal calculations were undertaken, the first with
average granite properties (before laboratory data became available) providing
preliminary predicted temperatures for experimental design, and the second
with Stripa granite properties as measured in the laboratory (Pratt et al,
1977), vielding predicted temperatures that have now been stored in the on-
site computer at Stripa for real-time comparison with field data. The two

series of models are described separately below.

7.2.1 Model Series 1

In this series of models the peripheral heaters in one of the full-scale
experiments were assumed turned on concurrently with the main heater, and
material properties, Set 1 in Table 1, were used. When the thermal properties
of Stripa granite were measured in the laboratory (Pratt et al, 1977), the
thermal conductivity and diffusivity (Set 2 in Table 1) were found to have
higher values than in Set 1. Consequently Model Series 1 overestimates the
expected temperatures. It is a simple matter to scale the predicted tempera-
ture rises to those pertinent to Stripa granite using the scaling factors

given in Section 6.1.4.
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Table 4 summarizes the three field situations at Stripa, the source

functions, boundary conditions, and computer programs used, and serves as an

index for the figures pertinent to the various cases studied. The boundary

conditions "isothermal' or "adiabatic" refer to the semi-infinite medium

models where the floor of the heater drift is idealized as an isothermal or

adiabatic plane boundary, respectively. The results are presented in Figs.

13-48 from which the following points emerge.

(e}

The wall of the heater hole is very nearly isothermal and the
isotherms are nearly vertical for small radial distances from

the heater (see Figs. 13~15). However, even shortly after
turn-on, a vertical thermal gradient exists, meaning that

results predicted by an infinite line source model would not

be accurate.

The rock within a 2 m radius of the heater reaches a quasi-steady
state in approximately one year (see Figs. 13-~15), so that a two-
yvear operation period is certainly sufficient.

The heated zone remains localized throughout the two year-

period (Figs. 13-15),.

The influence of the boundary condition at the drift floor is
felt between one and three months after turn-on (Figs. 14 and 15).
Adiabatic boundary condition leads to highest temperatures

while isothermal boundary condition leads to highest vertical thermal
gradients, as expected (Figs. 14 and 15). Comparison among

Figs. 9, 13 and 14 reveals that the true convective boundary
condition lies somewhere between the isothermal and infinite
medium idealizations.

The 257 incremental isotherm migrates by less than 1 m verti-
cally and less than 2 m radially in two years (Fig. 16), with
progressively slower spreading velocity since the volume of

the shell of rock that has to be heated up is proportional

to the thickness squared.

Temperatures predicted using the three different boundary

conditions are drastically different near the drift floor
and quite similar near the mid-plane (Figs. 17 and 18).

Relative difference between AT for the three cases are not
negligible even along mid-plane for r > 1lm toward the end

of the experiment (Fig. 19).
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Interaction between central and peripheral heaters (Experiment
2) is almost immediate with the 5°C and 100°C isotherms

enveloping all the heaters in one and seven days, respectively
(Figs. 20-22 and 24-27).

The three-dimensional nature of the model is evident from the
various vertical and horizontal sections (Figs. 20-22 and
24-28) . ’

A few weeks after turn-on, the ring of peripheral heaters
produces a nominally uniform temperature rise within its
perimeter (Figs 32-39, Models 2D, 2F and 2F). Thus these
peripheral heaters physically duplicate a condition that
might prevail in an actual repository where, over a period
of several decades, heat from the interaction of large
arrays of waste canisters raises the ambient rock tempera-
ture around a canister without introducing an additional
thermal gradient.

The ambient temperature caused by the peripherals is well

in excess of 100°C (Fig. 35), even after scaling for thermal
properties. A uniform temperature increase of 100°C induces
5 _ 10—3)

which is already very significant for crystalline rock.

approximately a milli-strain (g v 0AT ~ 100 x 10~

Accordingly, it was decided that the power of peripheral
heaters be reduced to give an ambient temperature rise of

about 100°C. Furthermore, concurrent turn-on of all heaters
which produces a condition resembling sequential emplacement

of canisters in the repository (the ambient rock is hot shortly
after emplacement), leads to very high temperatures (235°C
after scaling for Stripa granite properties), exceeding the
ratings of the extensometers and stressmeters within a 1 m
radius of the main heater. To ensure that sufficient amounts
of data are collected before instrument failure, it was decided
that the peripheral heaters should be delayed. This latter
schedule resembles the situation of simultaneous canister
emplacement in a repository, i.e. ambient rock temperature is
raised by the heat from other canisters in the array, only after
quasi-steady state has been approached locally in the immediate

vicinity of a particular canister.
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Fig. 22a, b, d, f. Isotherms of temperature rise (°C) in granite
caused by a 5 kW full-scale central heater and a ring of eight 1 kW
peripheral heaters (turned on simultaneously) at time = 1, 7, 90,
and 730 days; horizontal section through mid-plane of heaters;
infinite medium model (2A). Thermal conductivity = 2.5 W/m°C,
thermal diffusivity = 1.078 x 10-6 m?/s.
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Fig. 35. Radial profile of tempera-
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times as predicted by Model 2D
(infinite medium). Thermal con-
ductivity = 2.5 W/m°C, thermal
diffusivity = 1.078 x 10-6 m?/s.

Because of the proximity of the top of the peripheral heaters
to the drift floor, their temperature field is influenced soomner
and to a greater extent by the boundary condition (Figs. 36-39).

This should be borne in mind when comparing field data with theory.
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Fig. 32d, 36d, 38d. Isotherms of temperature rise (°C) in granite
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(Model 2D), Fig. 32d, heater drift modeled as isothermal boundary
(Model 2E), Fig. 36d, and heater drift modeled as adiabatic boundary
(Model 2F), Fig. 38d. Vertical section through axis of one peripheral
heater and the central axis of the ring is illustrated. Thermal con-
ductivity = 2.5 W/m°C, thermal diffusivity = 1.078 x 10~6 m2/s.
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In the time-scaled experiments (Figs. 40-44) thermal interaction
begins in about a week (in the form of merging of the 5°C
incremental isotherm) between two heaters at 3 m spacing
(corresponding to 9.6 m in full scale), and in about 3 months
between two heaters at 7 m spacing (corresponding to 22.4 m in
full scale). After two years (20.4 years full scale), all the
heaters are interacting (at the 20°C or 30°C level), but the
temperature distribution is still far from being uniform.
Therefore, in designing a repository to ensure retrievability,
it is important to carry out detailed canister arrangement

studies rather than to use gross thermal loading as the sole
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Fig. 40. TFull-plane pattern of temperature rise
in horizontal section through mid-plane of
time-scaled experiment on day 730; constant
source, Model 3A. Thermal conductivity =
225 W/m°C, thermal diffusivity = 1.078 X 10
m/s.
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thermal criterion. The low isotherms have elliptical shape
(ellipsoidal in 3-dimensional space) after two years, so that
the time-scaled experiment does resemble a scaled down
repository.

o The scaling is correct. As an example, 30 days after turn-on
the temperature rises by 30°C at 0.5 m from the heater at the
end of the time-scaled array (Fig. 41). A similar temperature
rise obtains at r = 1.6 m, one year after turn-on of the single
3.6 kW full scale heater (Fig. 14).

o A coarse-mesh CCC model for the time-scaled experiment (Fig. 45)
yields generally similar temperature fields (Figs. 46-48) to
those predicted by the finite line model.

o A CCC conduction calculation (case 3D) shows that only a negligible
fraction of the time-scaled heater power will be lost through
vertical conduction up the stainless steel heater canister.

This result is reasonable in view of the very small cross-

sectional area of the steel piping used as the canister.

7.2.2 Model Series 2

This series differs from the previous in two respects:
1) The peripheral heaters in Experiment 2 are assumed to be turned
on 180 days after the central heater and operated at a power of

0.72 kW each.

2) Thermal properties, Set 2 in Table 1, as measured in laboratory
specimens of Stripa granite (Pratt et al, 1977) were used.
A value of 3.2 W/m°C for the thermal conductivity was arrived at in the
following manner. First, the CCC model T3 (see Section 7.1) with 3.6 kW
power was run using the measured temperature-dependent thermal conductivity

(Pratt et al, 1977)

2

k(T) = 3.60 - 0.3745°10 “T (W/m°C)

Next, a few more runs of the same model were made with different constant
thermal conductivity. It was found that a comstant k = 3.2 W/m°C gives the
best general agreement with the temperature-dependent thermal conductivity

model .



-39

Y (meters)

S

N
T

i\
L1 ] n%%§§5;>¥%| ) I IO N |
8 10 12 4 6

X(meters)

XBL 783-7739

| 1 I I 1 1 I i ) I 1 1 1 1 1 ] T
365 days
I0F -]
i :——\ :
}SES— 10 -
Q
E -
>4 -
2 -
1 llm#:é%§§x\ 1 1\ ] L1
0 8 10 14 6
(e) X(meters)

XBL 785-8556

Fig. 41, c, e. Isotherms of temperature rise

(°C) in granite caused by an array of eight
constant 1.125 kW time-scaled heaters;
horizontal section through mid-plane of the
heaters; Model 3A. Only one quadrant is
plotted because of the symmetry resulting
from assumed istropy. Isotherms are at 10°C
intervals unless otherwise indicated. Thermal
conductivity = 2.5 W/m°C, thermal diffusivity
= 1.078 x 1076 n?/s.
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Five different cases using FILINE have been completed in this series,
i.e., the infinite medium model for each of the three heater experiments and
isothermal boundary model for the two full-scale experiments. Results are
presented in Tables 5-7, in AT vs. time profiles (Fig. 49 for Experiment l?
Fig. 50 for Experiment 2) and contours (Fig. 51 [infinite medium] and Fig. 52
[isothermal boundary] for Experiment 1; Fig. 53 [infinite medium] and Fig. 54
[isothermal boundary] for Experiment 2; and Figs. 55-59 for Experiment 3
[time-scaled experiment]). Constant power calculations for Experiment 3
giving conservative estimates are presented here. Results for decaying power

will be available shortly.

The results do not reveal any qualitative difference from those of Series
1 except for the "two-step" nature of the radial profiles for Experiment 2
arising'from.the delayed turn-on of the peripheral heaters. Therefore, pre-
vious comments on Series 1 results that also apply here will not be repeated.
Several important points can be noted:

0 Maximum temperature rises in the rock are 177.8°C in Experiment

1; 344.8°C in Experiment 2, and 199°C in Experiment 3.

Table 5. Time required for temperature rise (AT) at various radial distances
(r) to reach 50%, 75% and 907 of the value at the end of 730 days—-
Stripa Thermal Model Series 2 (thermal properties, Set 2, Table 1),
Experiment 1 (3.6 kW full scale heater).

AT ———————— Time, Days
T (m) (730 days) 507 757% 907%
0.203 177.8 1.5 7.4 37.5
0.5 114.0 4.2 16.7 71.0
1.0 70.3 11.3 37.0 131.0
2.0 37.2 29.3 90.0 243.0
5.0 12.6 118.0 258.0 458.0

*
Experiment 1 = full scale 3.6 kW, Experiment 2 = full scale 5 kW with

peripherals, Experiment 3 = timed-scaled experiment.
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Table 6, Time required for temperature rise (AT) at various radial distances
(r) to reach 50%, 75%, and 90% of the value at the end of 730 days--
Stripa Thermal Model Series 2 (thermal properties, Set 2 of Table 1),
Experiment 2 (5 kW full-scale heater with eight 0.72 kW peripheral
heaters turned on 180 days later).

AT ————— Time, Days
T (m) (730 days) 50% 75% 907
0.203 344.76 5.1 183.2 213.0
0.5 256.80 27.0 188.2 235.0
1.0 195.65 180.5 194.7 262.4
2.0 105.46 187.0 227.6 500.8
5.0 36.17 238.7 355.0 517.0

Table 7. Temperature rise (°C) at various radial distances and time for the
Stripa full scale experiment 2 (5 kW full-scale heater with eight
0.72 kKW peripheral heaters turned on 180 days later) -Model Series
2 (thermal properties, Set. 2, Table 1).

Radial Distance (m)

Time
(day) 0.203 0.5 1 2 3 5
1 102.6 28.9 2.59 0 0 0
5 171.9 85.3 31.3 3.6 0.3 0
10 194.1 106.3 48.2 10.9 2.2 0
30 218.8 130.3 70.1 26.2 10.7 1.66
90 233.6 145.0 84.3 38.8 21.0 7.2
180 239.6 151.0 90.3 44 .4 26.2 11.2
210 308.7 221.0 160.4 72.5 39.0 14.1
270 326.2 238.3 177.3 87.6 51.6 21.5
360 334.6 246.6 185.5 95.5 59.0 27.4

730 344.8 256.8 195.7 105.5 68.6 36.

I
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section, Model Series 2, isothermal boundary model. Thermal conductivity
= 3.2 W/m°C, thermal diffusivity = 1.47 X 10-6 m2/s.
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As Stripa granite has higher thermal diffusivity than average
granite, a quasi-steady state is reached more promptly than
in Model Series 1 (cf. Tables 3 and 5).

A delay of 180 days for the turn-on of the peripheral heater
is sufficient (Fig. 50a).

The ring of peripheral heaters raises the temperature of the

rock within its perimeter by about 100°C a few months after

turn on but does not introduce additional thermal gradients.
This is clear from the nearly parallel curves in Fig. 50a.
Midway between the two full-scale experiments (r = 11 m), the
rock temperature is raised by 4°C by Experiment 1 and 11°C

by Experiment 2. Thermal interference between the two experi-
ments is, therefore, minor.

Maximum heat flux into the heater drift was found to be
slightly less than one-third of the total power of the heater
array in Experiment 2 with isothermal boundary conditions.
Time-scaled heaters at 3 m spacing interact at the 30°C level
in 90 days while those at 7 m spacing only interact at the 20°C
level even after 730 days when the 40°C isotherms have already
merged for the more closely spaced heaters (Fig. 553). Thus the
time-scaled experiment will demonstrate the effect of different
canister spacing in a repository over a period of 20.4 years.
Various horizontal sections (Fig. 56) dillustrate that at short
vertical distances from the time-scaled heater array, the
presence of the individual heaters can still be recognized.
However, further above (e.g. 6 mabove mid-plane), no trace of
individual heaters can be distinguished. Thus the 10°C
incremental isotherm is an ellipsoidal surface after the
heaters have been operating for two years.

Throughout the duration of the experiments the temperature

rise is less than 100°C at a radius of 2 m from the central
heater in Experiment 2 (Fig. 53, 54) and less than 50°C, 1 m
from any heater in Experiment 3 (Fig. 55), so the high tempera-
ture zones are localized in all three experiments. Therefore,
in order to physically simulate the thermal effects on the
excavation and repository scales, it is necessary to carry out

other types of heating experiments whereby a large volume of
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rock is heated up, e.g., by using many electrical heaters, by

dielectric heating or by pressurized hot water heating.

8. SUMMARY AND CONCLUSION

Thermal conduction calculations have been carried out for the three
heater experiments at Stripa using a semi-analytic method based on the Green's
function solution of a finite length line source in a semi-infinite medium as
well as a numerical model based on the integrated-finite-difference technique.
The more important results can be summarized as follows:

0 Geometric attenuation is an important factor. Therefore, in
evaluating the near—-field thermal effects of a planar repository,
the detailed geometrical arrangement of the waste canisters
should be taken into account.

0o Results from a semi-analytic constant power finite line source
model are in close agreement with those from a constant flux
numerical model.

o The boundary condition at the floor of the heater drift has
negligible effect on the temperature field close to the mid-
plane of the full scale heaters in the first few months of
operation.

o The correct boundary condition should lie somewhere between the
infinite medium and isothermal boundary idealizations.

o The temperature fields within a 1 m radius of the central heater
in the two full-scale experiments approach a quasi-steady state
3 or 4 months after the turn-on of the central heater or the
peripheral heaters.

o The local temperature gradient within a 0.5 m radius of the
central heater reaches a maximum within a few days of start-up
and hardly changes thereafter.

o Thermal gradients near the outer edge of the heated zone decline
with time.

o There is a vertical temperature gradient throughout the duration
of the experiments.

o A ring (0.9 m radius) of eight 0.72 kW peripheral heaters will
provide a nominally uniform temperature rise within its perimeter

a few weeks after turn-on, thereby increasing the ambient rock
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temperature just as it would in a repository when a large array
of waste canisters interact. The maximum temperature rise due
to the peripheral heaters is approximately 100°C.

The scaling for the time-scaled experiment is correct in the

sense that the temperature increases 0.5 m from a 1.125 kW

time~scaled heater 30 days after turn-on is equal to that 1.6 m
from a 3.6 kW full-scale heater 306 days after turn-om.

Two time-scaled heaters at 3 m (corresponding to 9.6 m in full
scale) spacing interact at the 30°C level in 90 days (corres-
ponding to 918 days in full scale) and at the 40°C level in 730
days (corresponding to 20.4 years in full scale), whereas two
time-scaled heaters at 7 m (corresponding to 22.4 m in full scale)
interact only at the 20°C level in 730 days.

Toward the end of the time-scaled experiment the 5°C and 10°C
incremental isotherms have ellipsoidal shapes, as expected for

a planar repository.

Maximum temperature rise in the rock has been predicted to be
178°C for the 3.6 kW full-scale heater experiment, 345°C for

the full-scale experiment with a 5 kW central heater and eight 0.72
peripheral heaters, and less than 200°C for the time-scaled experiment.
The high temperature zone is localized throughout the duration

of all three experiments. In the second full-scale experiment

(5 kW) the 100°C incremental isotherm lies within a 2 m radius
while in the time-scaled experiment the 50°C incremental iso-
therm has a radius less than 1 m.

It can be concluded that while the type of heater experiments
modeled in the present work provides indispensable information

on the thermal effects in the immediate vicinity of an individual
canister as well as the effect of different spacing on thermal
interaction between adjacent canisters, it will be necessary to
carry out larger scale heating experiments to evaluate the

thermal effects on the excavation and repository scales.
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