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ABSTRACT

Fractures, faults, and dikes have been mapped in great detail on
drift surfaces and in core to characterize the quartz monzonite rock mass
surrounding the two full-scale heater experiments at Stripa. From the
presence of pegmatite and quartz dikes in the full-scale drift, several
well-defined N-S faults were determined to have produced offsets of 1 to 6
meters, and an inferred E-W fault is assigned a comparable throw. Several of
the N-S faults and several dikes cut through the H9 experimental area, but

none are present in the immediate H10 area.

Chlorite, epidote, and calcite were commonly identified on fracture

surfaces, with chlorite present in 60 to 70% of all fractures and calcite

being the least common. Because all closed as well as open fractures

in retrieved core were recorded, the observed ratios of open/closed fractures
permit a crude assessment of relative fracture strength among the three
mineralization types. Only 10% of epidote-coated fractures were found open,
whereas some 70% of the calcite-coated fractures were open. Hence the core
data rank epidote, chlorite, and calcite in order of descending relative
strength. The open-to-closed ratios also permit some Timited observations on

the effects of drilling and coring techniques upon core breakage.

The degree of fracturing in the full-scale drift is intense. Average
fracture spacing is 11 cm, with considerable local variation. Zones of
intense fracturing on a one-meter scale are common in the H10 area, but there
is no evidence for structural control. In the H9 area, however, zones of
intense fracturing close to the heater hole may be related to the north-south

faults present.
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The data base resulting from fracture mapping and core logging in the
full-scale drift is available in several forms: as a computer-based listing
of individual fractures, taken from the original field logging forms; on maps
of the drift floor and walls; on eight vertical radial cross-sections through
each of the main heater boreholes; on 59 stereoplots of fracture plane poles,
categorized by hole orientation, hole location, fracture mineral type, and
open or closed status; and in simplified form on a 1:20 scale plexiglass
model. This compilation of detailed fracture data is available for inter-
preting results from several experiments conducted in and near the full-scale
drift, including the in situ determination of state-of-stress, cross-hole
measurements of ultrasonic velocity and attenuation, and rock displacement

induced by the full-scale heater experiments.



I. INTRODUCTION

The Swedish-U.S. Cooperative Program to investigate radioactive waste
storage in mined caverns has been conducted at the Stripa mine in central
Sweden (Fig. 1.1) since June 1977. The Stripa mine is situated in the
Bergslagen mining district, and the mining history of the area and of the
Stripa mine is centuries old. Iron ore production at the mine ceased in
early 1977. Since then the mine has been operated as an underground experi-
mental site by the Swedish Nuclear Fuel Safety Program (Karnbranslesakerhet--
KBS) under the auspices of its parent organization, the Swedish Nuclear Fuel
Supply Company (Svensk Karnbransleforsorjning--SKBF). The program has
several experimental tasks, which are described by Witherspoon, Cook, and

Gale (1980).

To achieve a better understanding of the behavior of the rock mass
under severe thermal stress and of groundwater flow through the fractured
mass, a comprehensive study of the geology and geological discontinuities has
been carried out in the underground test facilities at Stripa (Fig. 1.2).
The general geological and hydrogeological studies of the Stripa quartz
monzonite were done by the Swedish Geological Survey (SGU) and were published
by Olkiewicz et al. (1978). A more detailed investigation of the geology and
fracture systems of the Stripa granite was jointly conducted by Swedish,
U.S., and Canadian scientists and is documented by Olkiewicz et al. (1979).
A very detailed study of the rock discontinuities in the time-scaled, full-
scale and extensometer drifts (Fig. 1.2) was carried out by scientists from
Lawrence Berkeley Laboratory (LBL). The results from the time-scaled drift
were published by Thorpe (1979), and the results of the study in the full-

scale and extensometer drifts are presented in this report.
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The common objective of the dual studies in the full-scale and time-
scaled drifts was to define and characterize the Tocation, orientation, and
mineralogy of major and minor discontinuities in the granitic rock around the
heater experiment areas. The data base for the full-scale drift differs from
that for the time-scaled drift in several respects. First, the amount of
information is greater; while 32 vertical boreholes were drilled in the
time-scaled drift, a total of 102 boreholes were drilled for the full-scale

experiments. Kurfurst et al. (1978) describe the drilling in detail.

Second, as indicated in the plan map and section of Figs. 1.3 and 1.4,
horizontal as well as vertical holes penetrate the full-scale experimental
areas: 38 horizontal or sub-horizontal boreholes, drilled from the wall of
the extensometer drift, and 64 vertical boreholes drilled from the floor of
the full-scale drift. The higher density of boreholes in the full-scale
experiment ensures a larger amount of fracture'data,»and the use of data from
horizontal holes also reduces the inherent tendency of vertical boreholes to

oversample horizontal fractures.

Third, the full-scale data base was greatly enhanced by "relogging"
much of the core to include closed fractures as well as fractures that were
open when the core was removed from the core barrel. The closed fracture
information, when summed with the open fracture logs, makes it possible to
plot the total fracture population as a function of borehole size, borehole
orientation, mineral infilling type, core diameter, etc. In addition, the
degree of "openness" of fractures can be examined with respect to these same

parameters.
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A11 planar discontinuities that could be mapped or recognized in core,
including dikes, faults, shear zones, and fractures with no evidence of
displacement are discussed in this report. The only dikes described in this
report are the pegmatite and quartz veins which intersect the heater experi-

ment areas, although others have been:recognized within the quartz monzonite.

The H9 and H10 experimental afeas* fn the full-scale drift are almost
identicé1 as far as the geological data base is concerned, but the H9 frac-
ture system has been interpreted in far more detail. The preseﬁce of quartz
and pegmatite dike "markers" in’the H9 area greatly facilitated tracing the
offsets caused by several epidote-coated faults that cut through the area,
and the potential influence of such through-going features on the thermo-

mechanical experiments required detailed documentation.

Another reason the H9 area received such close attention is that one of
the authors is conducting cross-hole ultrasonic experiments in four of the H9
boreholes (Paulsson and King, 1980). -One ultrasonic experiment was carried
out simultaneously with the heater experiment to map time-dependent changes;
other experiments have been carried out to detect and map fractures between
boreholes using ultrasonic techniques. To evaluate the feasibility of
fracture characterization with ultrasonic methods, the geology had to be

examined in the greatest detail possible.

*Throughout this report, the expressions "H9 area" and "H10 area" refer to
the volume of rock intersected by boreholes for each experiment and the
corresponding drift walls and floors which have been mapped. The plane
separating the two areas is the plane normal to the centerline in the full-
scale drift at a point halfway between the H9 and H10 heater holes.
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The field stage of this study, described in Section 3, involved mainly
the collection of fracture maps and photomosaics of the drift walls and
floors, along with the logs of fractures observed in core. After calculation
of true fracture orientation, two approaches were used to interpret the data.
Using cross sections and a three-dimensional model, the fracture system is
reconstructed as fully as possible and presented in a series of cross
sections and plan maps in Section 4. To complete the analysis, an extensive
set of stereograms were compiled for the various borehole and mineral infill-
ing subsets. The resulting statistics and pole plots form the basis for
the comparisons and conclusions given in Section 5. A final summary and a
comparison with the results of the time-scaled drift fracture study are

presented in Section 6.



2. GEOLOGY OF THE STRIPA MINE

2.1 Surface Geology

A number of reports have been written on the surface geology in the area
of the Stripa mine. The most pertinent to date is that by Geijer and
Magnusson (1973). Koark and Lundstrom (1979) have published a geologic map
of and area called the Lindesberg southwest quadrangle, that includes Stripa.
The surface geology around the mine is shown in Fig. 2.1. A recent report by
Wollenberg et al. (1980) describes the results of petrological and radio-

element studies on rock from the Stripa pluton and adjoining areas.

A1l bedrock units of the region are of late Precambrian age, the oldest
being leptite. Leptite is a general term for predominantly high-grade
metamorphic volcanic rock, high in Si02 and grain size of 0.5 - 0.05 mm.
Some of the leptite has a sedimentary origin, as evidenced by rippled marks
in the roof of the mainugrift leading to the experiment area. The strongly
banded iron ore, predominantly interbedded quartz and hematite, is situated
in the leptite. The distinct banding, together with its association with the
leptite, suggests that the ore is of sedimentary origin. The leptite is in
contact with apparently younger intrusive rocks. Both the supra-crustal and
the intrusive rocks show signs of at least two folding phases. Stripa is
situated within the NNE-trending Vikern syncline that was formed by an E-W
compression during the first main folding phase. The second phase was a N-S
compression that refolded the older one. The granitic rock at Stripa,
predominantly quartz monzonite, intruded the leptite near the end of this

folding period. The age of the quartz monzonite is reported as 1.69 x 109

years (Wollenberg et al., 1980). The Stripa quartz monzonite is classified

as serogenic. It differs from the pre- or synorogenic granitic rocks because
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The quartz monzonite in the experiment area is less deformed than
that near the ventilation shaft or in the northern part of the lTower drift.
In places, the rock is strongly fractured and brecciated. Wollenberg et al.
(1980) emphasize that the high abundance of fractures extends down to the
grain-size scale, stating that "fractures ranging from well under a milli-
meter to several centimeters or more in width, as well as wider ones of
brecciation, are readily visible in hand sample, but only in thin section
does the full extent of fracturing and brecciation become apparent. The
great majority of fractures have been completely sealed, but in some cases
fine openings can be seen in thin section....Even in relatively unfractured
samples, fine discontinuous cracks within primary grains or along grain

boundaries are very common."

Although the Stripa quartz monzonite has been severely disrupted me-
chanically, displaying abundant fracturing and occasional faulting, it is
evident that most, if not all, of the discontinuities have been filled with
secondary minerals. Evidence for this is also plentiful on all observational
scales; in fact, the fractures described in this report and that by Thorpe

(1979) are distinguished by the type of mineral infilling, as identified in

mapping or inspection of core. Wollenberg et al. (1980) describe fracture
mineralogy based on thin section observations and note that stringers of
sericite and chlorite, quartz, and occasionally feldspars occur on the finest

scale, even filling cracks in primary grains and along grain boundaries.

The majority of the fractures mapped are steeply dipping towards the
north except in the northern part of the drift leading up to the experiment

area, where many south-dipping fractures have been found. Two strike




directions have been discovered: one
and one more tightly confined between

Most of the fractures are filled with
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evenly distributed from north to east,
NW and W (OTkiewicz et al., 1979).

chlorite. Epidote also occurs as a

fracture-filling mineral, and is especially abundant in the end of the

full-scale drift. Quartz and calcite

experiment area.

are common fracture minerals in the

Despite the pervasive fracturing, laboratory and field measurements

have shown that in many respects the rock does not differ much from other

competent igneous rocks. Laboratory determinations of porosity are around

0.5% (Paulsson and King, 1980; Nelson

et al., 1979). Both field and labora-

tory measurements of compressional wave velocity at ultrasonic frequencies

yield values of about 5,500 m/s. And
minations of static mechanical moduli

on competent samples (Swan, 1978).

at ambient pressure, laboratory deter-

also are comparable to values obtained
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3. SOURCES OF DATA

To characterize a complicated fracture system in three dimensions, a
comprehensive data set is required. Data were collected in two ways: first,
by photographing the drift walls and floors to get a permanent record of the
clean rock surfaces, followed by mapping the floors and walls in detail; and
second by logging core recovered from the 64 horizontal and 38 vertical holes
to record rock type, fracture location and orientation, condition and charac-
teristics of the fracture surface, mineral infilling, and percent core

recovery.

3.1 Floor and Wall Maps

The procedures used for mapping floors, walls, and roofs in the full-
scale (FM) and extensometer (EX) drifts were those described by Knill and |
Jones (1965) and Kendorski and Mahtab (1976). Mapping was undertaken immed1i -
ately after the drifts were excavated. The first step was a thorough clean-
ing and washing of the walls and floors of both drifts. A1l x 1 m square
base grid was painted on the floor in the full-scale drift, with the center-
line of the drift as one axis of the grid. This made it possible to tie the

local coordinate system in the FS drift with the mine's coordinate system.

The next step was to take a series of black-and-white overlapping photo-
graphs. The prints were sized to match a 1:20 scale and glued together to
form a photomosaic of the drift floor. Practically all fractures longer than
0.3 m on the floor were mapped. With the help of a 1 x 1 m wooden frame, the
tracings of floor fractures were transferred to a preliminary map. The
traces of the fractures represent the average strike of the fractures found
on the drift floor. Pegmatites were mapped, with special attention given to

their faulting. While the type of fracture-filling minerals and the dip
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and the strike were recorded for all prominent fractures, only the dip
direction was recorded for minor fractures. The topography of the floor was
also surveyed at the grid intersection points and at every 0.5 m along all

Tines in the H9 and H10 areas.

The actual mapping of the drift floor was done for each square of the
base grid, starting at the face of the drift and progressing toward its
entrance. The location of each fracture was visually estimated within’each
square with an accuracy of + 5.0 cm. Al1l features were then sketched onto a
1:20 base map, which showed the intersections of the fractures, veins, and
dikes with the drift surface. Changes in topography of the drift floor
tended to be reflected in the traces of gently dipping fractures. However,
nearly horizontal fractures proved to be difficult to map because of the
extent of their exposed surfaces. This was especially evident in the H10
heater area, which has an apparent low fracture density at the surface. This
is caused by the sub-horizontal, chlorite-filled fractures that are exposed

in this part of the full-scale drift.

The side walls of the full-scale drift were mapped, and the frac-
tures that were continuous across the width of the drift were projected onto
a vertical plane through the centerline of the drift. The projections from

the H9 and H10 areas are shown at the top of Figs. 4.4A, and 4.5A respective-

ly. The fractures and the dikes found on -the walls were assumed to be
planar, so they were projected directly onto the centerline plot. The
obvious features, such as pegmatites and quartz veins, were located and a
Tine drawn to connect two points of a fracture at equal elevations on oppo-

site drift walls. The intersection point with the centerline of the drift
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was then surveyed and plotted onto a field map. The success of this method
was proved by very good correlation of these features above and below
the drift floor. The pegmatite dikes, the quartz veins, and the wall frac-
tures were also projected onto the centerline of the map because these

features were continuous and considered important for fracture reconstruction.

The northwestern wall of the extensometer drift, which was nearest the
experiment in the FS drift, was mapped by both visual inspection and photo-
mosaic. This combination proved to be fast and convenient, as the surface
was large and close inspection difficult because much of the wall surface was
above eye level. The criteria for mapping fractures on the EX-drift wa11
were that they be continuous and well-defined over several meters. The
mapped features, together with information on fracture-filling minerals,
matrix grain size, color strike, and dip, were then drawn on a 1:20 scale

field map.

The resulting floor maps, wall maps, and wall projections are presented

and discussed in Section 4.

3.2 Drilling Techniques

For the H9 (3.5 kW) heater experiment, 49 horizontal and vertical
boreholes of various diameters were drilled from the full-scale and extenso-
meter drifts, yielding a total of 479 m of core. For the H10 (5.0 kW)
experiment, 53 horizontal and vertical boreholes were drilled, yielding
471 m of core. The total meterage is tabulated by hole diameter and experi-
ment location in Table 3.1. Borehole nomenclature is likewise summarized in
Table 3.2. Kurfurst et al. (1978) describe the drilling procedures and

survey results in detail.



Table 3.1. Summary of drilling meterage for the full-scale drift heater
experiments.
Borehole
Diameter
(mm) H9 Vertical H9 Horizontal H10 Vertical H10 Horizontal
406 5.5 - 5.5 -
76 75.48 108.01 74.84 107.32
56 40.58 - - -
46 - 11.22 - 11.04
38 132.35 105.84 187.42 85.71
ATl 253.91 225.07 267.76 204.07
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Table 3.2. Boreholes listed by diameter and location. Holes C9 and C13
were not drilled. A total of 102 boreholes were drilled and
cored for the full-scale heater experiments.

Borehole
Diameter Total
(mm) H9 Vert. H9 Hor. H10 Vert. H10 Hor. number
406 H9 - H10 - 2
76 E6-E11 E18-E26 E12-E17, E27-E35 31
M10
56 M6-M9 - - - 4
46 - N3 - N4 2
38 Ci-C2 C6-C8 C3-C5 Cl0 63
U1-u1o0 Cl11-Ci? yl1-u20 C14-C15
T13-T18 U21-u22 T19-T24 U23-uz25
U26-U28 H11-H18 U29-U30
Total

number 29 20 35 18 102
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During initial logging of the recovered core, it was noted that the
frequency of open fractures tended to vary with core size, drilling method,
and drill rig used. For this reason, the drilling techniques are summarized
in Table 3.3, which shows the drill rig and core barrel types used for each
hole size and location. The Toram rig was used for the 76 mm and 406 mm
holes, while the Diamec rig was used for holes of 56 mm diameter and less.
The small diameter holes were cored with a double tube core barrel, whereas a
triple tube was used in coring most of the 76 mm holes. The vertical 76 mm
holes in the H10 area were drilled with a double tube core barrel and hence

those open fracture statistics will differ from other 76 mm borehole results.

3.3 Core Logs

Continuous core samples were recovered.from 64 vertical and 38 hori-
zontal instrumentation, monitoring, and heater boreholes in the full-scale
and extensometer drifts. The length of the boreholes varied from 5 to 15 m
with an average length of about 10 m. A1l core from boreholes 56 mm or
greater in diameter (E, M, and H boreholes) was oriented with respect to
the drift centerline, but core samples from the 38 and 46 mm boreholes (T, U,

C, H11-H18, and N boreholes) were not oriented.

3.3.1 Core Orientation Procedure

A1l oriented core from the larger diameter holes (56 mm and greater)
was reassembled and logged immediately after drilling to ensure proper
reconstruction of the orientation. Hence, the first task upon recovery of
the core barrel was to check the orientation mark to ensure that it matched
the mark on the previous uptake. Next, a 1ine was drawn along the length of

the core, matching the position of the orientation mark (B = 0). For the
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Table 3.3. Summary of drilling techniques used for different boreholes
in full-scale and extensometer drifts. The core diameter
in the second column is nominal, no better than + 1 mm.
Core from the 76 mm holes depended on core barrel type, the
triple tube barrel yielding 52 mm core.
Borehole Core
Diameter Diameter
(mm) (mm) H9 Vert. H9 Hor. H10 Vert. H10 Hor.
406 - sT * - sT -
76 52, 62 tT tT dT tT
56 45 dD - - -
46 32 - dD - dD
38 22 dD dD dD dD
sT = Single tube core barrel, Toram drill rig

dT
tT
dD

Double tube
Triple tube
Double tube

nononn

core barrel, Toram drill rig
core barrel, Toram drill rig
core barrel, Diamec 250 drill rig

*The first 3 m (out of 5.5) was drilled with the XF 60/90 H drill rig.
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vertical holes, this 1iﬁé Eorresponds to ankimaginary line on the side of the
borehole wall c]ésest to the opening of the fﬁ]]-sca]e drift (see Fig. 3.1).
The orientation for g = 0 was surveyed before the drilling of the borehole
started, and an orientation mark was cut with a grinder into the rock
surface. After each uptake, an orientétion'device was lowered into the

borehole, and the stub on the bottom, which would be the upper end of the

next core run, was marked 1n the same direction as the mark on the floor
surface. For the horizontal and sub-horizontal ho]és in the extensometer
drift, the reference line 8 = 0 was chosen to be downward; markiny of the
core was done simply by inserting a rod with a hard metal tip in the borehole
and marking the core stub before the drilling started again. This method was
generally quité accurate, as indicated by the excellent matching of orienta-

tion marks for successive uptakes.

With the referencé line éstab]ished, two éng]es suffice to define the
orientation of a fracture p]ane’with respect td‘fhé borehole. The angle a,
which ranges between 0 and 90 degrees, is the\acute angle between the frac-
ture plane and the central axis of the core or borehole. The angle B is the
azimuth of the apparent dip as measured clockwise from the reference line
while looking in the drilling direction. The angle g8 ranges from O to 360
degrees because it is measured from the reference line to the lowermost

intercept of the fracture plane and the borehole wall.

3.3.2 Core Logging Procedures

After orientation was established, the core was logged at the drill
site, as soon as possible after drilling and in accordance with procedures

described by Kurfurst et al. (1978) and Thorpe (1979). The geologist took



Vertical holes Horizontal holes

Magnetic
north

180° 180°

270° 90° 270°

Orientation mark

B=0° B=0°

XBL 811-2556

Fig. 3.1. Orientation conventions for vertical and horizontal holes in
full scale drift. For vertical holes, the zero angle is on
drift centerline and nearest the drift opening. For horizontal
holes, the zero angle is on the downward edge of the perimeter.
In both cases the view is from the drift looking towards the
collar.
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core directly from the barrel for examination, to avoid disturbing the core
by excess handling and transportation to the surface. For ready reference,
the logging specifications and a sample logging form used in the field are
included in Appendix A. These field logs of fracture location and character-

jstics formed an important part of the data base presented in this report.

Only open fractures were logged at the drill site, and, as already
mentioned, it was soon noticed that the frequency of open fractures varied
with drilling procedures. To correct this sampling problem and to obtain a
more complete record of the total population of planar and sub;planar fea-
tures intersected by the borehole, the core was brought up to the surface and
relogged. This time, closed fractures were recorded, fo]]owing the proce-
dures used for open fracture 1o§ging. The second logging increased the
number of fractures recorded in the H9 area from 1,055 to 3,385, markedly
changing some of the fracture population statistics, as will be discussed in

Section 5.

Table 3.4 summarizes the logging procedures used in the full-scale
drift. As can be seen, all of the H9 core was relogged. For the H10
area, only the 76 mm core was relogged, and as the table indicates, only the
vertical holes were entirely relogged. To save time, only the lowermost
3 m of the horizontal 76 mm holes in the H10 area were relogged; that is, the

3 m from each hole lying closest to the H10 heater hole.

In this report, the term "open fracture" simply refers to that class of
fractures which were open when the core was retrieved and first logged;
"closed fractures" refers to a fracture intersected in a core interval which

was intact when retrieved from the core barrel.
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Table 3.4. Summary of fracture logging procedures in the full-scale
drift and extensometer drift boreholes. Core was logged
in two passes. Open fractures were logged at the drill site
while closed fractures were recorded during relogging.

Borehole
Diameter Oriented
(mm) core H9 Vert. H9 Hor. H10 Vert. H10 Hor.
406 Y 0c - 0c -
76 Y , oc 0c 0cC oc, C
56 Yy 0c - - -
46 N - 0 - 0
38 N 0c 0 0 0

Open fractures logged
Closed fractures logged
Core oriented

Core not oriented

=2 < MO
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3.3.3 Mineral identification

When the core was logged, a number of different fracture infilling
minerals could be distinguished visually. Chlorite, epidote, and calcite
(one of these three was always present) were distinguished as the three
dominant minerals coating the fracture surfaces. Calcite can be identified
visually, but epidote and ch]orite‘are more reliably distinguished by a
scratch test with hardened steel; it scratches chlorite but not epidote.
Although identification in hand specimen is always subject to error, the
petrological study by Wollenberg et al. (1980) has in general confirmed the

field identification of these minerals:

"In megascopic appearance, the following generalizations are useful,
though not foolproof: dark green or black fractures are usually dominated by
chlorite; thte or near-white fractures by quartz and/or carbonate. Light
green fractures are more ambiguous, as they may be a,mixtUre of the above
types, or they may be filled mainly with sericite (fine fractures, particu-
larly), or with epidote, or, in wide brecciated zones, with a clay-rich fault

gouge."

Throughout this report the terms chlorite, epidote, and calcite refer to

the visual identification of these minerals in core.

3.3.4 Core Log Availability

The core log data, an example of which is included in Appendix A of this
report, have been entered into two computer files at LBL. The format and
coding are similar to that given in Appendix A of Thorpe (1979). To access

the files, use the control commands
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GETTAPE ,TAPE1=FULLSCALE/CLOSEFRAC/DATA,11883

and

GETTAPE ,TAPE1=FULLSCALE/OPENFRAC/DATA,11883.
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4. CHARACTERIZATION OF DISCONTINUITIES

4.1 Introduction

The field observations and the resulting interpreted fracture network
are presented in this section in a series of maps and sections. The detailed
floor map of the full-scale drift (upper portion of Fig. 4.1), the exten-
someter drift wall map (Fig. 4.2) and the map of the full-scale drift wall
(upper portion of Fig. 4.4A) are all based directly on field mapping,
described in Section 3.1. In addition to these three maps, two interpretive
maps are also shown. From the detailed floor map, floor photomosaic, and
direct observation, the major prominent continuous fractures and fracture
zones were identified and plotted on the simplified floor map shown in the
lower part of Fig. 4.1. A plan map through the H9 heater midplane, shown in
Fig. 4.3, was constructed by projecting fractures and dikes encountered in
vertical and horizontal boreholes onto the horizontal surface at the mid-
plane elevation. No comparable map was completed for the H10 midplane,

although some data necessary for its construction have been compiled.

Eight vertical cross sections displaying fracture intercepts and inter-
preted continuous fractures are shown in Fig. 4.4 for the H9 area. A comple-
mentary set of eight sections around the @10 area is shown in Fig. 4.5. To
intersect the largest possible number of boreholes, the cross sections
(originally drawn at a 1:20 scale) were drawn along the planes of symmetry in
the H9 and H10 areas, as shown on the floor map of Fig. 4.1. Table 4.1 gives

the strike direction and orientation of the cross sections.
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Table 4.1. Orientation of fracture cross-sections. The H9 and HI10
cross-sections have the same strike, so these angles apply
for both experimental areas.

Angle from drift

Section Strike Direction centerline, Bp .
A N51E - 0.0
B N73E 22.5
C N84W 45.0
D N61W 67.5
E N39W 90.0
F N16W ' 112.5
G NO6E 135.0

H N29E - 157.5
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The results presented in this chapter are based mainly on graphical
techniques such as cross sections and pole plots using all available fracture
information. Alternatively, computer-aided mathematical methods could have
been used to reconstruct the fracture network. However, a graphical method
was judged to be faster and more effective in working with the complex
fracture systems in the H9 and H10 areas. Most fractures are not continuous
and are not traceable even between two closely spaced boreholes. To charac-
terize a rock mass, a statistical approach is necessary to complement

the graphical method. This approach is further discussed in Section 5.

4.1.2 Plexiglass model

As an additional tool for reconstructing the fracture system, a three-
dimensional model was built using all the cross-sections from H9 and H10.
" Sections A-H, the mapped floor and walls of the FS drift, and the mapped
walls of the EX drift were all reproduced at a scale of 1:20. The model,
shown in Fig. 4.6, helps to synthesize all fracture information and gives an
overall picture of the strike and dip of fractures and varijations in fracture
densities within the experiment area. It was, for instance, very helpful in
1ining up large features such as the pegmatite dikes and the epidote-coated
faults. It showed that pegmatite A was faulted 6 meters between the full-
scale and the extensometer drifts. Pegmatites E and B were also lined up

with the help of the model.

4.2 Prominent Faults and Dikes

The pegmatite and quartz veins, readily identified by observation
underground, provide excellent markers to define the offsets induced by

the epidote-coated faults. Hence, all the prominent features that could be
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CBB 802-2342

Fig. 4.6. Plexiglass model (1:20 scale) for the fracture system in the
H9 area. The H10 area is not shown here. Model is 0.7 m wide
x 1.0 m high x 2.1 m long.
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extrapolated successfully between drifts, or between a drift surface and
several borehole intercepts, have been labelled in Figs. 4.1, 4.2, 4.3 and
4.4A. In addition, Table 4.2 gives the strike, dip, and re]étive displace-
ment of each dike and fault * as measured on one of the exposed surfaces or

in a sequence of borehole intercepts.

Some discontinuities appear as arcuate features on the floor and wall
maps. This apparent lack of planarity is attributed to the irregular nature
of the floor and wall surfaces, rather than to curvature of the fault planes.
Examples are Qz C and H9-7 on both the detailed and simplified versions of

the floor map (Fig. 4.1).

The key marker in the H9 area is pegmatite A. Its apparent truncated
extent on the full-scale floor (Fig. 4.1) is due to the offset induced very
near to the floor by the main fault labelled H9-1. Fig. 4.4A shows this
offset more clearly, and also shows that pegmatite A is easily identified in
the wall of the full-scale drift. Its measured thickness is about 20 cm.
Note that this pegmatite cuts through the H9 heater hole about 2.5 m below
the drift floor. Its displacement can also be seen by comparing the floor

map and the midplane map.

Pegmatite B, with a strike of approximately N6OW and a dip of about 50E,
| js identified in a number of locations in the maps and sections. It is first

found at 11 m depth in section H9 A, continuous with its projection on the

*By "faults" we mean a fracture with a documented offset. By "epidote
faults" we simply mean a fault with epidote mineralization. The faults we
have been able to trace over the whole experiment volume we term "major
faults". A1l faults are well healed, competent features with little or no
water seepage.
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midplane map (Fig. 4.3). Other segments, displaced by an E-W fault, are
found on the extensometer drift wall, on the midplane map near the exten-

someter drift, and in the center of the FS drift floor map.

Pegmatite D is less useful as a marker because its near-vertical dip
meant that it was rarely intercepted by the vertical boreholes. Its inter-
preted positidn can be seen in the midplane map (Fig. 4.3) and its interpre-

ted intercept on the extensometer drift wall in Fig. 4.2,

The pairiof parallel faults, Héilfand H9—2,‘s£fike abouf‘NSE and dip
60W. Their apparent offset can be»vféWédion the‘Qéfious expdséd surfaces
which also reveal that these are oblique reverse, rather than normal faults.
The sectional view in Fig. 4.4A shows a combined apparent offset of about
2 m for the two faults. Displacement in the horizontal p]ané (Fig. 4.I)~
is 1 m, although extrapo]ationé %n the-midp1ane (Fig. 4.3) indicate that
displacement is a fréction of a meter..jTheir trUe dip and relationship
to the H9 heater hole is best viewed ih Vertica]‘section HIC (Fig. 4.4C)

which is almost perpendicular to the strike of H9-1 and H9-2.

Significantjfaylting must have occurred between the fu]i—scale and
extensometer drifts,_bécause%none of the”pegmatites are founé on the EX
drift wall where s%mp]é préjéction wou]dwblace themL The midlplane'map shows
a plausible solution. An E-W fault Tabeled H9-8 is shown with 5 m of Hori—
zontal displacement and a Tikely verti;a] displacement component of several
meters. The existeﬁce of H9-8 is in aécqrd withffaulfs mapped on the
full scale floor andAextensometer drift wé]] (see Figs. 4.1 and 4.2); how-
ever, it could also be shown as a series of en echelon faults of total

equivalent displacement. Table 4.2 gives an approximate E-W strike and



a dip of 66N to this major fault. The

5-

resulting interpretation of individual

dikes and faults found on the extensometer drift wall appears satisfactory,

as pegmatite A, fault H9-1, and pegmat

strikes, dips, and relative separations as in the full-scale drift.

H9-2 has disappeared, however, and the

ite D are found there with similar

Fault

exposure of pegmatite D is complicated

by the convergence of pegmatite B and other faulting.

Other offsets in the H9 area are

well as by lesser, unnamed faults. Di

faults appear to be on the order of 1 to 2 m.

on the extensometer drift wall (Fig. 4.

induced by faults H9-3 through H9-7, as

splacement magnitudes of these five
Fault H9-7, which is exposed

2), is difficult to trace because of

its near-vertical dip and its predicted intersection with only a few bore-

holes.

has been omitted from the midplane map.

The offsets shown in the midplane
age of the faults. The E-W striking f
movement along the N-S faults (H9-1,2,
movement along the N6OW faults (H9-5 a

N-S and E-W faults are reverse faults

In the H10 area, the most promine

faults, H10-2 and H10-3 (see Fig. 4.1).

caused by faults H10-2 and -3 in the h
is about 3 m. Direction of horizontal
be determined, but it is likely that t
lel faults is 6 m or more. In vertica

to be reverse faults. Both of these N

Because its location has not been confirmed, its projected position

map of Fig. 4.3 reveal the relative
ault designated H9-8 must postdate the

3,4,7) and probably also postdates

nd 6). It is noteworthy that both the

(Table 4.2).

nt features are the pair of parallel
The apparent offsets of pegmatite
orizontal plane of the FS-drift floor

motion along the two faults could not

he total offsets across the two paral-
1 section (Fig. 4.5A), they are shown

-S striking planes project to, and have
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been identified in, the wall of the extensometer drift, as shown in Fig. 4.2.
Thus there is no evidence for E-W faulting in the H10 area as there is in the

H9 area.

The orientation of all major faults and dikes identified in the full-
scale and extensometer drifts are summarized in the pole plot of Fig. 4.7.
The quadrant Tabels such as W/E serve as a reminder that the poles in the
southwest quadrant of the pole plot represent fault planes striking NW and
dipping to the east. Note the lack of consistent grouping of the pegmatite
dike and quartz vein orientations, and the consistent orientation of the N-S
striking, 60W faults H9-1 and -2, and H10-1, -2, and -3. Their orientation
is remarkably consistent with the four discontinuity planes determined in the

time-scaled drift by Thorpe (1979).

4.3 The Fracture Cross Sections

-The fracture cross sections presented in Fig. 4.4 (H9) and Fig. 4.5
(H10) are unusual in that they are drawn along radial planes with a common

point of.intersection at each central heater borehole. A good technique for

becoming familiar with the cross sections is to view the H9 sections sequen-:
tially, keeping in mind the pasition of the key pegmatite A while moving from
section to section. In so doing, the effect of changing perspective upon

observed dip wifiybecqme réadily appa;énf. Beware of the left-right reversal

of view in progressing from_section H9 B to H9 C.

4.3.1. Calculation of apparent dip

The two measured angles a and B (see Section 3.3) describe the orienta-
tion of a fracture plane with respect to the borehole-in which an oriented

core was obtained. To extrapolate fracture planes in vertical cross sections,
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Schmidf equu|—area pole plot Pegmaﬁfe dikes C\nd fOUHS in the
fullscale and extensometer drifts

Lower hemisphere mineralization
: Magnetic North

Q_F‘ullscole
Drift
NSI°E
E/E wW/W ,H9‘3
- T-1, _H10-2 E
® ® v
WE B weiae ST
*Pegd T-4"%10-3
eH9 -7
oPegB
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Fig. 4.7. Pole plot of major dikes and faults in full scale and extensometer
drifts, along with poles T-1 through T-4 identified in time scale
drift by Thorpe (1979). Strike/dip directions are noted in each
quadrant. For example pole H9-3 in quadrant W/W represents a
plane with strike-dip of NOSW/35W.

XBL835-1838




an apparent dip angle must be computed

apparent dip evjs defined as the angle

(&2

for each fracture intercept. The

between a horizontal plane and a

second 1ine established by thevintersect{on"of theAverticél cross-section and

the fracture plane. For vertical bore
the measured angles a and B by using'e

tan o, = tan (90° - a) cos(B

where gp is the angle between the refe
section (refer to Table 4.1). The cor

boreholes is:

tan eH = ‘Jganza + tanzs co
It Qas later found that a simpﬁér”expr
: potveH =Mgot o co§s s

prodyces nearly identical results for
corréction of about 6 degrees was adde

compensate for the upward incline of t

4.3.2. Display of fracture data

The apparent dip of a fracture in
segment on the vertical croés sections
thickness and dominant mineral type of
posted next to each line segment. Sym
filled with epidote or calcite mineral

tures filled with chlorite are plotted

fractures filled with epidote or calci

holes the apparent dip is related to

xpression:

- sp)

>

rence line and the vertical cross

responding expression for horizontal

s{a sing)

éssion,

horizontal boreholes. An additional
d or subtracted as'ébpropriate to

he horizontal boreholes.

tercéﬁf is plotted with a short line
(Figs. 4.4 and 4.5). The orientation,
eath fracture intercept are also

bols were put on only for fractures
jzation. To minimize clutter, frac-
without any symbol, although many

te-have chlorite jnfi]]iné as well.
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4,3.2 Fracture Reconstruction

Because the fracture reconstruction for the H9 heater area is so de-
tailed, the plots became quite cluttered when the interpreted fracture planes
were overlain on the raw data. For this reason the raw data cross sections
are relegated to Appendix B and the interpreted H9 area cross sections are
shown in Fig. 4.4, without the subsidiary information. The reconstructed H10
heater area cross sections were far less complicated, however. Consequently,
the interpreted fracture positions in the H10 area are shown overlain on

orientation and mineralogical information in Fig. 4.5.

For each cross section, the boreholes with oriented core constitute the
most important source of information for characterizing and mapping discon-
tinuities in the H9 and H10 experimental areas. The unoriented core from
the 46 and the 38 mm holes was used mainly to check the oriented core re-
sults. In a few cases it was apparent that the same fracture was sampled in
neighboring 38 mm holes. The fractures were then connected on the cross
section and assumed to exist between the boreholes, to verify that such
fractures indeed belonged to the same discontinuity, the actual core and the
fracture logs. In such comparisons, one must remember that even if the
fractures are planar over a distance of tens of meters, the fracture surfaces
undulate on a scale of decimeters and therefore strike and dip vary locally.
Other uncertainties are the accuracy of the orientation mark, which is about
+5°, and the accuracy of the measured strike and dip, which is also estimated

to be +5°,

Fractures were extrapolated between boreholes based on the dip, strike,

fracture infilling type and thickness, and proximity of fractures in adjacent
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boreholes. The most important criterion
of fracture intercepts in adjacent boreh
and highly fractured zones were also use

were then extrapolated along each cross

13 m below the drift floor and laterally

extensometer drift to the downward proje

walls of the full-scale drift.

4.3.2.1. Cross-section H9 A (Fig.

was the near-equality of the azimuth
oles. Intersecting pegmatite veins
d. A1l distinctive discontinuities
section to a maximum depth of about

from the northwestern wall of the

ctions of the northwestern and end

4.4A). The pegmatites and faults

with epidote mineralization are the domi
Pegmatites A, B, and D,‘and quartz vgin
tion, and four faults--H9-1, -2, -3, and
tinuities--are identified in the boreho]
four faults is simi]ar (see Table 4.2) t
set. Faults H9-1 and H9-2 offset pegmat
approximately 1 m fqr a tota1 displaceme
caused by the minor parallel or sub-para
generally less than 0.5 m. The horizont

H9-1 and H9-2 in the plane of the full-s

Pegmatite B, present at the bot tom

intersected by discontinuity H9-4 in bor

nant features presented in Fig. 4.4A.

C are identified in the cross sec-
-4, representing“the major discon-
es. Since the orientation of these
hey are assigned to the same fracture
ite A in the vertical plane by

nt of more than 2 m. The offset

11e] gpidote—fi]]ed faults fs‘

al displacement caused by faults

cale drift floor is only 1 m.

of boreholes E6, E7 and E8, is

eholes E6 and E7. This discontinuity

was éxtrapo1ated to the épidbte-fi11ed f
the absence of pegmatite A in this boreh

also offset by H9-4.

racture in the bottom of borehole U3}

ole indicates that this pegmatite is
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The quartz vein C, prominent in the drift floor between boreholes
E7 and E8, was found in three places in borehole E7. This has been inter-
preted as an "en echelon" faulting, which agrees well with interpretation of

the offset of pegmatites A and B.

Although the small pegmatite D is clearly seen on the FS-drift floor
(Fig. 4.1), where it is intersected and offset 1 m by discontinuities H9-1
and H9-2, it was difficult to locate it in boreholes because of its near-
vertical dip. It is shown in Fig. 4.4A between boreholes E6 and E7 on

the basis of the pegmatite intercepts in those two boreholes.

The epidote-filled fault H9-3, although present in this cross-section,
is not well developed and therefore will be discussed in more detail in

cross section H9 B.

To obtain the extent of subsurface discontinuites above the drift floor,
both walls were mapped; the resulting fracture map was projected on the
centerline of the drift. This projection shows clearly that pegmatites A and
B, also present in both drift walls, are intersected by faults H9-5 and H9-6.
These two discontinuities have orientations N54W/48E and N68W/14N respec-
tively and belong to a different fracture set than discontinuities H9-1

through H9-4.

A number of calcite-filled fractures were found in both oriented and
non-oriented boreholes in the cross section. Calcite-filled fractures
present in oriented boreholes E6, E7, and E8 seem to correspond'we11 with
calcite-filled fractures extrapolated between non-oriented boreholes ui, uz,

U3, T13, and T14. Several intersect the epidote-filled fault, thus
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providing the sequence of faulting which followed the intrusion of the
pegmatite. An epidote-filled fracturé being intersected by the calcite-
filled fracture is shown in the thin-section photograph of Fig. 4.8. The
first fault in the sequence was the intrusion of pegmatite, followed by the
appearance of epidote-filled faults in the pegmatite. The Jast in this

series was the development of calcite-filled fractures and faults.

4.3.2.2 Cross Section H9 B (Fig. 4.4B). The epidote-filled faults H9-1

and H9-2 are present in boreholes U4 and U5 at depths z = 342 m and z = 344 m
respectively. Two additional discontinuities, H9-3 and H9-4, intersect
boreholes C1 and M6, where this displacement was measured as 0.3 m for H9-3
and 0.4 m for H9-4. A number of minor epidote-filled faults in borehole M6
are interpreted to be parallel to the fracture set H9-1, -2, -3, -4, shown in

cross section H9 A.

4.3.2.3 Cross Section H9 C (Fig. 4.4C). Five vertical and five hori-

zontal boreholes, which are included in the H9 C cross section, provide a

good data base for reconstructing the fracture system.

Pegmatite A is present in the middle of vertical boreholes H9 and TI5
and at the bottom of horizontal boreholes U26 and E23. It is offset by the
epidote-filled faults H9-1 and H9-2, which intersect boreholes T17, E9 and
E10 at the depths of z = 340 m, Z = 341 m and z = 342 m respectively.
Orientation of discontinuities H9-1 and H9-2 is NIOE/60W. Another set of
epidote-filled fractures parallel to faults H9-1 and H9-2 intersect horizon-
tal boreholes from the extensometer drift. Faulting of pegmatite A in
horizontal borehole E23 is associated with calcite mineralization in the

fractures. This is most likely because the fault plane reopened and the
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fracture was filled with calcite long after the actual faulting.

Some of the calcite-filled fractures can be extrapolated between
three or four boreholes; the most prominent of these extends from borehole
E21 through boreholes E22, E23, T15, E9 and E10. The location of other

concentrations of calcite-filled fractures will be discussed in Sect. 4.4.

4.3.2.4 Cross Section H9 D (Fig. 4.4D). Lack.of data, which is due to

the small number of boreholes in the cross section, allows only pegmatite A

to be extrapolated between boreholes H9 and C11.

4.3.2.5 Cross Section H9 E (Fig. 4.4E). Pegmatite A intersects verti-

cal borehole H9 and horizontal boreholes E19, U27, and E20. Faults with
offsets less than 1 m have been interpreted to account for hole-to-hole
variations in apparent strike and dip. A major unresolved problem in the
reconstruction of the pegmatite intercepts is the presence of a 3.2 m long
intercept of pegmatite in horizontal borehole E20; it commences about 2.3 m
from the collar. This could be a local widening of pegmatite A; however, its
presence has been virtually ignored in the fault interpretation. Pegmatite A
is again seen in section H9 E near the wall of the extensometer drift, where
it is displaced by 6 m. The interpreted fault mechanism for this re]atiVe]y
large offset has already been discussed in connection with fault H9-8 in

Fig.4.3.

Several epidote-filled fractures, found in horizontal boreholes E19,
u27, and E20, can be traced to vertical borehole E1l. This borehole is also

intersected by epidote-filled discontinuities H9-1 and H9-2.
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4.3.2.6 Cross Section H9F (Fig. 4.4F). Two distinct zones of epidote-

filled fractures were found in borehole M7 at depths z = 339-341 m and
344-349 m. Borehole M7 also includes several calcite-filled fracture zones
at depths z = 344 m, 345 m, 347 and 348 m. Except for the pegmatites A and

D, no other major discontinuities were detected in any borehole of this cross

section.

4.3.2.7 Cross Section H9 G (Fig. 4.4G). Pegmatite A intersects verti-
cal boreholes U8, U7, U6, T18 and H9. Because this cross section is nearly
parallel with the strike of Pegmatite A, the apparent dip is nearly hori-
zontal. Although traces of pegmatite were also found a few meters from the
end of borehole E24, it is uncertain whether this pegmatite is part of

pegmatite A.

Two pegmatites, B and E, were found in horizontal boreholes E24, (8,
E25, Ul18 and E26. Although the apparent dip of the dikes varies due to the
different sectional orientations, pegmatite B in this cross section corre-
lates well with pegmatite B in cross-section H9 A found in the lower end of
the boreholes E6, E7, & E8. Pegmatite E in this cross section could not be
successfully correlated with other pegmatite occurrences, but it may connect
to one of the unidentified dikes located on the drift floor between the H9
and H10 heater (Fig. 4.1). Pegmatite B strikes perpendicular to cross
section H9G and so if the pegmatite is extrapolated from its location in
E24-E26 to the floor in the full scale drift it can be seen that the correla-

tion, in fact, is quite good.

Four epidote-filled fractures intersect boreholes E24, C8, E25, Ul8, and

E 26, and another three fractures can be traced between boreholes E24, C8 and
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E25. Calcite-filled fractures are concentrated mainly in the horizontal

holes (see Sect. 4.4).

4.3.2.8 Cross-section H9 H (Fig. 4.4H). Pegmatite A intersects bore-

holes U10, U9, H9 and C2 and is faulted in four places. While discontinui-
ties H9-1 and H9¥2 in boreho]és H9 and C2 correlate well with other cross
sections, the two in boreholes Ul0 and U9 cannot so be correlated with any

degree of confidence.

4.?.3.9 Thé Hlo Cross Sectionsv(Fig. 4.5). Cross sections A-H from the
HlO‘areé, compafab]e in orientation and convention to those of the H9 area,
are presentedvin Figs. 4.5A-4.5H. However, as discussed earlier, much less
1nterpretive'effort has been expended on results from the H10 area. The
primary content of these cross sections is the apparent dip and strike data
posted alongside the boreholes. These cross sections are therefore comple-

mentary to the H9 data cross sections presented in Appendix B.

| Ihterpretation of the H10 area fracfures and faults is inherently more
dffficu1t than it is for the H9 area because of the relative scarcity of
pegmat%te and quartz markers. More information could be interpreted from the
available data if jt appears to be warranted by the requirements for the

thermomechanica1 analysis in the H10 heater area.

4.4 Zones of Intense Fracturing

Because of the potential importance of Tocalized zones of intense
fracturing to the displacements induced by the H9 and HLO heater experiments,
some of the outstanding aspects of these zones in the heavily drilled areas

are discussed here. Fracture intensity can be examined in the floor maps of
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Figs. 4.1 and 4.3 and in the cross-sections of Figs. 4.4 and 4.5. However,
in Fig. 4.4 the extended lines denoting the interpreted extent of the epidote
fractures reduce the apparent significance of the chlorite and calcite
fractures. For this reason the figures of Appendix B are better suited for

examining zones of high fracture intensity in the H9 area.

In addition, fracture intensity is shown in a sequence of elevation
plan maps encompassing 2-m intervals in Figs. 4.9 and 4.10. These were
compiled from all fractures posted on the cross sections, and then contoured
to give the general trend of fracture frequency. The H9 data of Fig. 4.9 are
self-consistent in that both open and closed fractures are included; however,
the H10 plots of Fig. 4.10 are from a mixed data base (Table 3.4). Some
short core intervals were so intensely fractured that no count was made. In
such cases a value of 1 fracture per cm was assigned to the fractured length.
For example, in the 340-342 m interval, hole E6 contained 25 single fractures

plus a 34-cm fractured zone; hence an entry 59* is posted in Fig. 4.9.

4.4.1 H9 Area.

The detailed floor map of Fig. 4.1 shows an area of high fracture
intensity that seems to strike N-S and 1ies immediately adjacent to, and
west of, heater hole H9. This crude trend is confirmed by the fracture
intensity map in Fig. 4.9, which shows a roughly N-S striking zone of high
fracture intensity. Five boreholes with fracture frequencies exceeding 40

per 2-m interval are within this trend.

It might be expected that this zone is controlled by the major epidote
faults H9-1 and H9-2, which dip to the west. Such an association seems

apparent in cross section H9A (Fig. B.1l). Inspection of the three vertical
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Fig. 4.10. Fracture intensity in vertical boreholes in H10 area, given as
number of fractures per 2 m interval. Data from 76 mm holes
(small circles) are from open + closed fractures; data from 38 mm
holes (small x) are open fractures only. For other details,

refer to Fig. 4.9.
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Table 4.3. Locations of calcite-coated borehole fractures (where there are 3
or more fractures per meter of borehole). Asterisk (*) denotes
frequencies of six or more. Intervals (meters) are given in the
mine z-coordinate for vertical holes; in distance from the collar
for horizontal holes.

H 9 Area H 10 Area
Section Hole Interval (m) Section Hole Interval (m)
HIA U3 342-343 ~ HIOA E13 343-346%
344-345 ; El2 339-340
U2 341-342 : 343-344*
343-344* 347 -348
) 343-345 T20 340-341
Ti3 343-344 342-345%
E6 349350 346-347*
E7 350-351* 122 342-343
ES 349-351* ' 344-347%
U1l 341-342
HOB C1 339-340 344-345
344-345 El4 349-350*
HSC E10 340-341 H10B ol 344-346
347-348 €3 342-344
M3 340-341 Hil 340-341
342-343 343-344
347-348 : ' H15 339-340
E9 346-347 L , 4 343-345%
351-352 : : ' uig 340-341
T15 344-345 - ~
E21 2-3 ‘ ~ HloC- uieé 341-342
5-6 : 343-344%
C6 0-1 T23 343-345
3-4 - T21 339-.341%
5-6% 345-347*
£22 4-6 ‘ E30 0-5
9-10 8-9
uzé 4-6 11-13*
E23 0-3* uz3 1-2
i2-13 ' - 7-10
£31 7-8
HOE E1l 340-341 ‘ v o 10-11
346-348 : £32 3.5-4.5
E20 6-10% 7-8
: 12-13*
HOF uz22 2-3 ~
ciz 1-2 H10D c5 340-341
uz29 4.5%
H3G u7 343-345
Ti8 342-343 H10E Els 344 .345%
344-345 346-348
E24 0-2 350-351%*
4-5 E27 8-9
c8 1-2 uz4 1-2
E25 4-5 Ci4 2-3
5-10 7-8
vis 10-12 £29 6-8
E26 0-2% 10-11
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Table 4.3. (continued)

H 9 Area H 10 Area
Section Hole Interval (m) Section Hole Interval (m)
H10F H17 340-341~*
C10 2.5-3.5
U30 4-5
H10G E17 339-341
344 -347*
El6 341-342
344-345
uz5 1-2
5-6
E34 1-2
6-7
10-12
Cls 1-4
E35 2-5
8-9
11-13
H10H ul9 344-346
uls 344 .5-345.5
H18 340-341

H14 341-342



~72-

extensometer holes E6, E7, and E8 shows fractures concentrated in the
footwall of the H9-1/H9-2 fault system. Although this association probably
persists, it does not dominate the overall picture, as can be seen in the
342-344 m (midplane) fracture intensity contour map of Fig. 4.9. Instead of
migrating to the west, the contour pattern has broadened and even shifted to
the east. The pattern seems to be complicated by the east-dipping pegmatite

A or by an unidentified E-W striking feature.

The lowermost of the three fracture maps in Fig. 4.9 shows that fractur-

ing has decreased below the heater H9 heater midplane.

4.4.2 H10 Area

Of the 15 extensometer holes in the H10 area, six have zones of high
fracture frequency within reasonable proximity of the heater borehole.
These zones can be distinguished by visual inspections of the cross sections.
Vertical borehole E12, Tocated 2 m from H10, has a zone of predominantly
calcite fractures between the midplane and 1-m. Both E12 and its neighbor
E13 have a high fracture density from the midplane to about 4 m below the
midplane. Hole E14, also in cross section HIOA, has a 1-m zone of chlorite
fractures from 1 to 2 m below the midplane at a radial distance of 2.5 m.
Likewise, borehole E15 at 2 m radial distance also contains a 1-m zone of
calcite-filled fractures between -1 and -2 m. Fracturing in the vertical
E-holes tends to be more concentrated immediately below the midplane rather

than immediately above it.

The sonic waveform logs presented in Appendix D provide an independent
visual indication of the degree of fracturing in the vertical E-holes. Four

zones in holes E12, E13, and E14 are the most anomalous, based on perturba-
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tions of the shear-wave portion of the record. The waveform record of hole

E15 appears to be the most generally disrupted throughout its length.

Figure 4.10 shows that progressive increase of fracturing with depth
is a general feature of the H10 area, as observed in most of the vertical
boreholes. In the 340-342 m interval, fracture density exceeding 20 per 2-m
interval is present only in a limited area which includes the H10 heater
holes. In the 342-344 and the 344-346 m intervals the area enclosed by the
20 per m fracture density contour broadens considerably and the overall

fracture density increases.

During examination of the fracture density in the H10 horizontal holes,
only 3 m of core from the ends of the horizontal holes were relogged to
include the closed fractures (Sect. 3.3). This makes holes E27, E32, and E34
appear to be the most intensely fractured. Of these three, only E34 lies in
the heater midplane. Its 2-m zone of more intense fracturing lies 2 to 4 m

from H10,

4,4,3 Calcite Fractures

Discussion in Section 5.3 will show that the calcite-coated fractures
are mechanically the weakest of the three mineralogical types present,
as indicated by the open-versus-closed fracture statistics. Hence calcite
fractures are highlighted by showing their projected locations on the H9
midplane map of Fig. 4.3, and by summarizing the 1-m core intervals with
three or more calcite fractures in Table 4.3. The table was compiled by

scanning the cross sections of Fig. 4.5 and Appendix B.

Occurrences of calcite fractures can be described as dispersed.

However, the most concentrated zones occur at the bottom of holes E6 and E/
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(Fig. B.1 and Table 4.3) in the H9 aréa; A number of intercepts are found
close to pegmatite A in holes U3, U2, Ul and T13 (also in Fig. B.l). Calcite
fractures seem to be almost completely absent in.the first few meters on the

hanging wall side of faults H9-1 and H9-2.

In the H10 area, calcite fractures are>wel1 distributed throughout
the cross sections. Ho1es E12 at 343-344 m,Aand hole E15 at 344-345 m,
show particularly well def1ned zones of ca1c1te fractures. The cross sec-
tions show more calcite fractures occur 1in the H10 area than in the H9. This
observation is confirmed by the statistical summary in Table 5.2, presented

in the next section.
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5. STATISTICAL ANALYSIS OF DISCONTINUITIES

5.1 Methodology

5.1.1 Introduction.

In the previous chapter, the vast majority of fractures were shown to be
discontinuous and not traceable between two boreholes despite the high
drilling density. To complete the picture of the fracture system, it was
necessary to complement the mapping approach with a statistical analysis.

The discussion in this chapter is based largely on stereonet pole plots
compiled separately according to fracture mineralization, hole location, hole
orientation, and whether the fracture was open or closed when core was
retrieved. Although this approach has its limitations, it does allow exam-
ination of the influence of a variety of parameters on fracture character and

comparison of observations between the experiment areas.

In addition to the stereographic plots, a Rock Quality Mesignation
Index (RQD) was calculated and plotted for all vertical E and M boreholes in
the full-scale drift. RQD is defined as the sum of the length of all core
pieces 10 cm or larger over a given interval length. ROD is consequently
between 0.0 and 1.0, with 1.0 meaning that all core pieces are larger than 10
cm. A further discussion of RQD is given by Deere (1963). A report by
Olkiewicz, et al. (1979, Appendix D) presents the RQD results in log fashion
alongside pictorial logs of fracture location. The RQD results for the
E-holes also appear in Appendix D of this report, but for most purposes they
have been superseded by the cross-sectional diagrams of Section 4 of this
report. Although the ROD values may prove to be useful for engineering

purposes, our analysis is based on stereonets only.
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5.1.2 The Equal-Area Stereonet

Stereographic projections are commonly used to present the strike and
dip of planar surfaces (Goodman, 1976). The example of Fig. 5.1 shows an
epidote fault in the H9 area projected onto the lower hemisphere of an
equatorial equal-area stereonet. The dashed 1line represents the intersection
of the fault plane with the lower hemispherical surface, projected back to
the equatorial plane. However, it is preferable to plot the stereographic
projection of the normal to the plane rather than the plane itself. The pole
projection in Fig. 5.1 includes arrows showing the area spanned by * 5 degree

variations in strike and dip.

The method of projection determines the properties of the stereogram.
For statistical purposes, it is advantageous to use the equal-area projec-
tion, often called the Schmidt stereonet, which preserves solid-angle areas
but distorts angles of intersection (Goodman, 1976). A11 stereograms in this

report are equal-area projections.

The two angles o and 8 (see Section 3.3 for definitions) must be
converted to true strike and dip before the data can be plotted on stereo-
grams. For vertical boreholes, where the measured angle o is the comple-
ment of true dip, the procedure is straightforward, as Table 5.1 demon-
strates. This conversion is more complicated for non-vertical boreholes.
The conversions were done by University of Waterloo personnel using an
existing computer code, following the procedure described by Lau and Gale

(1976).

Fig. 5.2 demonstrates a good .agreement between the data base and conver-

sion algorithms. The poles of quartz veins encountered in horizontal
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Q_Fu{lscole .
drift 4 geographic +
NSI°E  ine Y9I magnetic north

Epidote

fault
| _3\0
\0\0
XBL 811-2558A

Fig. 5.1 An epidote fault plane and its normal projected onto the Tower
lower hemisphere of an equal area stereonet. The plan map of
the fullscale drift shows the mine coordinates rotated 10 degrees
to account for the offset with respect to true north.
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Table 5.1. Sample conversions of measured
orientation angles to geologic
strike and dip.

o B Geologic strike and dip

30 0 N39W/60W

30 45 N 6E/60W

30 90 N51E/60W

30 135 N24W/60E

30 180 N39W/60E

30 225 N 6E/60E

30 270 N51E/60E

30 315 NB4W/60W

30 360 N39W/60W
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and vertical holes fall within the same zones on the pole plots. The quartz
veins furnish good control because they were limited in number and were

relatively easy to distinguish in core.

A1l fractures from oriented core were hand-plotted, using a separate
plot for each mineral in each hole. The holes were then divided into four
groups corresponding to the horizontal and vertical holes in the H9 and H10
areas. FEach of these groups was divided further into mineral subgroups for
chlorite, calcite and epidote. The plotted poles in each subgroup were
summed up over each 10 x 10 degrees area and the number was recorded in the
middle of the area. After the data base was established, different subgroup

categories were summed, or results were presented as a percentage of total.

5.1.3 Description of Pole Plots and Statistics

A total of 3,248 individual fracture intercepts are shown on the pole
plots of Appendix C. Table 5.2 serves as an index to the pole plots and also
summarizes the statistical data for each plot. As shown by Tables 5.2a and
5.2b, the four major groupings are vertical H9, vertical H10, horizontal H9
and horizontal H10. A third set of plots listed in Table 5.2c sums the
vertical and horizontal statistics for the H9 and H10 holes. However, no
pole plots exist for the H10 holes in this third category because of the more
restricted sampling of the closed fractures from horizontal H10 holes (see

Section 3.3).

The finer subdivisions in Table 5.2 are organized, first, by whether
a fracture was open or closed when the core was retrieved and, second, by
the dominant mineral coating the fracture surface. In Appendix C, cor-

responding plots from the two areas are placed side by side for easy



-81-

(6" 1) {0°¢) (8°¢£) (e 1) (9°2) {€9)
I89/MIN M9T/302N 39T /M22N 09701 €6/ 362/3CTN MGS/3L N M62/3VEN £€°6 0801 043 Ly
(0-9) (0°¢) (2°v) (8'v)
MI1G/32IN [9°0 0§ MOT /309N MLS/3LN nLZ/3reN 06°2 9€£€ 0+) ajopidl
(9-2)
362/32IN
(¥-2) (0°€) (v°9) (972) (9-2) (5°€)
MZ/36SN 389/M8IN 39T/MO2N 222 991 36£/39 N MO/ /MBEN M8 /3EIN 860 p11 049 2112(8)
(2°1) (¢°¢) (9°¢€) (v 1) (£9)
389/M6N M9T/302N 39T /MO2N 1L LLS 392/301N MOE/32EN £9°§ 0£9 0+) 81140 4)
{9°1) (s°t) (5°1)
304 /M8EN M8 /305N 329/306N
(672) (2°9) (s v) (6°1) (¢°2) (2°8)
312/39tN 391/MO2N MOT/M22N 60°§ 18¢ J2L/MTN 392 /301N ML /LN 52°2 192 0 LLy
(0-01) (0-01) {o-01)
) 80°0 9 398/MS N 39T/MOIN ML /30EN L1°0 02 0 a10p1d3
1°€
MZT/39 N
(17¢) (6°€) (£7%) (£9/8) (£9/¢)
MEL/I6SN 389/M6/N 39T /MBEN 0L°1 121 ML /326N 362/32N 85°0 (9 0 8112]e)
{0-2)
389/MO8BN
(2°¢) {0° %) (2°5) (¢°2) (£°9)
M8E /352N 391/MO2N MIT/MLIN 1€°¢ 812 J18/MTON M8 /3VEN 05°1T vLl 0 21140(Y4)
(v°1)
(22) (£°2) (6°2) 362 /M29N (0°2) (9°9)
IST/MT N MIZ/3VIN M8t /3TN 15°§ AR 352/MZTN MG5/39 N M62/32EN S0°¢L 618 ? LY
(2) (2 2) (1°%) (L7 %)
MOS/32IN 65°0 v 352/MIZN M95/39 N MLZ/302N 22 91¢ 3 aj0pLd]
(8) (¥°9)
I9T/MLIN 2570 6€ 359/39 N o) A% J 31101e)
(0°¢) (g°¢) (7€) (1'8)
MOE /MZEN 39T /MO2N MEZ/3ZIN o'y 62€ MOE /3EEN £6°¢ 95y J 3314014
Je44 Jr4l
ajod ajod alod u jo aod ajod aiod u J0 uadg
paLy3g puo23s uLew /oeay ou pALYY puoa3s upew /Ieat *ou /paso|) |RABU LY
(*3) 0T H (W + *3) 6H

S3T0H TYIILY3A

*S310y |BDL]48A 404 S$O13SL3e3s 30(d ajod jo Asewuwns pue sjold 3jod oyideabosasys jo xspul

*(e)2'G algel



-82-

(1°1) (£°1) (1°¢)
1£°6 0.5 M09 /My N M/8/MGSN MGZ /39N Sh°L 508 0+2 1Ly
(172) (1°2) (£°9)
52°0 1z M99/388N M19/355N M98/MG N £e°1 b1 0+3 ajop1dy
(e2) (e°2) (62) (9-2)
M98/ 3IGEN M98/ 3ISIN 398/M9zZN 19°1 £L1 M88/MSSN £p°1 ST 0+3 91121e)
(6°1) (6°1) (v-2) (0°2) (v°¢g) (£°€)
M98/3SIN M19/355N 398 /MGIN Gp°g 0Lt M88/MSGN 398/M9TN Mo//39 N 69°Y 105 0+ a1tdo(y)
(9°1) (g°2) (2°¢) (6°1) (p°2) {9°2)
N09/3G5N M9g/ISTN 198/ M92ZN S0 Gep 3%8/MI9N 384/ MIEN 35 /M9TIN 05°¢ 8¢ 0 Ly
11°0 21 90°0 9 0 ajopidy
(0°2)
/731N
(0°2) (9°2) (g°¢) (2°¢)
199/MgsN M98/ 391N 398/Mg2N £p°1 £61 M88/MySN 91°1 521 0 a3tole)
(6°1) (z°2) (g°¢) (9°1) (v°2) (z°g)
M09/395N 399/35 N 198/MG2N 25°2 012 308/MZLN 38/ /MIEN 16/ /M9TN 62°2 142 0 a1140[Y)
(g°g) (£°¢) (v°1) (6°1) (6°2) (8°%)
192/321N M29/325N MBE /3N A SET 309/MI8N MG8/3ISIN MG9/35 N 98°¢ LTh I 1Ly
(2°2) (z°2) (5°9)
6v°0 ST M99/3/8N M09/ 3bSN MIB/MG N 821 8e1 N aj0p1d3
59°0 0z (Z°0 62 ) ?3121e)
{0°€) {0°¢g) (0°s) (e°2) (s°¢g) (8°s)
3/9/316N M92/301N M8E /352N Lz's 001 M6S/3ELN 368/MITN M99/39 N w2 092 9 21140149
Jedj JeJdj
ajod a|od a|od u 40 ajod a|od alod u 10 uadp
pJd iyl puooas uiew /oedy ou pJ Lyl puo?3s uLew /ordy “ou /paso|) leJdautLy
(U3} o1 H {"3) 6H

SITOH TVINOZIYOH

*sajoy |pjuczlJdoy Joj sjo|d ajod jo Aieumns pue xapuj

‘{q)zs 31981



-83-

(2°1) (1°2) (57¢)

[9°6 £9€T 398/M9TN MGG/3L N M62/3CEN '8 G881 0+) LY
(€°2) (7€) (8°¢)

99°0 Ll MIB/Mb N M9G/39 N ML2/32N y1°2 08t 0+ aj0pid3
(6°1) (6°1) (6°1)

01°2 6EE M9t /3N MGE /38PN MZL/MBYN 02°1 892 0+) 31121e)
(1) (6°1) (87¢)

10°¢ LY6 3G8/MITN MOZ/3S N MOE/IPEN [0°§ LETT 0+) 331401Y)
(1) (9°1) (5°2)

8t v 918 324 /MIIN 39/ /MITIN M. /38YN 982 6€9 0 LLY

010 81 21°0 92 0 aij0ptd3
(9°1) (9°1) (1°2)

v5°1 082 3r8/399N M8 /38PN MB88/MSSN 98°0 261 0 3110(e)
(671) (9-2)

¥8°2 81§ 39/ /M91N M8 /30SN 88°1 2% 0 33140(Y)
(0°1) (5-2) (1)

61°6 LYS 38E /M92N MSG/3L N M62/3VEN [§°§ 9421 0 LLY
(v°2) (5°¢) (L°¢)

96°0 65 M98/MS N M9S/3/ N M92/3T2N £0°2 ySY J ajopidj
(6°¢) (67¢€) (6°¢€)

96°0 6G 359/39 N MyL/I8YN MZ8/MSSN vE"0 9/ 2 8112e)
(£°1) (62) (9°6)

VAR 6EY 3G8/MSIN MS9/39 N MOE /IEEN 02°€ 91/ 9 3114014)

um.\C Jedy
W 40 a|od aiod ajod w 40 uadp
\um.__..v ou n.::p puolas ulew \um.ﬁ *ou \vmmo_.u |edduLly

(43 “A3) 0T H

(W ‘Y3 “M3) 6H

(3NTGWOD S3ITOH TYLINOZIYOH ONY TW3ILd3A

*S3|0Y [RPIUOZLJOY DUR [BDL143A 40j pawuns s30(d ajod jo Adpwwns pue xapui

*{2)2°6 ={qey



-84~

comparison.

Table 3.4 shows the relationship between the core inventory and data
used in the pole plots. Only the oriented core retrieved from the 56 mm and
76 mm diameter holes could be used to construct the pole plots. The core

from 406 mm heater holes is not included. The headings in Table 5.2 also

designate the prefix of the hole type incorporated into the data base:
Ey designates the vertical 76 mm extensometer holes, Ey the horizontal 76

mm extensometer holes, and M the 56 mm monitor holes.

The pole plots in Appendix C are presented in two formats, determined by
the number of fractures counted in a given sub-group. If more than 100
fractures occur on a given pole plot, the number in each 10 x 10 degree area
js entered as a percentage of the total for,that plot, and the result is
contoured. If less than 100 fractures were counted, then the number of

fractures in a 10 x 10 degree area is given, and no contours are drawn.

The core length, number of fractures, and the average fracture frequency

are listed on each pole plot. The latter two data entries are repeated

in the Table 5.2 summary. Table 5.2 also includes the strike and dip

of fracture planes with the most prominent poles, accompanied by the percen-
tage of fractures comprising that pole. Usually the three most prominent
poles are listed, although it was sometimes difficult or impossible to find

more than one well-defined cluster.

Bar graph summaries of the statistical data are shown in Figs. 5.3 and
5.4, Fig. 5.3, showing the open fractures as a percentage of total frac-

tures, contains data from Table 5.2 with the addition of statistics for the
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rigs.
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Statistics of the vertical boreholes in the H9 area are graphed

separately for Ey and M boreholes, whereas in the pole plots and in Table

5.2 these data are combined. The secor

which are taken directly from Table 5

mineral, and core condition classifications for each borehole.

5.3 and 5.4 and Table 5.2, as well as

in the following discussion.

5.2 Limitations of the Pole Plots

d set of bar graphs given in Fig. 5.4,
1, display the fracture density,
Both Figs.

selected pole plots will be referred to

5.2.1 Sampling Bias Due to Drilling Direction

A true representation of the joint frequency is obtained only when the

drilling is perpendicular to a partict
at less than normal incidence tend to

and Terzaghi (1965) state that the cor

of the angle of intersection.

1Tar joint set.

Fractures intersected
be underrepresented. Goodman (1976)

rection factor is given by the cosine

If Ny is the number of joints observed at an

angle o, with o being the angle between the drill axis and the normal to the

fracture surface, then the correct number of joints N. is given by expres-

sion

N

. N, / cosa

To correct the observations a weighting factor of cosa would have to be

applied to data collected from single, isolated boreholes.

No such correc-

tion has been applied to the data in this report.

Figure 5.5 demonstrates clearly that the resulting directional bias is

readily observable in many of the pole plots.

The calcite-coated fractures

from the H10 area were about equally sampled by the vertical and the horizon-

tal boreholes.

The tendency of the vertical holes to intersect a greater



-88-

*4938uWl4ad 3yl punode

dnoab 03 pusy seloy |ejuozidoy ayy wodt sajod apLym ‘3o0(d

40 433UdD 3y} pAeMO] dnoub €SSUN3ORUL |RIUOZLUOY JO Jaqunu

4970346 ® 3d92J3UL YOLYM ©S3|0YS4Cq 1BILIUSA BY] WOUL $3]0d

"(1ybLa) saloysu0q |PJUOZLAOY pue (2491) LBOLJUBA WOUF ‘eade
OTH WOJ4j uoljezi|edaulll 831d|ed Y3LM saunidoedy jo siyold ajod GG *Bi4

g6e6e-0L08 Nax

Wi/ ooy 191 S W/ 3044 2e'e S

L Py

& JLQQ

9

,o.
¥0 9090 gq g0

)

2]

s s
aj02s|ing d ajoosiing

8400 jo w 2¢°J 01l 9400 JO W $@'pL

sjuiod ¢/ sjujod 99¢

(p9s0|0 pup usdo) (peso|2 pup usdo) I

$8.40)0043 ||¥ yiioN 21eubopy $84NL0044 {1V yiioN seubopy

uoiIDZI|DABUIW 81i0]D) ss0udsiway 4omon UCHDZHDIBUIW BLDID) sisydsiway J8M0T

9oUBLINDN0 %, OfH ‘S8JoY |DIuoZIIoY 10} Joid ejod DesD-jDNDS pIWYIS 30UBIINOD0 o, OfH S9]0Y |DJ1LISA Jo) joid 8jod D3iD-|DNbY IPIWYOS



-89-

number of horizontal fractures is shown
fracture poles towards the center of th
holes produce a plot with the fracture
Although the sample data have not been
two pole plots are summed, the bias is
of the boreholes of several orientation
a single borehole sample) also tends to
the sample geometry is complex the dire
not been analyzed. This problem is not

the drilling geometries in the H9 and H

hence comparisons between the two areas

5.2.2 Overrepresentation of Conti

clearly by the grouping of the

e pole plot. Likewise, horizontal
poles clustered around the perimeter.
weighted to reduce this bias, when the
greatly reduced. The tight clustering
s in the sample volume (as opposed to
reduce the directional bias. Because
ctional bias thereby introduced has

as severe as it might seem because
10 areas are almost identical, and

are valid.

nuous Fractures

Because of the dense concentration
areas, different holes will indeed samp

length much exceeds the mean borehole s

of boreholes used in the H9 and H1O0
le a fracture more than once if its

pacing. Moreover, because the hori-

zontal holes converge toward the central heater holes, multiple sampling will

depend on absolute fracture location.

A continuous fracture near the heater

hole will intersect more holes one several meters farther away.

A pole plot of the epidote-filled
(Fig. 5.6) shows overrepresentation of

H9A (Fig 4.4) shows a sectional view of

closed fractures from the H9 area
the dominant epidote faults. Profile

the continuous epidote features. The

prominent contoured highs in Fig. 5.6 and the high incidence of epidote

fractures (2.78/meter in H9 area compar

largely attributed to oversampling of c

ed with 0.59/ meter in H1O area) are

ontinuous features in the H9 area.



€3 0y340q

[PA3ADS UL S94NIORAS 310PpLAS SNONULIUDD M34 B JO UOL]ISS
-493UL 9yl Ag pasned DulL|aweS-u3A0 03 painqgidire A abae| st
101d ajod eade gH 3yl uL ead 4nojuod juauilwodd ayl] - (ybLd)

Seade Ja3esy QTH pue (249]) 6H Wod4} Saunidedy pajeod-sioptdy 9°Gg *bid

\2e6e-0108 18X

wy 3044 660 S

w/ooK 2l'2

-90-

325y b

8100 JO W 8/
sjujod b

$84N}oDJ} PISO|) 410N 2118UBON
uolibzI|DJBUIW Bj0pId]
OIH *‘s8joy 3 [Dpd1iiaA o} joid 8jod paJD-|pnba }piwyodg

aJaydsiway Jemon]

aio8ind 3
2103 jJo W 909l
sjulodoig
$84n}0D1J PasoO|)
uo140Z1|DJI3UIW Bjopd]

29UBLINDI0 9, GH S3j0Y |DOKJAA Joy Jold 3jod pasD-jDNba |plUIYIS

yjJoN o1aubopy
?Jaydsiway 1Mo



-01-

Such "overrepresentation" would be misleading only if each data point
were considered as an individual fracture. For representing overall fracture

density, it is probably quite equitable.

5.2.3 Effects of Coring and Drilling Procedures

In considering the effects of hole diameter, it was found that the
percentage of open fractures in the 38 mm vertical boreholes was the highest,
both for fractures with each type of mineral-infilling material and for all
fractures combined (Fig. 5.3). This result is caused by the small diameter

of the retrieved core, and by the use of the double-tube core barrel. The

percentages of open fractures from the 56 and 76 mm vertical boreholes did
not differ much, despite the different coring techniques and drilling ma-
chines used. This is attributed primarily to the special care exercised in

the recovery of the 56 mm (M-hole) core.

Cores from the vertical 76 mm holes in the H9 and H10 areas do show a
substantial difference in the number of open fractures. Table 5.2 shows that
48% of fractures from the H10 vertical E-holes were opened by drilling, while
only 20% were opened in the H9 area. When the open/closed fracture data are
examined by mineral type, as in Figs. 5.3 and 5.4, the same results are
obtained: 1in the H10 area, open fracture percentages are significantly
higher than in the H9 area, regardless of infilling. The difference is

explained by the different coring techniques used for the vertical E-holes in

the H9 and H10 areas. In the H9 area, a triple-tube barrel retrieved core; in
the H10 area, a conventional thin-walled, double-tube core barrel was used.
The double tube produced larger core than the triple-tube barrel, and thus

it should be less susceptible to breakage. In fact, there are approximately
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2.5 times more fractures opened during dr
area) than with the triple (H9). The red

with triple-tube core recovery produced t

Also noteworthy is the higher number
76-mm horizontal boreholes. These boreho
the 76-mm vertical boreholes in the H9 ar
even though the coring and drilling techn
cases (triple-tube core barrel and Toram
the chlorite fractures in Fig. 5.4: 49%

41% from the H10 horizontal boreholes wer

tures from the H9 vertical holes were ope
an effect of orientation--perhaps due to

weaker fracture sets than vertical ones,

between borehole and fracture plane--it s
cal effect associated with drilling horiz
thus suggests that the quality of the cor
As borehole

function of drilling angle.

of the core samples decreases.

5.3 Discussion of Pole Plots and Statist

i1ling with the double tube (H10
uced handling and vibration achieved

he better results.

of open fractures in the H9 and H10
les yielded higher percentages than
ea (see Table 5.2 or Fig. 5.4),
iques were the same in all three
drill rig). For example, consider
of fractures in core from the H9 and
e opened, while only 28% of frac-
ned. While this result could be
horizontal boreholes intersecting
or to different angles of incidence
eems more likely that some mechani-
ontal holes is the cause. Our data

e retrieved from a borehole is a

inclination increases, the quality

ics

5.3.1 Relative Mineral Abundances

Chlorite is found coating the majori

epidote and calcite are present on less than half the fracture surfaces.

the H9 heater area, a total of 3,385 open
including core from the 38 mm boreholes.

was noted on 72%, epidote on 21%, and cal

ty of fracture surfaces, while

In
and closed fractures were logged,
In this large sampling, chlorite

cite on 12% of the fracture surfaces.
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This total exceeds 100% because more tha

surfaces.

minerals in both horizontal and vertical

ite, calcite and epidote are the dominan

fractures, respectively.
70%, 25% and 5%.
part to the abundance of epidote-coated

below.

5.3.2 Relative Strength of Fractur

Tabie 5.2 gives the number of

In the H10 are

This shift in relative

n one mineral was counted on fracture
fractures coated with the three
boreholes. In the H9 area, chlor-

t mineral on 60%, 14%, and 26% of the
a, the respective percentages are

abundances is attributed in large

faults in the HY area, as discussed

e Coatings

The type of fracture infilling mine
fractures opened during the drilling pro
variation in core size and borehole orie

chlorite, and calcite-filled open fractu

horizontal and vertical boreholes and fo

results are plotted in the bar graph sho

When compiling Fig. 5.3 it was real

less complete than for the H9 area, due

the smaller amount of horizontal core relogged.

ral is reflected in the percentage of
cess. To eliminate any bias due to
ntation, the percentages of epidote,
res were calculated separately for

r various borehole diameters. The

wn in Fig. 5.3.

ized that the H10 area data base was

to the doubie-tube core recovery and

For these reasons, Fig. 5.3

emphasizes H9 data and includes data from the vertical boreholes in the H10

area for reference.

results. Figure. 5.3 shows that 90% of

The conclusions are therefore based mainly on the H9

the epidote-filled fractures, 63% of

the chlorite-filled fractures, and 31% of calcite-filled fractures are

closed.
coated fractures are considerably weaker

considerably stronger than average. It

The drilling-induced breakage clearly indicates that the calcite-

and the epidote-coated fractures

is concluded that these significant
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differences in fracture strength are caused by the type of mineral filling.

5.3.3 Relationship of Chlorite and Epidote Fractures to Faulting

The most important feature in the H9 area is the prominent cluster of

poles in the south-east quadrant of most H9 pole plots, as shown in Fig. 5.7.

The floor map (Fig. 4.1) shows that the drilling for the H9 experiment

intersected one of the major fault zones found throughout the experimental

drifts (also shown in the extensometer

fault zone is intersected by drilling,

poles oriented normal to the fault occ

Only a few epidote-coated fractur
seen in the pole plots or in the numer
map (Fig. 4.1) confirms that there are

tion in the H10 area than in the H9 ar

5.3.4 Mineralization Type and Or

drift wall map, Fig. 4.2). When a
as in the H9 area, a large cluster of

urs.

es are found in the H10 area, as can be
jcal summary (Table 5.2c). The floor
fewer faults with epidote mineraliza-

ea.

ientation (H9 area)

The effects of different minerali

zation types show up most clearly when

comparing open with closed fractures, or when discussing differences between

the H9 and H10 areas. However, there
orientation upon mineralization type.
plots, which have an adequate populati
pole plots for the vertical boreholes

Fig. 5.7.

Similar observations were m

is also some dependence of fracture
This is best examined in the H9 pole
on of epidote-filled fractures. The
in the H9 heater area are reproduced in

ade in the horizontal holes (Figs. C41,

C43, and C45) and in the summaries of borehole orientations (Figs. C57, C58,

€59 of Appendix C).
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Figure 5.7 shows that the dominant poles of epidote and chlorite frac-
tures coincide, indicating fracture planes with strikes of N30E (+8) and with
dips of about 30W. The contour patterns of epidote and chlorite are fairly
concordant throughout the pole plot, showing the general coincidence of the
two fracture types. The calcite population is more widely distributed,
although many calcite fractures have the same dip and strike as the dominant
chlorite and epidote fractures. In general, the calcite fracture orienta-

tions are more dispersed than the epidote and chlorite fractures.

5.3.5 Comparisons Between H9 and H1O0 Areas

It is instructive to compare the pole plots from the two heater arrays.
Although only 22 m apart and situated in the same drift, they have marked
differences in fracture orientation and, as discussed elsewhere, in fracture

infilling minerals.

Because the number of chlorite fractures lTogged in the H9 and H10 areas
are comparable, the chlorite fracture pole plots (Fig. 5.8) are used to
discuss the differences in fracture orientation between the two areas. In
Fig. 5.8 we retain the separate presentations for vertical and horizontal
holes. Differences between the distributions for H9 and H10 are not too
obvious at first inspection. However, when considering the vertical bore-
holes (upper portion of Fig. 5.8), it can be seen that the H10 area does not
display a cluster of poles at the same orientation (N32E/30W) for the plane
as the dominant H9 pole cluster; this is attributed to the through-going
epidote faults. The two clusters of poles in the H'"™ area indicate that the
fractures are more nearly horizontal and closer to the north-south strike.

Table 5.2 gives the fracture plane orientations as N20W/16E and N20E/16W.
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The drift floor map (Fig. 4.1) confirms that fractures in the H10 area are
more nearly horizontal than in the H9 area. Since the two areas are only

22 m apart, this change is rather remarkable.

Comparative statements about the horizontal holes are more difficult to
make (see lower half of Fig. 5.8). A cluster of fracture planes in the
H9 plot oriented NO6E/76W does not reappear in the H10 pole plot. Other
contour maxima, which designate near-vertical planes striking N55W and N20W,
appear in both H9 and H10 pole plots. None of the contour maxima of the
vertical holes reappear in the horizontal holes. The fractures in the H10
heater area are probably too nearly horizontal to be sampled by horizontal
holes. In the H9 area the epidote faults and their associated chlorite
fractures are not intersected by any of the horizontal holes (see Fig. 4.1

and Fig. 4.3).

The fracture density statistics (Fig. 5.8), showing 7.7 fractures per
meter in H10 area compared with 5.43 fractures per meter in H9 area, reflect
the differences in orientation to some extent. When considered with the
fracture density values from the horizontal boreholes (Table 5.2c), the
respective values are 9.67 and 8.41 fractures per meter, showing the fracture

density in the H10 area to be 15% greater than in the H9 area.

Besides the fact that the H10 area is somewhat more fractured, the

fractures in this area are less continuous than in H9.

5.3.6 Comparison with Time-Scaled Pole Plot

Figure 5.8 includes a summary pole plot adapted from Fig. 14 of Thorpe's

(1979) fracture study in the time-scaled drift. Since Thorpe used the mine
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coordinate system rather than geographic north, his pole plot has been
rotated 10 degrees to coincide with the geographic north convention used in
this report. At Stripa, geographic north and magnetic north coincide within
10.2 degrees, with mine coordinate north oriented 10 degrees west of geo-
graphic north. (Some of the pole plots in the report by Thorpe erroneously
indicate "Mag.N." at the top, rather than "Mine N"--these are Fig. 23, Fig.

24, and the pole plots of Appendix C.)

To assure that the data sets are compatible, Fig. 5.9 includes only open
fractures for all mineralization types. Of the four fracture sets identi-
fied in the contour diagram by Thorpe, only sets 1 and 4 are consistent with
the full-scale (FS) fracture plots. Set 3 of the time-scaled drift is not
reflected in the H9 and H10 pole plots. Set 2 is only weakly found in the H9
and the H10 area pole plots. However, examination of FS plots in which
horizontal sampling is included, such as Fig. C56, does not demonstrate the
presence of this fracture set in the FS drift. Evidence for set 3 is com-
pletely lacking in the FS plots. Thorpe comments that set 3, although the
dominant cluster in the time-scaled drift in terms of fracture frequency, is
comprised largely of short joints with trace lengths less than 0.5 m, and is

poorly represented in the time-scaled floor map.

The side lobe in the contour pattern of fracture set 1 from the time-
scaled drift corresponds to the direction of the four major fracture planes
identified in the floor map of the FS drift. The corresponding lobe in the
H9 area pole plot includes the major through-going epidote-coated faults
identified on the wall and floor of the H9 area. The lobe is less developed

in the H10 area plot, but is still identifiable. The continuity in strike
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and dip of this set of epidote faults (Fig. 4.7) has already been discussed

in section 4.2.

Fracture set 4 identifies horizontal fractures in the time-scaled drift.
Horizontal and sub-horizontal fractures comprise the dominant population
sampled by vertical holes in the FS drift, where the strike skews about a N-S
direction to considerable extent. In the time-scaled drift, the strike of

sub-horizontal features is obscured by the fracture set 3 population.
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6. SUMMARY

(1) Fractures have been mapped on drift surfaces and in core to charac-
terize the rock mass surrounding the two full scale heater experiments at
Stripa. Mapping of the drift floor was carried out at an unusual level of
detail, with discontinuities only a fraction of a meter in length recorded.
The drift walls were mapped in less detail, only prominent features with
exposed lengths of a meter or more being recorded. Compared with interpreta-
tion of core data, mapping is quicker and produces a superior product for

visualizing the spatial character of the fracture network.

Virtually all discontinuities occurring in core were logged for orienta-
tion, thickness, and mineral type, first by recording open fractures at the
time of core recovery, and second by relogging the core to record all

closed fractures. Reconstruction of the subsurface fracture system from this

data was time-consuming, tedious, and subject to interpretive judgment
despite the high intensity of drilling coverage and the excellent quality of
core recovery and logging. The certainty with which major discontinuities
could be located depended on their intersection with exposed surfaces and
with offset pegmatite dikes. Only a small fraction of the total number of
fractures observed in core could be interpolated between boreholes. However,
the core data were invaluable for locating fractures, defining their orienta-
tion, examining effects of mineral infilling, and comparing drill and core
recovery techniques. The resulting data base will be useful in interpreting
results from experiments carried out in and near the full-scale drift, such
as the cross-hole ultrasonic measurements, borehole determinations of the

state-of-stress, and thermomechanical results from the heater experiments.
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(2) Several prominent pegmatite dikes and quartz veins were found on
drift surfaces and in boreholes; their presence made it possible to define
the extent and magnitude of several major faults. The dominant set of
through-going faults, striking N-S and dipping about 60W, is consistent with:
the four prominent discontinuities present in the time-scaled drift (Fig.
4.7). Epidote is the dominant mineral coating the fault surfaces. Offsets
determined by the positions of dikes range between 1 and 6 m. ATl faults -

appear to have reverse vertical components of displacement.

A second prominent fault, striking E-W and dipping 60W, has been infer-
red on the basis of the observed offset of dikes on the extensometer drift
wall relative to the full-scale drift. This fault post-dates the N-S fault-

ing, its inferred offset is about 6 m, and it also is a reverse fault.

Pegmatites and N-S faults cut through many of the boreholes in the H9
area, including the H9 heater hole itself. Tn the H1O area, however, there
is no evidence that either dikes or major faults cut through the vertical

holes.

(3) Chlorite, epidote, and calcite were identified as the three most
common minerals coating fracture surfaces; statistics on their relative
abundances are summarized in Table 5.2 and Figs. 5.3 and 5.4. Chlorite is
ubiquitous and is the dominant mineral on 60 to 70% of the fracture surfaces.
Calcite is rarest, being found on 15 to 25% of the fractures. In the major
faults, epidote is the dominant mineral, but it is Tess common where faults
are not present. Stereoplots show that the orientations of chlorite and
epidote fractures are concordant, with a single prominent concentration of

fracture planes oriented N30E/30W. Calcite fracture orientations are more
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diffuse, lacking even the single prominen

fractures.

The separate recording of closed and

ranking of relative fracture strength (F1

tures are open in retrieved core, while m
are found to be open. About 30 to 40% of
open in the retrieved core. Hence the co
of the three fracture types as follows:
is no evidence, however, that this rankin

Calcite fractures are the youngest of the

(4) Our observations in the full-sc
who report that the degree of fracturing
intense. This can be seen by a cursory i

(Fig. 4.1). Several zones with intense f

could not be mapped are indicated by hatc
extensometer drift wall maps. The fractu
data confirm these observations: the bot
the average fracture density for all frac
meter, for a typical spacing of 11 cm.

comparable to an estimate made by Thorpe

data base compiled in the time-scaled dri

In the H10 area boreholes, local con
about 1 m extent could be located in the

indicative of structural control were evi

7-

t pole of the chlorite and epidote

open fractures provides a crude
g. 5.3). Few (~10%) epidote frac-
ost calcite fractures (~70%)

the chlorite-coated fractures were
re data rank the relative strength
epidote > chlorite > calcite. There
g actually depends on mineral type.

three types.

ale drift agree with those of others
at the Stripa experimental drifts is
nspection of the detailed floor map
racturing where individual features
hing in the FS-drift floor and the

re statistics compiled from the core
tom line of Table 5.2c shows that

ture types is 9.1 fractures per

This value of fracture frequency is

(1979) from a somewhat different

ft.

centrations of intense fracturing of
cross sections, but no patterns

dent. In the H9 area, on the other

hand, fracturing is more intense in some

boreholes immediately west of the H9
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heater hole, and may be related to the r

(5) Despite the high intensity of
zonite is generally quite competent, as
recovery. The generally intact nature
RQD values (Olkiewicz et al., 1978, and

only occasionally drop below 100%.

Other evidence that the fractures
sealed comes from a series of sonic bor
extensometer holes (Appendix D). Compr
form logs yielded very few anohalies in
drifts, even though all discernible dev
vertical E holes, only 17 cases were fo
shear arrival times were perturbed; an
in which only shear wave arrival times
spacing between waveform anomalies of a
(Table 5.2a) show that the spacings bet
fractures and 20 to 50 cm for open frac

fractures, therefore, registers on the

(6) The data base resulting from

in the full-scale and extensometer drif

e A computer-based Tisting of ind

closed, taken from the original

najor N-S faults Tocated there.

fracturing, the Stripa quartz mon-
reflected by the quality of core
of recovered core is reflected in the

Appendix D of this report), which

in the underground drifts are well

ehole logs atquiréd in the vertical
eésiona] travé] time and sohic wave-
the full-scale and time-scé]ed
jations were picked. In the 17

und in which both compressional and

additional 23 cases were distinguished

varied. : This yielded -an average
bout 4.3 m. In contrast, core data

ween fractures are 10 to 11 cm for all
tures. Only a small percentage of the

sonic waveform logs.

fracture mapping and core logging

ts is available as follows:

ividual fractures, both open and

field logging forms (Sect. 3.3).
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Detailed and simplified floor maps
4.1), a map of the full-scale wall

4.5A), and a map of the extensomet

Eight vertical radial sections spa

H9 area (Fig. 4.4 and Appendix B)

Pictorial logs of open and closed
the vertical E and M holes in the

Otkiewicz et al. 1979).

Stereoplots of fracture plane pole
tion, hole location, mineral type,

or closed (Appendix C of this repo

A three-dimensional plexiglass mod
2.1 m, showing prominent dikes, fa

(Fig. 4.6).

of the full-scale drift (Fig.
(upper portions of Figs. 4.4A and
er drift wall (Fig. 4.2).

ced 22.5 degrees apart, through the
and through the H1O area (Fig. 4.5).

fractures, RQD, and stereoplots for

full-scale drift (Appendix B of

s, categorized by hole orienta-
and whether the fracture was open

rt).

el at 1:20 scale, 0.7 m x 1.0 m x

ults, and all borehole Tocations
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APPENDIX A: FORMAT FOR FRACTURE LOGS
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The following explanation of fracture 1ogs is mod1f1ed from Append1x A

of Thorpe (1979).
ALl
Depth

The headings apply to thei"

’amp]e fracture logs of Fig.

- Length~from collar teumjdbejhtwofwfractureﬁsurface

(nearest cm) .

Description of Strata - The term "gran1te" qs a genera] descr1ptor here,

Structures and D1scont1nu1t1es*

~referring more correctly to_quartz monzonite.
Var1at1ons in co1or and texture are also noted.

Natural

Induced

Uncertain
‘Open/Closed

Other

Roughness.;;,i,_mﬂg

Amount of
‘Mineralization

Gouge
‘Type

Color

HW-

’Natural]y occurring fracture, usually open in situ

and containing some mineralization.
Break caused by drilling.

May be a natural fracture; however, its openness in
situ is very questionable.

Refers to condition of fracture in core and, by

rﬁﬁ1nference to its condition in situ.

'“fRefers to a d1scont1nu1ty other than a fracture.

:AmpJJtudeﬁofrsma11-sca1e irregularities with wave-

.....lengths < 1-2 cm. Larger scale roughness is denoted
as "irregular.”

fAM?unt of coating of wall rock:

fJAV]Ot.Qf mineralization
“jimw:{imedereﬁe mineralization
=~ STight mineralization
NW - uemu;uera1wzation

Coded by occurrence, not predominance. Main types

_.are chlorite, calcite, epidote and pyrite.
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Thickness

Hardness

Planar Features

Dip Direction

Angle of dip

Remarks

-117-

- Approximate thickness in mm; "hairline" fractures are
about 1/2 mm thick.

- Soft(S) - scratch with thumbnail.
Moderately hard (MH) - scratch with steel.

Hard (H) - cannot scratch with steel.

Azimuth of apparent dip, looking down hole.

Acute angle between fracture plane and core axis.

As required.
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APPENDIX B: COMPILATION OF H9 FRACTU

Orientation and dip measurements
posted in the vertical cross sections
the apparent dip of a given fracture

ments. If the core was not oriented,

RE DATA ON VERTICAL CROSS SECTIONS

based on the original fracture logs are
of Figs. B1-B8. On each cross section
plane is plotted with short Tine seg-

then the line segment is horizontal.

Both open and closed fractures are po

If the core was oriented, then b

parentheses; for unoriented core only

dip angle is the angle between the ho

sted.

oth dip and beta angle are given in
the dip angle is given. Note that the

rizontal and the fracture plane rather

than the alpha angle origina]iy recorded in the core logs. In vertical

boreholes, the dip is 90-a.
ranges which distinguish between frac

towards the front and rear of a given

The key also indicates the domin
In addition, a letter designating min
segments if the dominant mineral is o
“s" appears to designate the presence

fracture thickness is also posted.

There are a few peculiarities in
Cl) and H9H (Fig C8) include projecti
cross sections do not. These section
that the clutter was too great to dis
struction on a single fracture. A se

between cross sections B and C. An i

The key on each figure indicates the beta

ture planes projecting downwards

cross section.

ant mineral type on a fracture surface.
eral type is posted next to the line
ther than chlorite. Occasionally an

of slickensides. The estimate of

the cross sections. Sections H9A (Fig.

ons of through-going features; the other
s were compiled before it was realized
play both the raw data and the recon-
cond peculiarity is the reversal of view

maginary viewer walking counterclockwise
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around H9 will see cross sections HI9H through HIC in a consistent orientation,
but must reverse his direction of travel to view H9A and H9B in the same

orientation.
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APPENDIX C: FRACTURE POLE PLOTS

This appendix contains 59 fracture pole plots from the H9 and H10
heater experiment areas in the Stripa full-scale drift. Comparable plots
from the H9 and H10 areas appear side by side. If the number of fractures in
a given category is less than 100, then the number of fractures in a 10 x 10
degree area is given explicitly; if there are more than 100, then each entry
indicates the percentage of the total and contours have been drawn. Subsi-
diary information on each plot is self-explanatory. Table C.l serves as an

index for the plots.
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Table C.1. Index of fracture pole plots grouped by location, mineralization,
and whether open or closed.

Vertical and

Vertical Boreholes Horizontal Boreholes Horizontal

Fracture Type H9 Area HI1O Area H9 Area H10 Area H9 Area
Closed Chlorite C1 C2 €25 C26 C49
Calcite C3 ca c27 €28 €50
Epidote C5 Cé €29 C30 C51
A1l c7 c8 , C31 C32 C52
Open Chlorite C9 cl0 €33 C34 €53
‘ Calcite Cl1 Cl2 C35 C36 C54
Epidote C13 Cl4 C37 €38 C55
A11 €15 Cl6 C39 C40 C56
Closed Chlorite Cl7 C18 - c41 c42 C57
plus Calcite cl9 €20 C43 C44 C58
Open Epidote c21 €22 C45 C46 €59
‘Al €23 C24 Ca7 ---a €60

a Figure C48 was not drawn due to insufficient core length in this category.
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APPENDIX D: SONIC WAVEFORM AND OTHER BOREHOLE LOGS IN VERTICAL EXTENSOMETER
HOLES ‘

Introduction

During January-February, 1978, six months before heater experiments
began, a suite of geophysical borehole logs was acquired from the underground
holes at Stripa. Nelson et al. (1979) list these logs and their results,

although much of the discussion is preliminary and incomplete.

For example, the sonic waveform logs required further inspection to see
if the cause of waveform features could be found by examining the cores.
This appendix documents our efforts at correlating the sonic waveform logs

with the cores taken from the extensometer boreholes.

The figures contain all borehole logs run in each extensometer hole, E-1
- E-17, as well as the sonic records. Also shown are the installed instru-
ment locations, pictorial fracture logs, TV fracture logs, and RQD (rock

quality designation) plots.

Sonic Data Acquisition

The sonic probe consists of a single transmitter and a single receiver
one foot apart, operating at a frequency of about 30 kHz (see Nelson et al.,
1979, for further detail). The probe diameter is 60 mm and could be operat-
ed only in the 76 mm extensometer holes and the larger heater holes.
Waveforms were recorded on film at an oscilloscope time scale of 20 micro-
seconds per centimeter, as displayed in the accompanying figures. In addi-
tion, the time of the first compressional wave arrival was recorded as an
analog trace and is also included in the figures. The other logs, although

included in the figqures, are not discussed here.
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The sonic waveforms were recorded in the following manner. To record
the alternating dark and light bands shown in the figures, the amplifier gain
is increased and the conventional "wiggle-trace" becomes a square wave which
is used to modulate the z-axis intensity on the oscilloscope. The oscillo-
scope display is then photographed by stepping the film along at a rate
controlled by the motion of the probe. This results in the black bands
representing the negative-going and the white bands the positive-going
portions of the wavetrain. The first three black bands are comprised of
acoustic energy traveling along the borehole wall in a compressional mode;
the fourth and fifth bands are a mix of the decaying compressional mode plus

shear and surface modes. These later bands are often called "shear."

Since the transmitter-receiver spacing is about 30 cm, the delineation
of anomalies is about + 15 cm. The only exceptions occurred where the film
failed to step properly near the bottom of the boreholes, resulting in a
broken series of dashes (record from borehole E12). In these cases, accurate
depth control was lost for the waveform recordings and alignment relied on
the upper depth reading and upon correlation with the travel time log ac-

quired on a separate run.

Anomalous zones were selected visually from the distortions whfch had
some consistency on two or more adjacent bands. The first column in Tables
D1-D3 gives the depth of those zones where a discernable offset is present in
the first band, usually accompanied by smaller offsets in bands two and
three. Similarly, the second column in the tables records the depth for
anomalous shear wave arrivals based upon bands four and five. In cases
where the distortion pattern is greater than the tool spacing, the center of

the distortion pattern is given.
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Column 4 of Tables D1-D3 gives the number of open fractures in core, as
tabulated in the original core logs, which 1ie within a 20-cm length centered
on the anomaly. In addition, after the waveform anomalies were selected, the
core in the immediate vicinity of each anomaly location was carefully in-
spected. Column 5 in the tables 1lists the total fracture density per 10 cm
length of core, determined by visual observation of a length of core equiva-
lent to the transmitter-receiver separation. The last column contains a
brief description of the core within =10 cm of the anomaly. Where no
description is given, the rock was intact, usually with a few chlorite-

filled fractures intersecting the interval.

Comments - H9 Area

Twelve sonic waveform anomalies were picked as discernable features from
the extensometer borehole logs in the H9 area, as listed in Table D1. Of

these twelve:
® eight anomalies correspond to an open (and mineralized) fracture as

noted in the original core logs. Four others occur where unbroken

core was recovered.

@ two anomalies in borehole E8 are the most difficult to explain --
there is neither an open fracture nor any unusual feature visible in

the core.

® only three of the twelve waveform anomalies occur below 6 m, in the
lower parts of the boreholes. Seven anomalies occur within four

meters of the drift floor.
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@ two distinct differential electrical resistance peaks occurred close

to pyrite veins logged in core.

@ three boreholes along the centerline of the drift (E6, E7, and
E8) produce all but one of the twelve waveform anomalies. The log

from borehole E10 is especially free of anomalies.

Comments -- H10 Area

In the H10 area, 19 sonic waveform anomalies were selected and the

corresponding core examined (Table D2.) Of these 19:

@ sixteen occur near an open (and mineralized) fracture as noted in the
original core logs. Three other anomalies occur where unbroken core

was recovered.

e of these latter three, two (boreholes E12, 2.4 m and E13, 2.4 m)
occur near a pyritic fracture and the third (borehole E12, 10.6 m) is

unexplained.

e there are fewer waveform anomalies in the lower part of the boreholes
than in the upper; however, the depth dependence is not as convincing

as it is in the H9 area.

e three boreholes along the drift centerline (E12, E13, and E14)

produce 13 of the 19 anomalies.

e although only one sonic anomaly was recorded in borehole E15, the

later time portions of the waveform are more consistently disrupted
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than in any of the other E-holes. The resulting impression that
borehole E15 contains more sealed fractures is supported by (1)
inspection of the core, which appears to be fractured throughout more
of its Tength than core for other holes, especially below 4.0 m

and (2) inspection of the fracture plots based on logs of all frac-
tures, both open and closed. It is also apparent that borehole E15

is more consistently fractured along its length than any other

E-holes.
® in these 6 holes, four zones produce shear wave disturbance over a
length of about one meter:
E12, 4.0-4.9 m -- high angle calcite fractures with about 12
open breaks
El2, 8.0-8.8 m -- high density of chlorite fractures, 4 open
breaks
E13, 5.4-5.9 m -- six open, calcite-coated breaks
El4, 5.2-5.5
and 6.2-7.0 m -- few open breaks, but core over 4.0-7.4 m is
highly fractured, both chlorite and some
epidote
In terms of the sonic waveform data, these four zones are the most
anomalous.
Comments -- Time Scale Area

Nine waveform anomalies (Table D-3) were recorded in 5 extensometer

boreholes in the time scale drift.

@

although there are fewer anomalies recorded in the time scale drift
holes (9 vs. 12 and 19 in H9 and H10 heater areas), there was also
less meterage drilled (5 holes vs. 6 and 6). Neither the number
nor the character of the waveform anomalies differ much between the

two experimental areas.
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e five of the nine anomalous zones occur where a high density of
chlorite fractures occur in the core.  0f the remaining four anoma-
lies, two occur near open, calcite-coated fractures and two (borehole

E3, 8.0m and F4, 2.9-3.5 m) have no obvious associated features.

Summary

(1) Despite the high incidence of fractures observed in core, the sonic
waveform logs indicate that the rock in the experimental drifts is quite
competent. The visual threshold for anomaly selection was low in order to
include the largest possible number of waveform disruptions. Even so, in the
17 vertical extensometer boreholes, only 40 anomalies could be picked with
confidence. Of these, 17 disrupted both compressional and shear wave arri-
vals while the remainder were apparent only in the shear wave records. The
average incidence of anomalies is only one for every 10 m for compressional
plus shear disruptions, and one every 4.3 m for all waveform anomalies. This
indication of general rock competence in the experimental drifts is in accord
with the sonic waveform data from borehole SBH-1, which indicated a decline

in fracture population below 225 m vertical depth (Nelson et al., 1979).

(2) Our success in "explaining" individual waveform anomalies by visual
inspection is mixed:
(a) With only a few exceptions, the waveform anomalies could be
attributed to some feature in the rock; that is, only three or four
of the anomalies occurred in sections of boreholes free of fractur-

ing.
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(b) Thirty of the 41 waveform anomalies occurred close to frac-
tures found to be open in the core; however, open fractures are
relatively common, so the correlation is not very convincing.
Moreover, most of the observed open fractures did not produce

waveform anomalies.

(c) A1l well-defined wéveform anomalies occurred at zones of
kpronounced geological features, such as calcite-coated fractures,
a sequence of open breaks, or a high density of chlorite-coated
- fractures. However, none of these types of geological features
consistently produced sonic anomalies; such features were also

present where the sonic waveform was quite uniform.

(3) The later time arrivals of the waveform records, referred to as
"shear," exhibit considerably more character than the first, or compres-
sional, energy. This can easily be seen in a quick examination of the
records. All compressional wave distortions produced shear wave distortions,
but the converse is obviously not true. Sensitivity of shear wave arrivals
to fracturing has been known for some time; such results furnish motiva-
tion for continuing developmental work with shear wave propagation in bore-

hole probes.
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