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ABSTRACT

Finite element analyses were carried out to assess the possible effects

of the Stripa mine openings on the in situ stress measured in a 400-m-deep

borehole drilled from the surface. For this assessment, four 2-dimensional

cases were modeled. These cases variously included two horizontal sections,

and two separate, idealized vertical sections. An iron ore body in the

mine was assumed to be completely extracted, thereby oroviding conservative

estimates of stress concentration effects.

Since no in situ stress measurements were made before mining, overburden

weight and horizontal stresses measured by hydrofracturing were assumed to

be the pre-mining state of stress. The stress state resulting from excavation

of the mine was calculated by the finite element model. In the cases using

horizontal sections, the model predicted a stress concentration factor at the

borehole of approximately 1.15, which is negligible considering the difficulty

of obtaining accurate stress measurements. For the vertical sections the

model predicted higher stress concentration factors at depths less than 200 m.

This was expected because the vertical sections chosen brought the borehole

unrealistically close to the mine openings, thereby leading to overly con

servative estimates.

In general, deviations in the magnitudes and orientations of the calcu

lated redistributed principal stresses from the assumed pre-mining state of

stress were found to be comparable to the scatter of overcoring data. It is,

therefore, recommended that, for near-field stress calculations, the vertical

stress due to overburden weight and the horizontal stresses measured by
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hydrofracturing at the borehole be considered the unperturbed far-field in

situ state of stress.
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1.0 INTRODUCTION

1.1 Background and Objective

Over the past three years,thermomechanical, hydroloqical, and other

investigations have been conducted at a depth of approximately 340 m in a

granite* body adjacent to a depleted iron ore mine at Stripa, Sweden

(Witherspoon et al., 1981), to see if such bodies can be used as nuclear

waste repositories. The present work is the first part of a project to

exhaustively analyze the thermomechanical data obtained from the in situ

heater test.

In the heater tests, electrical heaters were placed in drill-holes in

the floor of specially excavated experimental drifts (tunnels) to simulate

the thermal energy resulting from the decay of radioactive wastes. Temper

atures, displacements, and stresses were measured in the rock. This report

focuses on stresses. Since the thermomechanical loading was applied after

the rock had been perturbed by removal of a large portion of the ore body,

by the excavation of the experimental drifts, and by the drilling of bore

holes, the instantaneous state of stress at a point in the rock during

the heater tests was a result of the following (chronologically ordered)

components: (i) the pre-mining, pre-excavation stress, (ii) the mining-

induced stress, (iii) the stresses induced by drift excavation and borehole

drilling, and (iv) the thermally induced stress. Of these, the first three

components were present before heating, and only stress chanqes, i.e.,

component (iv) above, were measured during the experiments (see Schrauf

et al., 1979, for details of instrumentation).

*The term "granite" is used loosely here. The rock type is a "quartz monzo-
nite" or "monzogranite." See Olkiewicz et al. (1979) for mineral composition.



If the rock is linear elastic, i.e., its properties are independent of

stress, then the thermally induced stresses can be calculated from the known

system geometry, from the thermal field obtained in a separate calculation,

and from the rock properties measured under room conditions. That was, indeed,

the approach taken in the preliminary calculations (Chan and Cook, 1979).

Comparison with field data showed that there were significant discrepancies.

Subsequently, limited laboratory data became available on the temperature and

stress dependence of the mechanical and thermomechanical properties of Strioa

granite, and finite element analyses were carried out incorporating temoerature-

dependent properties (Chan, Hood and Board, 1980; Chan, Littlestone and Wan,

1980). The results were encouraging.

To incorporate stress-dependent properties into a numerical model

correctly, it is necessary to know the spatial distribution of the absolute

stress. Since stress measurements are invasive, it is clearly impossible to

measure the absolute stress at every point. A reasonable approach is to

measure the pre-mining, pre-excavation state of stress at a number of points

and obtain the spatial distribution of the mininq and excavation induced

stress changes by numerical modeling. Since the experimental site was near

an existing mine, the in situ stress measurements should be made as far away

from the underground openings as possible. Other considerations (to be

discussed in the next subsection), however, have made it necessary to measure

the in situ stress in a borehole drilled from the surface at a distance which

may not be completely outside the zone of influence of the mininq-induced

stress concentration. The purpose of this work was to determine, by numerical

modeling, whether the measured in situ stress, which is actually a combination

of components (i), (ii), and (iii) above, differs significantly from the



pre-mining, pre-excavation stress. If the differences are large, further

work would have to be done to estimate the true pre-mining, pre-excavation

stress.

1.2 Location, Geometry and Geologic Structure

In situ stress measurements were made (Doe et al., 1981) in a verti

cal hole labeled SBH-4, about 300 m north of the underground test site, as

illustrated in the sub-till surface map (Fig. 1). There are three major

types of rock, namely, leptite (a Precambrian metavolcanic sediment), the

iron ore, and granite. The iron ore, which has largely been removed, lies in

the leptite formation. The underground test site, where thermomechanical and

hydrological tests were conducted, lies entirely in granite at the test

level (about 340 m depth) although the surface projection of the test site

falls outside of the outcrop of the granitic pluton. The location for the

stress measurement borehole was a compromise between two conflicting criteria:

(i) the borehole should be as far away as possible from the mine openings, and

(ii) it should lie in the same granitic pluton as the underground test site.

The almost entirely mined-out iron ore deposits, indicated by the dark

areas in Fig. 1, strike approximately northeast. The surface outcrop of

this ore body is about 700 m from SBH-4, at its nearest point. However, as

shown in the 3-D drawing of Fig. 2(a), the envelope of the mine workings

slopes and spreads out in such a way that, at its closes point -- the 360 m

level -- it is less than 400 m from SBH-4.

1.3 Scope of Present Study

Two methods were used to measure in situ stress in SBH-4, hydrofractur-

ing and overcoring (Doe et al., 1981). Hydrofracturing gives the secondary
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Fig. 2(a),

(b)

Fig. 2(b).

VENTILATION SHAFT
SBH-i

XBL 816-3220

Three-dimensional diagram showing excavated regions,
the underground test site, and SBH-4 location.

SBH-t

Ground Surface

Profile 67

XBL 816-3230

Projection of the rectangular-slab idealization of the
mine excavation, superimposed on Fig. 2(a). See also
Fig. 6(a).



principal stresses in the horizontal plane. Overcoring measures the full

three-dimensional stress tensor. Measurements were made with each method at

a variety of depths down to about 400 m. There was considerable scatter,

particularly in the overcoring measurements.

Because the overcoring measurements are basically ooint measurements,

whereas hydrofracturing gives the mean stress over the area of the fracture,

the hydrofracturing measurements were primarily used in this study. Only the

overcoring measurements, however, can indicate if the mininq excavation

affected the orientation of the principal stresses in 3-0 space.

The present study focuses on the far-field state of stress. This allowed

us to simplify calculations by ignoring the effect of the drifts excavated

for the underground experiments, especially since these drifts are much

smaller than the old mine openings. Hereafter, therefore, the term "excavation"

will refer exclusively to mining excavations.

In view of the extremely complicated geometry of the mine openinqs

and the uncertainties in rock mass properties, it was impractical to model

the 3-D configuration at this stage. Therefore, as a first step, approximate

2-D finite element models of horizontal and vertical sections were used. In

these models the ore body was assumed to be completely extracted, Drovidinq

upper-bound estimates of any stress concentration that miqht have affected

the in situ stress measurements. The results of 2-D analyses should indicate

whether 3-D modeling would be necessary. Figure 2(b) illustrates one ideali

zation of the mine openings superimposed UDon a 3-D drawinq of the actual

openings.



It should be emphasized that ab initio calculation of in situ stress

is impossible. The stress concentration factor (SCF) is used to quantify

the effect of the excavation on the in situ stress. This factor is the ratio

of the stress at any point after an excavation to the stress before excavation

at the same point. With the linear rock properties assumed in these models,

the SCF is affected by the relative, but not the absolute, magnitudes of

the pre-excavation stress components.

The effect of mining was studied by assuming that the pre-mininq verti

cal stress was determined by the weight of the overburden, a reasonable

assumption. A linear fit from the hydrofracture data was used for the assumed

horizontal stress. The effect of the mining excavations was then modeled. A

calculated SCF close to 1.0 would suggest that these assumptions are

reasonable; a value much different from 1.0 would suggest a need to modify

them.
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2.0 NUMERICAL MODELING

In calculating the in situ state of stress in an elastic rock medium

with a mine opening, one can either (i) include the initial (pre-mining

stress directly in the finite element formulation and then create the opening,

or (ii) apply equivalent boundary loads to the medium in which the opening

already exists. The finite element implementation of these two options is

briefly reviewed in Section 2.1. Both methods were used in the present

study. The general assumptions, geometric idealization, loading and boundary

conditions, and material properties employed in the analysis of the Stripa

stituation are presented in Section 2.2

2.1 Methods for Including Initial Stress in Finite Element Analysis

The instantaneous stress in an elastic body can be expressed as:

where

a=£(e - jj + Oq , (1)*

ja = instantaneous stress (vector),

£ = elasticity matrtix,

e^ = instantaneous strain (vector),

eg = initial strain (vector),

a, = initial stress (vector).

The finite element formulation of the problem of equilibrium (Zienkiewicz,

1977) leads to the equation:

K a + f = r , (2)

♦Although stress is a tensor quantity, it is expedient to arrange the
stress components in the form of a column vector.



where J< = system stiffness matrix,

a_ = nodal displacement vector,

£ = distributed (body or surface) force vector,

£ = external concentrated nodal force vector.

The force vector, f_, is given by

f = -JNT bdV - /NTt dA -jV De dV +/ BT a dV , (3)
V- A" V o V=o

where

N^ = transpose of shape function matrix,

b = body force vector,

t^ = boundary traction,

B = transpose of strain-displacement matrix (see below),

V = system volume,

A = surface enclosing V,

The matrix B relates the finite element approximation of the strain, e, to

the nodal displacements; thus:

e k £ = B a . (4)

Solution of Eq. (2) yields the nodal displacements from which stress can be

calculated using Eqs. (4) and (1).

2.1.1 Direct Inclusion of Initial Stress

The general method for including initial stress in finite element

analysis is by implementing the full sets of Eqs. (1) - (4) above. This
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formulation is valid for both linear and nonlinear elasticity, provided that,

in the latter case, the various quantities in the equations are interpreted

as incremental quantities or, alternatively, an iterative procedure is used.

For a highly nonlinear rock, the excavation sequence can be simulated by

sequential removal of the elements representing the excavation. This procedure

is now considered standard. The interested reader should consult Zienkiewicz

(1977) for details.

2.1.2 Boundary Loading

For linear elasticity, in the absence of other causes of initial strain,

one has the initial condition

o = De . (5)
—o = —o

Equation (1) then reduces to:

o = D£ , (V)

while Eq. (3) reduces to:

f = - JnT b dV - /nT t dA . (3')
V~ A

The combined initial and excavation-induced stresses can be obtained by

solving Eq. (2) in conjunction with Eqs. (1') and (3') with an appropriate

boundary condition to simulate the initial (pre-mining) stress, aQ.

In practice, this can be effected by either (i) applying negative traction to

the excavation boundary (Chan, 1979) or (ii) assuming the excavation boundary

to be stress free and applying boundary loads to the external boundary of the

system (see Section 2.2.2).
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Simulation of initial stress by boundary loading is not quite correct

since this would deform the rock even in the absence of any opening. If

the point of interest is sufficiently far away from the boundary, however,

the error introduced would be small by virture of St. Venant's principle.

2.2. Calculations

Calculations were undertaken for the horizontal and vertical sections

shown in Figs. 3 and 4, respectively. In the analysis of the horizontal

sections, the 176 m and 360 m levels were selected because the mined-out

area is largest at the former level and nearest to the SBH-4 borehole at

the latter. In situ stresses measured at SBH-4 were expected to deviate

from the pre-mining state by the greatest amount at either of these two

levels.

Vertical sections of mine openings shown in Fig. 4 are those intersected

by profiles 14, 67, 42, and 100M (Fig. 2), which are normal to the strike

of the ore body. This orientation was chosen because theoretical solutions

for stress distribution about ellipsoidal cavities (Sadowsky and Sternberg,

1949) had demonstrated that the zone of influence about 3-D openings is more

nearly proportional to the radius of the shortest dimension of the opening

than to the longest. The chosen orientation allows the shortest possible

opening dimension so that the size of the zone of influence as well as the

magnitude of stress redistributed by the mine opening will not be unrealistically

overestimated.

General assumptions made in the analyses were that (i) the entire

ore body had been removed and (ii) all openings were infinitely long. The

second assumption permitted the problems to be reduced to two dimensions.
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Fig. 3. Horizontal sections showing
excavated regions (shaded) at 176
and 360 m levels.
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360-
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XBL 816-5231

Fig. 4. Vertical section approximately normal to strike
of ore body showing superposed excavated
regions on profiles 42, 67, 14 and 100M,
indicated by different types of lines
corresponding to those in Fig. 1. Viewing
direction = SW to NE.
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This approach is conservative and should yield results indicating the maximum

possible alterations of initial stresses due to mining.

2.2.1 Geometrical Idealizations

Geometrical idealizations of the mined-out areas in Figs. 3 and 4 are

shown in Figs. 5 and 6, respectively.

In the analysis of the vertical sections, two different geometrical

approximations were adopted: a single rectangle and two parallel rectangles

as shown in Fig. «. The single rectangle circumscribes profiles of all the

mine openings while the double rectangles more accurately represent the geo

metrical characteristics of the profiles of the mined-out ore body.

2.2.2 Loading and Boundary Conditions

Loading conditions for all cases in this report were based on results

from hydraulic fracturing experiments in SBH-4 (Doe et al., 1981). The mean

orientation of the maximum horizontal stress is indicated by the experimental

results to be N 65° W (Fig. 7).

The vertical stress component was assumed to be due totally to lithostatic

stress. On the basis of the value of Stripa granite density given by Swan

(1978) (density = 2622 kg/m3), the distribution of vertical stress as a

function of depth z (positive downwards) was found to be:

ay = 25721 z (Pa) . (6)*

*The large numbers of digits in Eqs. (fi) and (7) are given to facilitate
numerical evaluation and should not be taken as an indication of the accu
racy of the data.
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(a)
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Fig. 5(a) Idealized geometry (bold line) of the
horizontal section at the 176 m level.
Direction of the X-axis corresponds to
mine North.
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Idealized geometry (bold
line) of the horizontal
section at the 360 m level
Direction of X-axis cor-
rpsoonds to mine North.
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Fig. 6(a). Idealized geometry (bold line) of the superposed
vertical sections in Fig. 4 — single rectangle. See
also Fig. 2(b) for 3D projection.
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Fig. 6(b). Idealized geometry (bold line) of the superposed
vertical sections ~ double rectangles.
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TRUE NORTH

MINE NORTH A

TRUE EAST

XBL 816-3232

Fig. 7. Orientations of maximum horizontal stress (as
determined by hydraulic fracturing) and vertical
profiles.
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Applying regression analysis on the hydraulic fracturing experimental data

(Doe et al., 1981), the distributions of maximum horizontal stress, au ,
Hmax

and minimum horizontal stress, aH. are found to be:

o„ = 106 (10.03724 +0.038801 z) (Pa) ,
max

and

aH = 106 (1.69304 +0.029868 z) (Pa) ,
min

0 < z < 400 m . (7)*

The validity of the foregoing expressions is limited to the depth range

of 0 to 400 m over which in situ stress was measured. Beyond the depth of

400 m, the relationship between the average horizontal stress and the vertical

stress is assumed to lie within the global lower and upper bounds given by

Hoek and Brown (1978). This relationship is depicted in Fig. 8.

For the depth range over which they were measured, the relationship be

tween the stresses is given by:

K _ average horizontal stress
vertical stress

264/z +1.39 0 < z < 400 m (8)

573/z + 0.61 z > 400 m .

In the analyses of the horizontal sections, the maximum and minimum

horizontal stresses at the 176 m and 360 m levels were calculated using Eq.

(7). These secondary principal stresses in the horizontal plane were assumed

to represent initial principal stresses that existed prior to any mining

activity. Since the reference axes for the calculations coincided with the



500 .

3 1000

I

N

g 1500 h

u
3

S 2000 -

£ 2500

3000

k •

0.5
T

13

Average Horizontal Stress

Vertical Stress

1.0 1.5 2.0 2.5

IVLZ
k-lf «• 0.3

11
XBL 816-3233A

Fig. 8. Curves showing ratio between average horizontal
stress to vertical stress as a function of depth.
Dashed curves are bounding values according to
Hoek and Brown (1978); solid curve represents
values adopted for present work.
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north and east orientations of the mine coordinate system, the principal

stress components had to be resolved in relation to these reference axes.

The resolved components of stress are shown in Figs. 9, 10, and 11; boundary

conditions are also included. (Note that Figs. 9, 10, and 11 correspond to

the discretizations in Figs. 14, 16(a), and 16(b), respectively.)

In the analyses of the vertical profiles, the horizontal stress components

were found by rotating the principal stress components given by Eqs. (6) -

(8) to the plane of the model. Boundary and loading conditions are shown in

Figs. 12 and 13: (Conditions in Figs. 12 and 13 correspond to discretizations

in Figs. 18(a) and 18(b), respectively.)

2.2.3 Material Properties

In the analyses, the rock was assumed to be an isotropic, linear elastic

continuum with the following material properties:

Young's modulus, E = 51.3 GPa

Poisson's ratio, v = 0.23

Rock density, p = 2622 kg/m3.

These properties are for intact core specimens of Stripa granite, as

given by Pratt et al. (1977) for E and v, and Swan (1978) for p.

For a 2-D isotropic, linear elastic medium the calculated stress concen

tration factor due to openings is, of course, independent of the elastic

properties (Savin, 1961). In a 3-D solid the stress concentration factor

will depend on Poisson's ratio (Sadowsky and Sternberg, 1949).
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10.21 MPa t

13.60 MPa

XBL 816-3236

Fig. 10. Loading and boundary conditions of the
176 m level horizontal section.

16.24 HPa

20.19 MPa

XBL 816-1237

Fig. 11. Loading and boundary conditions of the
360 m level horizontal section.
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8.07 HPa

10.28 MPa

m Hh ~M Tif} Tffi Hh lih 53.74 HPa 51.44 MPa

HORIZONTAL STRESS VERTICAL STRESS

DISTRIBUTION DISTRIBUTION

4.1 km

XBL 816-3238

Fig. 12. Boundary and loading conditions of the vertical section with
single rectangular opening.

w Hh ~M M ~Mi Hh nh
4.1 km

XBL 816-3239

Fig. 13. Boundary conditions of the vertical
section with double rectangular openings.
Loading conditions are identical to those
in Fig. 12.
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3.0 RESULTS AND DISCUSSION

In this section, results are presented and discussed for (i) a test

case with a relatively coarse 2-D mesh using two different methods for a

consistency check of the computational techniques and (ii) four cases involv

ing two horizontal and two vertical sections using finer 2-D meshes to

simulate the field situation at Stripa.

3.1 Comparison of Two Loading Conditions

Sensitivity of stress distribution to changes in the two loading condi

tions—direct application of in situ stresses and the application of boundary

forces, as discussed in Section 2.1—was investigated first. For this

purpose, a configuration corresponding to the horizontal section at the 360 m

level was employed.

The spatial discretization, comprising 308 nodes and 208 linear isopara

metric quadrilateral elements, is displayed in Fig. 14. The two loading

cases are show in Fig. 9. Stress distributions resulting from the loading

conditions are shown in Fig. 15, from which one may conclude that they are

almost identical.

Similar results, not shown in this report, were observed in stress

distributions from the two loading cases in one of the vertical sections.

On the basis of the evidence shown in Fig. 15, it may be inferred that

consistent stress distributions can be calculated with either of the loading

conditions tested, as expected from theory.

Since it is more expedient with available computer programs to employ

the boundary loading technique, this approach was adopted in the actual

stress analyses.
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MINE NORTH

2.0 km

XBL 816-3240

Fig. 14. Finite element mesh, 360 m level horizontal section.



25

5*

(0

0)
C 3
o-o

+-> c
3 O
.O'i-
•r- -U •
u o w

4-> <D CD
to to o

•r- $_
T3 r— O

•OH
IO 4->
tO C >,
01 O S-
(. N ID
•P •>- T3
Crt J_ C

O 3
i— .c o
(O .O
Q-i—

•r- 0)4-
O > O
C O)

•r- i— C
J- O
O-E-r-

+J
•oom
otou
+JCO-I-
«0 «—

•— CO Q.
3 -E D.
O 4-> ro

rO C O
O ••- •*->

-Ct

LO

O)

O) l/l
c 3 CD
o -o «/>

•r- to

•M C CD
3 O s-

XI •^ -t->
•r— 4-> (/>
J- U

-t-> O) r—

to Irt ro
•r» •r-

•o r— +J
ro •r-

to 4J C
to C •r"

a> o
j- N «•-

+j •r- O
to s-

o C
h™ J= o
<o •c—

Q. ^— •P
•r" 01 ro
U > O
c at •w—

•r— p- i—

&- Q.
CLE a.

(0
•o O
<U •£> +J

4-> CO u
ro a*

1— ai s-
3 J= •r-

(J -M-O
f"~

ro c O
O •r" •M

(O

in

en



26

3.2 Horizontal Sections

Discretizations of the horizontal sections at the 176 m and 360 m

levels are displayed in Fig. 16; the internal openings represent excavated

ore bodies. Details of discretizations are given in Table 1. Boundary and

loading conditions are given in Figs. 10 and 11.

Calculated redistributed stress patterns at the 176 m and 360 m levels

are shown in Fig. 17. A comparison between the initial stress with the

redistributed stresses indicates that significant redistribution is confined

to areas close to the openings. (In both 17(a) and 17(b), cross-like points

far from the openings represent the magnitudes and orientations of the

initial stresses.)

The calculation of stress concentration factors in terms of normal

stress components at the location of SBH-4 is shown in Table 2. The results,

which are very similar for the two sections, indicate that the presence of the

mine openings has altered the in situ stress by 15% or less.

3.3 Vertical Sections

The finite element meshes of the vertical sections, where the mine

openings were approximated by a single rectangle and by two rectangles, are

displayed in Fig. 18. Details of discretization are given in Table 1.

Boundary and loading conditions are shown in Figs. 12 and 13.
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Table 1. Discretization details.

Section No. of Nodes No. of Elements Illustration

176 m H 768 724 Fig. 16 (a)

360 m H 656 615 Fig. 16 (b)

Single rectangle V 661 600 Fig. 18 (a)

Double rectangle V 806 723 Fig. 18 (b)

Note: H — Horizontal

V — Vertical

Table 2. Normal stresses and stress concentration factors at SBH-4,
horizontal sections.

a R aR
Level a (MPa) o* (MPa) SCF = •/- a (MPa) o* (MPa) SCF =—x

y y y x x x

176 m 13.60 15.10 1.11 10.21 8.72 0.85

360 m 20.29 21.94 1.09 16.22 14.51 0.89

Note: In labeling the stress components, positive y-axis corresponds to
the mine-east direction and positive x-axis corresponds to the mine-north
direction.

ox, ov are normal stresses deduced from hydrofracture measurements
(Doe It al., 1981).

Superscript R refers to redistributed stresses.

SCF = stress concentration factor.
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SBH-4

2.2 km

XBL 81G-3247

Fig. 18(a). Finite element mesh for the vertical
section with single rectangular opening.

SBH-4

GROUND SURFACE

2.2 km

XBL 816-3248

Fig. 18(b). Finite element mesh for the vertical
section with double rectangular opening.
Rock elements are put back between the
openings.
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Patterns of calculated redistributed stress are displayed in Fig. 19.

Significant stress changes occurred from the ground surface down to about

200 m. Furthermore, the patterns of redistributed stresses outside the

openings are practically independent of the number of rectangular openings.

From an inspection of plots of stress concentration factor (SCF) vs.

depth given in Fig. 20, one can infer that at depths greater than 200 m the

alteration of initial stresses is no more than 25%. At less than 200 m it is

apparent that SCF increases fairly rapidly as the depth becomes shallower.

This is discussed in the next section.

In the numerical models the reasonable assumption was made that the

pre-mining principal stresses were vertical and horizontal. A comparison of

the overcoring measuremnt with the calculated redistributed stresses was made

(Fig. 21) to study whether the inclined angles of the overcoring principal

stresses are consistent with this modeling assumption. Unfortunately, the

scatter of the overcoring measurements obscures the answer to this question.

3.4 Discussion

The basic objective of the analyses was to estimate the effects of

mining upon the redistribution of in situ stresses. The analyses were

carried out via a series of two-dimensional approximations. Such approxima

tions are quite conservative (in that they yield the upper bounds of changes

in initial stress) because in two-dimensional projection the excavated areas

appear to be closer to the SBH-4 hole than they are in reality (see Figs. 1

and 2). This is particularly true for the vertical sections.
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(a) Single Rectangle Model

100 200 300

Depth (in)

400 0

Cb) Double Rectangle Model

100

Overcoring Measurements,
Horizontal Stress o

Overcoring Measurements, -^
Vertical Stress

200

Depth (m)

300 400

XBL 816-3251

Fig. 20. Plots of stress concentration factors (calculated redis
tributed stress/initial stress) for horizontal and
vertical stress components on the vertical plane at the
SBH-4 hole vs. depth from ground surface. For compari
son, the measured stresses from overcoring have been
divided by the assumed pre-mining in situ stresses.
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Calculated Redistributed Stress
from model in fig. 6(b)

Depth (m) Initial Stress

Assumed in Itodels
Horz. and Vert.

Components
Principal
Stresses

Overcoring
Measurement

100

200

300

400

XBL 816-3252

Fig. 21. Comparison of initial stress, calculated redistributed stress,
and overcoring data.
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The closest actual approach of the mining excavation to the SBH-4

borehole is about 350 m, at a depth of about 360 m; it is about 700 m from it

at the surface. In the vertical models, the excavation is about 100 m from

SBH-4 at a depth of 100 m. It is therefore not surprising that the calculated

redistributed stresses for the vertical sections are much higher than the

measured stresses close to the surface.

The calculation of in situ stress from field experiments, by either

the overcoring or the hydraulic fracturing method, is always based on simpli

fying assumptions about the rock mass — that it is, for example, homo

geneous, intact, isotropic, and linear elastic. Such assumptions are usually

not satisfied by field conditions. Results obtained from these tests are

therefore always associated with errors due to field uncertainties. It is

also possible that the in situ stress actually varies rapidly from point to

point. The large scatter of the measurements (Fig. 21) provides some indica

tion of the magnitude of these uncertainties. The measurement errors are

likely to be largest near to the surface where, due to lower in situ stresses,

more open fractures are likely.

These near-surface measurement errors and uncertainties in the vertical

cases make it difficult to judge whether the large stress concentration

factors at shallow depths really represent the in situ condition. These

results, however, are of little concern because the underground experimental

areas, the main region of interest, is below 300 m.

Results from the analyses of the horizontal sections indicate that

the maximum change in the in situ stress is about 15%; in the vertical

sections at depths greater than 200 m, it is about 25%. These changes are
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relatively small compared with the uncertainties in the measured stress.

Likewise, the calculated changes in stress orientation for the horizontal

sections and for the vertical sections below a depth of 200 m are comparable

with the scatter of the overcoring measurements.
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4.0 CONCLUSIONS

On the basis of the present study, the following conclusions may be

drawn: (i) At depths between 200 m and 400 m, encompassing the underground

test horizon, the mining-induced stress concentrations are relatively insig

nificant when the uncertainties in the in situ stress measurements are

considered; (ii) differences between orientations of principal stresses from

finite element modeling using vertical sections and those from overcoring

measurements are comparable with the variations among different overcoring

measurements at approximately the same depth; (iii) further elaboration of

the numerical modeling of far-field stress appears unwarranted; and (iv) for

the purpose of near-field in situ stress calculations, the vertical stress

due to overburden weight, along with horizontal stresses measured by hydro-

fracturing at SBH-4, can be taken as the inital, pre-mining far-field stress.
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APPENDIX: CONTOUR PLOTS OF STRESS CONCENTRATION FACTORS

This appendix consists of a set of contour plots of the stress concen

tration factors, defined as the ratio of the horizontal (or vertical) compo

nent of calculated redistributed stress in the presence of the mine openings(s)

to the corresponding component of assumed pre-mining stress. All four finite

element models reported in the main text are illustrated.



X

UJ
>

•113?.

•P.m.

r*Z2,

•W.

-uW. r, ihiiiii

42

Al (a) STRESS CONCENTRATION FACTOR
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Fig. Al(a). Stress concentration factor contours, vertical section, one
rectangular opening-horizontal stress component.
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rectangular opening-vertical stress component.
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A2 M STRESS CONCENTRATION FACTOR
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Fig. A2(a). Stress concentration factor contours, vertical section, two
rectangular openings - horizontal stress component.
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Fig. A2(b). Stress concentration factor contours, vertical section, two
rectangular openings - vertical stress component.
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