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PREFACE

This report is one of a series documenting the results of the
Swedish-American cooperative research program in which the cooperating
scientists explore the geological, geophysical, hydrological, geochemical,
and structural effects anticipated from the use of a large crystalline
rock mass as a geologic repository for nuclear waste. This program
has been sponsored by the Swedish Nuclear Power Utilities through
the Swedish Nuclear Fuel Supply Company (SKBF), and the U.S. Department
of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL).

The principal investigators are L. B. Nilsson and 0. Degerman
for SKBF, and N. G. W. Cook, P. A. Witherspoon, and J. E. Gale for
LBL. Other participants will appear as authors of the individual
reports.

Previous technical reports in this series are listed below.
1. Swedish-American Cooperative Program on Radioactive Waste Storage

in Mined Caverns by P. A. Witherspoon and 0. Degerman.
(LBL-7049, SAC-01).

2. Large Scale Permeability Test of the Granite in the Stripa Mine
and Thermal Conductivity Test by Lars Lundstrom and Haken Stille.
(LBL-7052, SAC-02).

3. The Mechanical Properties of the Stripa Granite by Graham Swan.
(LBL-7074, SAC-03).

4.  Stress Measurements in the Stripa Granite by H. Carlsson.
(LBL-7078, SAC-04).

5. Borehole Drilling and Related Activities at the Stripa Mine by
Pavel J. Kurfurst, T. Hugo-Persson, and G. Rudolph. (LBL-7080,
SAC-05).

6. A Pilot Heater Test in the Stripa Granite by Hans Carlsson.
(LBL-7086, SAC-06).

7. An Analysis of Measured Values for the State of Stress in the
Earth's Crust by Dennis B. Jamison and Neville G. W. Cook.

(LBL=7071, SAC-07).

8. Mining Methods Used in the Underground Tunnels and Test Rooms
at Stripa by B. Andersson and P. A. Halen. (LBL-7081, SAC-08).

9. Theoretical Temperature Fields for the Stripa Heater Project
by Tin Chan, Neville G. W. Cook, and Chin-Fu Tsang. (LBL-7082,
SAC-09).
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ABSTRACT

Borehole instrumentation for the measurement of temperature, displace-
ment, and stress was evaluated, modified, calibrated, and installed in an
underground site at Stripa, Sweden where experiments are currently underway
to investigate the suitability of granite as a storage medium for nuclear
waste. Three arrays of borehole instrumentation measure the thermomechan-
ical effects caused by electrical heaters which simulate the thermal out-
put of canisters of radioactive waste. Quantities of each instrument type
are as follows: thermocouples, (389); rod extensometers, (35); U.S.Bureau
of Mines (USBM) borehole deformation gages, (30); and IRAD vibrating wire

stressmeters, (26).

Because most rock mechanics investigations are carried out at modest
temperatures, a sustained operating temperature as high as 200°C was an
unusual and most important criterion governing the instrumentation program.
Extensive laboratory experiments were conducted to determine the effect of
nigh temperature on instrument behavior and also to develop calibration and
data-reduction procedures. Temperatures up to 200°C and stresses up to 14 MPa
(2,000 psi) were attained during the laboratory evaluation. Based on this
work, algorithms suitable for computer implementation were formulated.

Significant aspects regarding the individual instrumentation types are:

The rod extensometers were tested for anchor creep, the selection of
a suitable high-temperature pressurizing fluid, and the thermal stability of
the grout. Superinvar was substituted for invar for the connecting rods.
Five temperature measurements along the full extensometer length are used to

correct for the rod thermal expansion using an interpolation schéme.
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1. INTRODUCTION

Experiments to assess the feasibility of using crystalline rock for high-
Tevel nuclear waste storage are presently underway in a granitic stock at
Stripa, Sweden. In an attempt to determine the thermomechanical response of
a typical granite to the thermal loading of actual nuclear waste canisters,
canisters containing electrical heaters which simulate the power output from
the decay of radioactive materials have been installed at three test areas
illustrated in Fig. 1. Measurement of the thermomechanical response of
the rock mass surrounding the heaters places new requirements upon the stan-
.dard instrumentation used for rock mechanic investigations, especially in

terms of long-term stability and high operating temperatures.

340 m

BOREHOLE USAGE

320m[-
o HEATER

a EXTENSOMETER

« THERMOCOUPLE

s STRESS

B v HONITOR

o PERIPHERAL HEATER
TRACE OF HORIZONTAL

HOLES

300m

T

I { i L el 1 L

960m 980m 1000m 1020m

XBlL 794-74153

Fig. 1. Plan view of experimental areas 340 m underground
at Stripa, showing location of instrument bore-
holes.
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This report deals specifically with the modification, calibration, and
installation of the instrumentation emplaced in boreholes surrounding the
heaters at Stkipa to measure rock deformation and temperature, and to infer
stress changes. It is one of three reports describing the engineering aspects
of the experiments through the time of installation and early phases of
operation. The design and early operation of the heaters is discussed by
gurleigh et al. (1979). McEvoy (1979) describes the data acquisition system
and also provides an overview of the data handling procedures for the heater
experiments. Taken together, these three reports provide a comprehensive view
of the design and installation of the heaters, the measurement instrumentation,
and the data acquisition system at Stripa.

Terra Tek, Inc., under contract to and in cooperation with Lawrence
Berkeley Laboratory, conducted‘a study beginning in May 1977 to (1) evaluate
the suitability of state-of-the-art instrumentation to measure temperature,
stress, and displacements, (2) recommend instrumentation types, (3) recommend
a laboratory/field program to evaluate the long-term thermal and mechanical
stability of the instrumentation, and (4) recommend a borehole instrumenta-
tion layout for the full-scale and time-scale heater tests. Several criteria
were established for the instrumentation system in order to meet the specifi-
cations and schedule required by the program. These criteria were (1)
deliverability by October 1977 in order to meet laboratory evaluation and
calibration schedules; (2) availability of the instrumentation as off-the-
snelf or modified equipment; (3) stability and reliability in a 200°C en-
vironment; (4) sensitivity enough to measure temperature, displacement, or
stress to the levels estimated from preliminary calculations using laboratory

data; and 5) reliability over the life of the tests, estimated to be 1 to 2
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Fig. 2. Sectional‘view along profile AA' in Fig. 1,
showing thermocouple and extensometer anchor
locations.

porehole instrumentation, along with the integration of the instrumenta-

tion with the data retrieval system. The testing, modification, and preli-
minary calibration of the instruments began in July 1977 and was completed in
late December 1977 when the instrumentation and associated data retrieval
system were shipped to Sweden. The field calibration and installation of the
instrumentation for the three in-situ heater tests occurred during January to

August 1978.

Each of the four instrumentation types is discussed separately in the
body of this report. Each section (sections 2 through 5) addresses the

laboratory testing of components and sensors, the modifications performed as a
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result of the testing, and the calibration procedure established for field
use. With the exception of the vibrating-wire stress gages, which Were
calibrated in the laboratory, all calibrations were performed at the field
site with instruments connected to the computer-controlled data acquisition
system. Calibration was done on line, using softWare routines developed
especially for that purpose. The calibration data were stored in a sensor
parameter file which is described in Appendix B. Calibration coefficients for

individual sensors, as installed, are given in the appendices.

The installation of each sensor type is described in sections 2 through 5
of this report. Installation of the dewatering apparatus, which is sufficient-
1y specialized to warrant separate discussion, is described in section 6. An
instrument-installation wiring Tist identifies the data logger channel numbers,
computer input, connector pins, transducer numbers, and sensor number of every
sensor in the experiment. Because of its length it is not reproduced in this
report, although McEvoy (1979) gives an example of its format (in ?19. 23 of
that report). The sensor number uniquely identifies each sensor and in this
report links the several appendices so the calibration data can be tied to a

specific Tocation.

Insofar as possible, each of the four instrument sections includes
-information on measurement precision and on specific problems. However, the
emphasis of this repoft is on the findings and status at the completion of
installation. Hence section 7 outlines some of the work on instrument

performance currently in progress.
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2. ROD EXTENSOMETERS

2.1 Description of the Instrument

An extensometer is a device for measuring changes in the axial length of
a borehole. The rod-type extensometer selected for use at Stripa (Model 4C
SLT manufactured by Terrametrics, Inc. of Golden, Colorado) measures the
displacement of each of four downhole anchor‘points with respect to the
porehole collar. One spring;tensioned rod connects each anchor point to one

of the four displacement sensors which are located at the borehole collar.

The major elements of the rod extensometer (Fig. 5) are: (1) hydrau-
lic anchoring system; (2) anchor-to-collar rod connections; (3) a head
assembly that includes the rod tensioﬁing system and the displacement
transducers; and (4) thermocouples for sensing the temperature profile of

the connection rods.

Head assembly lifting screws
Rod tension spring
Flexible conduit
Guide tube

Dispiacement sensor

Cover

Inftation lines

Anchdr pressurizing
manifold/ valves/gages

! ABL TIIO— G

Fig. 5. Foreshortened sectional view of a simplified, two-anchor
extensometer.




The hydraulic anchoring system is shown schematically in Fig. 6.

£ach borehole anchor creates a fixed point along the borehole to which the
downhole end of one of the connecting rods is'secufed. A‘ho1e fhrough the
center of each anchor allows any connecting rod originating at a lower anchor
point‘to pass through free]y.b These anchors (Fig..7) consist of é flat

jack (a short 1ehgth of flattened copper tube which has been sealed at the
ends) rolled around abretafning mandre] and fitted with an 1ﬁf1ation line of
copper-coated stée1 fubjng.' Each inflation lihe fs connected to a fluid
reservoir’(ménifo1d), at the borehole co]Tar, through a pressure gage and two
valves. Anchor pressure is manually maintained between 10 and 14 MPa (1,500

to 2,000 psi) through the use of this manifold. The anchors are secured into

/HAND PUMP INLET
1 0-3000 psi

RESSURE GAGES

o — T
RESERVOIR
AND

PRESSURE
CHAMBER

0 ®
% +‘11

COPPER COATED HIGH PRESSURE
STEEL TUBING (DOWN BOREHOLE)

—

HAND CONTROL VALVES

D ANCHOR a2 |

[J ancHor 2

] ANCHOR # 3

[J ANCHOR 2 4
XBL803-454

Fig. 6. Schematic of extensometer anchor hydraulic system.
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Fig. 7. Extensometer anchor, installed.

the borehole by grout as well as by the pressurizing system described above.

The connecting rods provide a linkage between the measuring head and the
borehole anchors. Any axial displacement of an anchor relative to the borehole
collar will be transmitted by its connecting rod to the collar, where a
transducer senses the displacement. Connecting rods are trimmed to length
from 12-ft sections of 1/4-inch-diameter superinvar rod. For connecting rods
longer than 12 ft, multiple sections are butted together with threaded aluminum
couplings (Fig. 8A). Type K thermocouple junctions are attached at several
points along the longest of the four connecting rods (Fig. 88). A 1-inch
flexible steel conduit, jacketed by a waterproof silicone-rubber sleeve, spans
the gap between anchors to protect both the rods and the thermocouples from
groundwater and from the intrusion of grout. A fourth length of this flexible
conduit protects the rods and thermocouples as they pass from the borehole

collar to the first anchor.
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(A)
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¥ ¥ LY {
F—~30cm— SUPERINVAR ROD f5cm— THERMOCOUPLE

BEAD TIE DOWN

XBLBO3-457

Fig. 8. (A) Superinvar rod connection, cutaway view; (B) thermocouple
attachment.

The top of the fourth section of conduit terminates at a 1-m-long aluminum
sleeve (collar stabilizer tube). This provides a rigid mount for the head
assemply and for the pressure manifold. The head assembly mounts to the top
flange of the collar stabilizer tube after the stabilizer tube has been
grouted into the borehole. The head assembly contains four independent rod
tensioning springs, four rod guide tubes, and four DCDT (direct current 11near
variable differential transformer) displacement measuring transducers. A ’
spring tension of 455'N (100 1b) per rod minimizes rod sag, particularly in
norizontal holes, and increases instrument sensitivity. The DCDTs produce a
voltage output that is Tinear with the relative displacement between the
transducer coil and its movable core. Each core is secured to the end of one

of the four connecting rods. Thus, a change in output voltage of one of the
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transducers, when multiplied by a predetermined calibration factor and corrected
for the thermal expansion of the rod, indicates the relative displacement

between the collar and the appropriate anchor.

In most previous applications, rod extensometers have been operated
under constant temperature conditions, and these temperatures have rarely
exceeded 50°C. As part of the work reported here, modifications were made so
as to accommodate the elevated and variable temperatures expected at Stripa.
These modifications include:

o Heat treated superinvar (64% Fe, 31% Ni, and 5% Co) was used for
the connecting rods to minimize the magnitude of the thermal expansion
effect. .
o Four to six thermocouples were attached to the longest connecting rod
to determine the rod temperature profi]é for thermal expansion corrections.
o Silicon-based fluid was used as an anchor pressurizing fluid for
chemical stability at elevated temperatures.

o A pressure manifold was provided to allow for control of anchor
pressure during periods of changing temperature.

o A silicone rubber sleeve was installed over the flex conduit,

housing the connection rods, to maintain water proofing to 200°C.

2.2 Laboratory Evaluation of Temperature Effects

Tne rod extensometer components were tested to select suitable con-
struction materials, to evaluate the jnstrument's response to environmental
factors, and to determine a suitable technique for generating accurate

corrections for thermal expansion.
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2.2.1 Anchor System

The anchor system was tested to determine (1) a suitable anchor pressur-
izing fluid capable of withstanding a 200°C environment over long periods,
(2) the magnitude of the creep to be expected for an anchor system(operating
under é rod tensioning lToad of 455 N, and (3) a grout that would not undergo

excessive deterioration at temperatures up to 200°C.

Selection and Testing of Pressurizing Fluids. The literature has been

reviewed to identify commercially available fluids which might be suitable for
this high-temperature application. Several specialized petroleum oils were
eliminated on the basis of probab]é degradation at the temperature expected in
service at Stripa (See Appendix C). On the basis of this review of thermal
stability and physical properties, three oils were selected for laboratory
testing: (1) Dowtherm A, (2) Dowtherm G, and (3) Dow Corning X2-1162. These
0ils were tested for degradation at elevated temperature in the presence of

copper and air. Details of the fluid properties are given in Appendix C.

Viscosity tests were performed on one sample of each o0il before and
after it had been held at 200°C for 36 days. Each sample was placed in
a glass beaker containihg a small piece of copper tubing and the beaker was
covered 1oose1y to allow for venting of vapors and exposure to atmospheric
oxygen. The results of these tests are shown in Table 1. Note that the Dow
Corning X2-1162 showed good stability at 200°C despite the presence of

oxygen.

Anchor Pressuring and Creep Tests.. Oven tests were conducted on three

simulated anchor installations: 1) to evaluate the effectiveness of the fluid



-17-

Table 1. Viscosity changes for fluids held 36 days at 200°C.

Viscosity (centipoise) at 23°C

Fluid Initial Final Remarks
Dowtherm A 4.1 ' - Sample lost due to evaporation;
: only tar residue remained.

Uowtherm G 22.5 186.0 20% sample loss to evaporation;
remainder is thick residue and
tar.

vow Corning 10.2 13.7 No sample loss. 0il slightly

X2-1162 ' cloudy with white precipitate.

manifold and anchor flat jack in maintaining the hydraulic pressure, 2) to
evaluate tne performance of the various grouts, and 3) to determine if elevated

temperatures resulted in anchor movement.

To simulate a borehole, a 152-mm diameter x 152-mm long granite core
was center cored to 76-mm diameter, and an aluminum ring was grouted to the
outside of the core to accommodate hoop stress. A hydraulic anchor was then

inflated in the simulated borehole and was grouted in place (see Fig. 9).

Three of these simulated anchor installations were constructed.
A1l were filled with Dowtherm A fluid, which was used for the laboratory
tests because it had an acceptable thermal stability (with absence of air)
and it was readily available. It performed satisfactorily for these tests

put was superseded by the. superior Dow Corning X2-1162 for field application.
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Each of the ancnors was grouted with a different material. The three
grouts used were 1) Masterflow 713 (a standard cement and sand mixture);
2) Celtite 42 Hi Flow (an epoxy resin with a fine sand filler); and 3)

American Cyanamid AM-9 (a chemical gel suspension).

The three anchors were placed in an oven and heated, in approximately
50°C steps, to 150°C. The pressure of the inflation fluid, trapped in the
anchor flat jack, increased from 2,000 psi to some higher pressure as the
temperature was increased. Each time the pressure reached 3,000 to 4,000 psi,
tne nydraulic pressure was released again to 2,000 psi. The magnitude of
each of these pressure rises was integrated to create the plot shown in
Fig. 10. During periods of steady temperature, the pressure remained constént.

The flat jacks were not ruptured and no leak was noted. Anchor #1 was subse-

yuently emptied, evacuated to remove any trapped air, and refilled with

Dowtnerm A. That anchor was then cycled to 225°C. It experienced a 40%
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smaller integrated pressure rise to 150°C than was noted for the same anchor
when filled without first evacuating the air. This behavior is shown as

anchor #4 in Fig. 10.

For the second set of anchor tests, to evaluate creep at elevated
temperatures, a short superinvar rod was attached to each anchor and it was
spring loaded to 445-N tension. A fused quartz rod was connected from the top
of the superinvar rod to a strain-gaged cantilever beam mounted from an
external reference point atop the oven (see Fig. 9). The strain gage output
nad a sensitivity of 1 x 10-4 mm and it was calibrated over a deflection

range of + 0.1 mm.

The epoxy and‘standard—grout anchors were inflated to 14 MPa (2,000
psi). The AM-9 chemical grout exhibitéd extreme shrinkage upon long time
curing and, because of this behavior, was selected for the test of a "worst
case" situation, in which an anchor has both lost pressurization and experi-
enced grout deterioration. Therefore, the AM-9 grouted anchor was not pres-

surized during this high-temperature creep test.

Each anchor was brought, in 50°C steps, to a temperature of 190°C. The
oven was held at each temperature step for several hours. During each period
of increasing temperature, the inflation pressure would rise; however, that
pressure was manually bled off so as not to exceed 28 MPa (4,000 psi).

During the periods of steady temperature, the pressure remained unchanged.

when the oven reached 190°C, the temperature was maintained for 15 days
and the deflections of the three cantilever beams were continuously monitored.

A record of deflection versus time for each of the three anchors is shown in
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Fig. 11. The net change in deflection for the two pressurized anchors was
zero, with an uncertainty in the reading of + 4 X 10-% mm. The net def]ecQ
tion for the unpressurized anchor increased by about 10 x 10-4 mm during the
first 5 days, and then remained constant to within + 2 x 10-% mm for the
remaining 10 days. These deflections were smaller than the precision limit

{approximately 1 x 10-2 mm) expected-for the installed gage.

Grout Compression Tests. Following these high-temperature creep tests,

the tnree anchors were depressurized, removed from the oven, cooled, and
the anchor mandrel was then axially loaded in a hydraulic press until it was
seen to slip within the simulated borehole. The loads at which this slippage

occurred were greater than 3,000 1b. for all three grouts. These values are

! [ i ! | ! {

16 |- SymAbol Anchor Grout Inflation Load -

12 - a #1 Epoxy 2000psi | 1001b —

s o #2 Standard | 2000psi | I001b -
o #3 AM-9 None | 10OIb

Creep (107 %¢cm)

-16 - | i | | | 1
0] 2 4 6 8 10 12 14 i6

Time at 190°C (days)

XBL 7911-13429

Fig. 11. Anchor creep versus time under load at 190°C for three
anchors set with different grouts. One anchor was
unpressurized.
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all large compared to the nominal 445 N of axial load which is applied to

each anchor during field use.

An additional test was performed to evaluate the effect of high-tempera-
ture aging upon the strength of epoxy and standard grout. Five cylindrical
compression test cylinders (size 25-mm diameter x 50-mm long) were cast from
each of tnese materials. The AM-9 grout had been eliminated from consideration

on the pasis of its excessive shrinkage.

Four samples of each material wereAp1aced in an oven and brought, in
50°C steps, to a maximum temperature of 200°C. One sample of each material
was removed after the furnace had been held at 100°C for 53 hours, and a
second sample of each was removed after the furnace had been held at 150°C
for an additional 48 hours. The final two samples of each material were

removed after an additional 365 hours and 864 hours at 200°C. Table 2

Table 2. Measured room temperature grout strength versus aging time and

temperature.
Oven Time at Sample no. Compressive strength (MPa)
temperature temperature removed From
(°c) (hours) furnace Standard Epoxy
Ambient -- 1 9.7 90
50 48 None -- -
100 53 2 9.0 68
150 48 3 9.7 98
200 365 4 3.8 75

200 864 5 5.0 27
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summarizes the subsequently measured room-temperature compressive strength of

each sample.

The epoxy sample, after being heated for 864 hours at 200°C, exhibited
visible swelling. When a fifth epoxy sample, previously unheated, was placed

in the oven and heated to 225°C, it experienced a complete breakdown.

conclusions from Anchor Tests. On the basis of the above tests, an anchor-

ing system was specified which will provide an anchoring capacity exceeding
that required to resist the 455-N rod-tensioning>force for an extended test
period at temperatures up to 200°C. Test results indicated an anchor creep of
less tﬁan 2 microns even under conditions of anchor depressurization and grout
deterioration. This resistance to creep may be due to the tendency of the
soft-copper anchor bladders to seat themselves along the rough surface of the

porehole wall.

Standard grout was specified for field installation of the exten-
someters, because it (1) exhibits the least relative volume chapge upon
curing or during high-temperature aging; (2) appears to be adequately strong,
after high-temperature aging, despite a marked reduction in strength when
aged at temperatures over 150°C; (3) costs considerably less than epoxy; and

(4) is mucn easier than epoxy to mix and place.

For pressurizing the anéhors, Dow Corning X2-1162 oil was specified, be-
cause it: (1) exhibits good chemical stability even in air at elevated temper-
" ature; (2) has a relatively high fire point; (3) has a Tow volatility
and generates no pervasive odor; and (4) undergoes only a small change in

viscosity after long-time exposure at elevated temperatures.
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2.2.2 Connecting Rod Tests

The thermal expansion of an extensometer anchor-to-transducer connect-
ing rod results in a displacement of the core of the transducer. This
thefma] displacement must be added to the gross indicated displacement
to obtain the net displacement of an anchor. Superinvar was selected for the
connection rods because it is an alloy (64% Fe, 31% Ni, 5% Co) which has a
small expansion over the temperature range of interest and would, therefore,
minimi;e the magnitude of this correction for thermal expansion. The 3.66-m
(12 ft)-long x 6.35-mm (0.25 inch)-diameter rod segments used for all of the
connecting rods were fabricated from a single melt. The laboratory thermal

strain measurements were made, as described below, upon several rods selected

at random from this group. The average behavior of these rods was used to

characterize all rods used.

Thermal Expansion Measurements. The thermal expansion measuring

apparatus that was used for these tests is shown in Fig. 12. The apparatus
consisted of: a horizontal oven 3.96-m long x 1.27-cm i.d.; a single super-
invar rod with five (5) thermocouples attached to the rod‘at its end points,
mid-point, and quarter points; and two LVDT displacement transducers mounted
externally to the oven ends. Linkages between the rod ends and the LVDT
cores were constructed from fused quartz. When a rod was cycled slowly to
temperatures over 100°C, the thermal expansion of the superinvar changed.
This is shown in Fig. 13 as three temperature-versus-thermal-strain curves
for a single rod, as received from the vendor. Curve I shows the rod's
expansion when heated rapidly (2 hours to 200°C); curve II, when heated

slowly (8 hours to 200°C); and curve III, for all subsequent cycles, when
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Fig. 12. Apparatus for thermal expansion measurements.
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Fig. 13. Comparison of superinvar
thermal expansion curves.

heated either s]ow]y‘or rapidly. Another rod, heated overnight (12 hours) to
250°C maximum, duplicated the expansion values shown in curve III. Thus,

curve III represents a.étable behaviagr for temperature cycles to temperatures
in excess of 200°C. The change exhibited here between the "as received" rod

and a rod which had been heated above 100°C for an extended period, has been
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reportea to be the results of the precipitation of carbon from the crystal
lattice (Marshall and Maringer 1976). To establish this repeatable thermal-
strain bpehavior, the rods were a}] heat treated. Fifty rods per batch were
heated, in a cylindrical oven (250-mm diameter x 4-m Tong) to 225°C in 5

nours, and then allowed to cool, in the oven, overnight.

Seven rods were tested in the thermal expansion apparatus described
above. Six rods were tested to determine the effect of thermal history on
the measured rod expansion. One additiona] rod was selected from the heat-
treated material and tested to assure that repeatable thermal-strain behavior
had peen obtained by the heat treatment. The measured thermal-strain-versus-

temperature curves for all seven rods are shown in Fig. 14.
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Fig. 14. Superinvar thermal expansion data.
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The measured values of thermal expansion for the seven tested samples
were averaged at each 10°C temperature increment from 20° to 200°C, and Table
‘3 was constructed from these averaged values. The thermal expansion values
shown in Table 3 are used during the in-situ heater tests to calculate the
total thermal expansion of each rod for its current temperature profile.

Expansion values for temperatures intermediate to those shown in Table 3 are

Table 3. Thermal strain data for superinvar rod. o = Integrated
thermal expansion per unit length as measured from a base
value at 20°C.

T (°C) or (™/mm) x 1076
20 0
30 2
40 5
50 12
60 18
70 26
80 35
90 48

100 62 -
110 79
120 97
130 118
140 141
150 167
160 197
170 233
180 276
190 329

200 380
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calculated by linear interpolation.

Simulated Borehole Test. A two-anchor extensometer was installed

in a simulated borehole (see Fig. 15) to evaluate the degree to which one
could expect that the temperature measured on one rod would track the temper-

ature measured at the borehole wall, and on an adjacent rod.
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— _
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Fig. 15. Borehole simulation model.
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The simulated borehole was constructed of two 1.52-m sections of 76-mm
i.d. x 83-mm o.d. mullite ceramic tubing, which has a thermal conductivity
similar to that of Stripa granite. Two extensometer anchors were grouted and
inflatea in place at positions 1.52 m and 3.04 m from one end of the tube.
Steel conduits, 2.54 cm in diameter, were attached to the anchors and to the
measuring nead assembly. Inside the conduit two rods of superinvar, with
tnermocouples attachea every 38 cm, were threaded into the anchor mounts.
Tne space between the conduit and the mullite wall was filled with fine glass
peads to simulate the heat transfer characteristic of the grout which would
pe filling tnis void in a field installation, while still allowing for
recoverapility of the extensometer components. Heater tape was wrapped
arouna tne pottom 1.52-m section of the borehole model, and thermocouples
were placed at 38-cm intervals on opposing sides of the mullite tube. The
entire apparatus was surrounded with 5-cm-thick glass fiber insulation

encased in a rigid cardboard tube.

Five neating trials were conducted while the temperatures were monitored
by an automatic data logger. An example of the temperature profiles obtained
after various heating times is shown in Fig. 16. An equilibrium condition
was approached after approximately 10 hours. ‘Under field conditions at
Stripa, the heat-up rate will be much slower and the temperature gradients

along the borehole will be less severe than those shown in Fig. 16.

These temperature profiles demonstrated that one can expect the tempera-
ture of adjacent rods in a conduit to be within 2°C of each other; but that
the porehole wall temperature could, in zones where temperature gradients

are as large as 90°C per meter, be up to 15°C different. We believe that in
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Fig. 16. Time sequence temperature profiles of the borehole model during one
of the heating trials.
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practice the borehole wall temperatures will be closer to the rod temperatures
because the grout has a higher conductivity than the loosely packed glass

beads used in this test.

Displacement Sensor Test. A displacement transducer (DCDT) was tested

in a variety of humidity and temperature conditions to determine the effect
of these variables and of extensive cycling on the transducer output.

The transducer was mounted on tﬁe cycling apparatus shown in Fig. 17, and

tne assembly was placed in a controlled environment chamber. Transducer
input voltage was regulated by an external power supply constant to + 0.01

V. Transducer output voltage was monitored by a strip chart recorder over the

full test period. The DCDT was tested in the environments listed in Table 4.

No measurable change was observed in the maximum or minimum voltage
produced by the extensometer cycling. All votage curves were smooth and
demonstrated no disruption of the output voltage due to transducer failure or

mechanical sticking.

DCDT DISPLACEMENT TRANSDUCER

XBL B03-8844

Fig. 17. Mechanical system for:
exercising DCDT trans-
ducer.



-31-

Table 4. DCDT stability test environments.

Temperature (°C) ., Hdmidity‘(%) Length of test (hours)
Ambient (23°C) Ambient (11%) @ 24
25 50 24
25 75 : 24
25 100 . 21
35 75 24
35 100 72
50 75 24
50 100 72

NOTE: A11 tests showed no effect on the operation of the DCDT or its output

voltage in any of the above environments.

2.3 Data Reduction Scheme

Extensometers used in the Stripa project measure the relative displace-
ments between the head and each of four anchor points in an instrumentation
borenole. Four spring-loaded rods, each attached to one of the four anchor
points, extend to the collar of the hole, at which point the relative axial
movements of the rods with respect to the collar are measured by four DCDTs.
For isothermal conditions, the measured displacements are the true displace-

ments. For non-isothermal conditions, as in the Stripa project, the displace-
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ments sensed by the DCDTs must be corrected for the thermal expansion/contrac-

tion of the rods.

There are two cases of extensometer anchor p]acemgnt at Stripg (see Fig.
18) wnich are treated separately. Case I identifies both vertical and hori-
zontal extensomeﬁers where anchor points extend across the heater centerline;
case II identifies an extensometer for which the anchor points are entirely on
one side of the heater centerline. Vertical extensometer holes for case I are
E1l through E17. Extensometer holes E20 and E29 are the only horizontal holes
that extend across the heater centerline as in case I. A1l other horizontal

extensometers (E18, E19, E21 through E28, and E30 through E35) are case II.

Chromel-Alumel thermocouples are attached to the longest superinvar rod
in each extensometer to measure the rod temperatures. These temperatures
are used to calculate the thermal expansion of the rods. Thermocouple
Tocations are not necessarily at anchor locations. A1l thermocouple loca-

tions for extensometers as installed at Stripa are listed in Appendix A.

Extensometer

20t >
»~Floor of heater drift

; |
l .
A ! Heaer Extensometar )
(nym
of ~ff--—¢ s
¢ I
A |BCD
o ; i
& &
Case I CaseIl

Anchors cross o hegter Anchors do not cross a
midplane haater midplone

e Anchor points in harizontal hote
X Anchor points in vertical hole

XBL 79B-11413

Fig. 18. Two cases for extensometer installation: where anchors do (Case I),
and do not (Case II) cross a heater midplane.



-33-

To estimate the temperature of the rods at points between thermocouples,
a smootn function must be calculated that closely approximates the actual
temperature profile along the extensometer rod. A linear interpolation of the
intermediate temperature is not sufficiently accurate for the calculation of
the thermal expansion. Cubic spline functions were found to interpolate well
petween the discrete temperature points . At each of the temperature points,
the spline function is continuous and has a continuous first derivative. End
point slopes are required in order to evaluate these functions over the entire
interval of interpolation. For case I type extensometers, symmetry was
assumed and temberature measurements were reflected about the centerline. A
zero slope condition at the centerline was also assumed, and the siope at the
collar end was calculated by a least square fitted function of the form T =
AeBZ to the first three temperatures and differentiating this function at
the endpoint. For case II type extensometers, the endpoint slopes were
calculated by fitting a T = AeBZ to the first three and last three temper-
ature points. The resulting two equatiéns were differentiated at the first
and last temperature points to obtain the slopes. Figure 19 compares typical
results from these spline-fit calculations for both types of temperature
profile, along with theoretical calculations by Chan et al. (1978) for the

temperature profiles approximately three months after heater turn on.

Keeping in mind the rod-temperature-profile calculation scheme described
apove, one can outline the data reduction scheme for calculating axial

borehole displacements as follows:
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Fig. 19. Comparison of theoretical and spline-fit temperature profiles for
Case I and Case II extensometer installations shown in Fig. 18.

Step 1: Record the voltage (Vi) from the appropriate rod displacement
sensor (DCDT--see Fig. 20) and from this voltage calculate the gross dis-

placement (DG) of the associated anchor point, i.e.,

DG = C1 [Vi - Vo]

DCDT calibration value determined by in-situ calibration (mm/V), and

where C1

<
i}

voltage measured before heater turn on.

Step 2: Record the collar temperature and all other temperatures

measured on the longest rod in this borehole.
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. For Rod 4, D¢ = dl o-dz +dy fd4
For Rod 3, Dy = d) +d, +dy
For Rod2, Dy=d| +d,
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Fig. 20. Extensometer anchor connection rods and segments for thermal expansion
calculations.

Step 3: Spline fit the data from Step 2 to allow calculation of
anchor-point temperatures and 18 intermediate temperatures at points equally
spaced between adjacent anchor points.

Step 4: Compute the total thermal expansion (di) for each of the four

segments (between adjacent anchor points) of this longest rod., i.e.,

19
dk=2, E o k =1, , 4
i=1
where
% = distance between adjacent anchor points divided by 19 (mm), and
aj = net thermal strain, since time of installation, for each element

of rod Tength (™/mm).

The «j values can be calculated as:
ai = ai(T) - a(Tp)

where
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ai(Tg) = thermal strain of the ith element of rod length between 0°C
and the average temperature of the extensometer rods prior to

heater turn on

ai(T) = thermal strain of the ith element of rod length between 0°C

and the current mean temperature between interpolated points.

Table 3 1ists the exberimental]y determined thermal strain (™/mm) as a
function of temperature. The coefficients ai(T,) and «j(T) are obtained

by linear interpolation from this table.

Step 5: Compute the total thermal expansion, Dy, for the full
length of each rod under consideration. The total thermal expansion for
each rod is the sum of the expansions from Step 4 depending on anchor

position (see Fig. 20).

Step 6: Thermal expansion of the rod and thermal expansion of the rock
results in displacing the collar end of a rod in opposite directions. There-
fore, to obtain the net anchor displacement (Dy)» one must add the calculated
thermal expansion of the appropriate rod (D) to the gross measured disp]aée—

ment (Dg) for that anchor point as calculated in Step 1.

2.4 Data Storage

Data for each extensometer displacement sensor (four per extensometer

assembly) are stored by the computer in two ways. Short-term data, taken

every 15 minutes, are stored on disk for 24 hours and can be viewed by the
operators as hexadecimal values from the analog-to-digital converter, as DCDT

output voltage, and as net anchor displacement in millimeters. After each
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15-minute sample, the data are written to tape for permanent storage as a
coded voltage.

Long-term data, an average of from 3 to 95 of the 15-minute samples, are
stored on disk as millimeters of displacement relative to the borehole collar.

These data are used by the graphics programs for plotting.

2.5 Field Installation

Extensometer construction and installation can be subdivided into three
separate tasks: (1) assembly of the downhole hardware, (2) installation of
this hardware into the borehole plus grouting and anchor pressurizing pro-

cedures, and (3) installation of the head assembly.

Construction of the downhole port{on involved assembly of rods, anchors
and pressurizing system, thermocouples, and conduit sections. This job
was handled on a workbench 10 m in Tength by 1 m in width to accommodate
the entire instrument during assembly (see Fig. 21). A two-man crew was
required for the job. Procedure was as follows:

1. Rod sections joined, measured, and marked

2. Thermocouple leads attached at specific points along the longest rod

3. Anchors and protective conduits joined and placed around rods

4. Collar stabilizer tube attached to conduit

5. Anchor pressure lines strung and connected to anchors and pressure

manifold

6. Anchor system pressure tested for leaks.

Placing the instrument in the borehole followed by grouting and setting

of the anchor position was the next step. Due to the length of the instru-
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XBB 803-3397

Fig. 21. Pressure-checking the
anchor system.

ment, a large crew (minimum six persons) is required to move the assembled

extensometer and feed it into the borehole. Grouting operations required

only a two-man crew. Procedure was as follows:

Grout mix prepared

Hole cleared of water and debris with a blast of compressed air
Instrument p]aced into borehole (Fig. 22)

Collar of hole packed off and the collar stabilizer tube

flange secured to the rock wall (horizontal installations

only)

Hole pumped full of grout

Deepest anchor poSitioned by pushing on the connecting rods

and then inflating that anchor in place
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XBB 803-3398

Fig. 22. Placing extensometer in
borehole.

7. Subsequent anchors each positioned by pulling on the connecting

rods and then inflating the anchor

8. Collar (finish) cementing performed.

Following curing of the final cement application, the extensometer
head assembly was mounted in place. This task, invo]ving_tensioning and
trimming of the rods and installation of the sensing system was handled by
one person. Head assembly procedure is as follows:

1. Rod spring assembly prepared and emplaced

2. Rods locked to spring assembly, tensioned, and cut to length

3. DCDT support plate mounted and DCDTs installed and wired

4. Cover plate and calibration screws installed.

This completes the extensometer installation.
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2.6 Field Calibration

Extensometer calibrations are in-situ calibrations involving both data-
logger and computer monitoring of displacement transducer output. The
calibration includes the effects of instrument deformation (for example,
rod and spring stretch) occurring during displacement measurements. The
data-logger output is hand recorded and serves as both a visual check
during calibrations and a calibration for use with data-logger tape
values taken during the experiments. Then, the calibration is compiete1y
recorded, under the standard calibration program used at Stripa (Teknekron,
Inc. 1978). Graphs of the calibration runs and computed least-squares
values of slopes and standard deviation are available through the graphics
routine. The slopes (calibration coefficients) and offsets entered into the

sensor parameter file are listed in Appendix D.

Calibrations were performed by raising the head assembly with respect to

the upper flange surface of the collar stabilizer tube (Fig. 23). Three

/HEAD COVER
STEP
CALIBRATION
BLOCKS (3)

/HEAD LIFTING SCREWS (3)

HEAD DISPLACEMENT

COLLAR STABILIZER TUBE

o
74 W 777 IS 73 NN
ROCK SURFACE

XBL B03-8845

Fig. 23. Extensometer calibration
set-up.
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head-1ifting screws provided this movement. After each 1ift the head was
Towered onto three precision step-blocks inserted at 120° intervals between
the stabilizer tube flange and the'overhanging 1ip of the head assembly. In
this way, calibrations were performed in precise steps of 5.00 mm, from 0 to
25 mm. Following calibration, the head-1ifting screws were used to place the

head so that the displacement sensors were near the midpoint of their range.

Sample data from an extensometer calibration are shown in Table 5

and Fig. 24. The calibration statistics are as shown below:

Time~Scale Extensometers

il

Average standard error = 0.041 + 0.009 mm (20 transducers)

0.056 mm

Highest standard error
Lowest standard error = 0.025 mm
Average slope = 2.132 + 0.025 mm/V

Full-Scale Extensometers

(1) Vertical Extensometers

Average standard error = 0.027 + 0.011 mm (44 transducers)

0.056 mm

1]

Highest standard error

Lowest standard error 0.006 mm
Average slope = 2.132 + 0.025 mm/V

(2) Horizontal Extensometers:

Average standard error = 0.032 + 0.011 mm (72 transducers)

1]

Highest standard error = 0.070 mm
Lowest standard error = 0.010 mm

Average slope = 2.163 + .023 mm/V

|+
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Table 5. Data from sample extensometer calibration, performed
after installation with 5.0-mm step blocks.

Voltages (V)
Step Distance (mm) V1 V2 V3 vd
0 0.000 -5.815 -5.800 -5.840 -5.830
1 5.000 -3.485 -3.435 -3.445 -3.468
2 10.000 -1.155 . -1.064 -1.050 -1.087
3 15.000 1.171 1.275 1.321 1.244
4 20.000 3.455 3.575 3.690 3.557

NOTES: Title: Extensometer calibration (full-scale) E-17

Extensometer sensor no.'s = 821, 822, 823, 824

Displacement step size

5.000 mm

Number of displacement steps = 4

Data channel no.'s = 44, 45, 46, 47

Temperature = 15.°C

Zero readings = -5.8, -5.8, -5.8, -5.8

Standard error (mm) = 0.021, 0.033, 0.015, 0.038
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Fig. 24. Displacement versus output voltage obtained from calibration of
extensometer E17A at Stripa. Calibration factor (slope) is 2.16 mm/V,
with an RMS error of 21 um.

" Three extensometers (12 transducers) were recalibrated yielding an average

repeatability of 0.15%.

Since the calibration curves are characteristically slightly nonlinear,
the accuracy of measurements over a small range is expected to be higher
than suggested by the standard errors computed over the calibrated 20-mm

range.

3. USBM BOREHOLE DEFORMATION‘GAGES

3.1 Uescription of the Instrument

The USBM borehole deformation gage (Fig. 25) was developed by the
U. S. Bureau of Mines to measure in-situ stress by the overcoring technique

(Hooker, Aggson, and Bickel 1974). The gage measures the diametral deformation
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Fig. 25.
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U.S. Bureau of Mines (USBM) borehole deformation gage.

of an EX size (38 mm) borehole along three diameters spaced 60° apart. Each

component of diameter change is measured by a pair of internally mounted

cantilevers which are strain-gaged near the fixed end to produce an electri-

cal signal proportional to the deflection of the cantilever.

Each cantilever

is strain-gaged on both sides to provide thermal compensation and increase

the magnitude of change in gage output for a given cantilever deflection.

The four strain gages are wired in a full Wheatstone bridge configuration, as

shown in Fig. 26.

Movement of the borehole wall is transmitted to the
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Fig. 26. Schematic of strain-gage bridge wiring on a cantilever pair for the
measurement of one component of diametral deformation.

cantilevers by O-ring sealed pistons or buttons mounted through-the wall of

the gage body.

The measurements of borehole deformation can be converted to stress
using the analytical solution for a circular hole in an infinite medium under
conditions of either plain stress or plain strain (Obert and Duvall 1967).

In this study the plain strain assumption was used. Conversion of borehole
deformations to stress requires input of the Young's modulus and Poisson's

ratio of the rock medium.

In the overcoring method, the deformation released by overcoring is used
to determine the abﬁo]ute stress magnitudes and orientations. , In the Stripa
experiments the gages are used to monitor the magnitudes and orientations
of the stress éhanges occurring during the heating of the rock mass. Hence,
the present application introduces two elements not previously considered in

the use of the gage; namely, its use at elevated and changing temperature,
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and its use over a time span of a year or more as compared to a few days in

normal use.

In anticipation of the extended requirements, certain modifications
were made in the gage material and design. These modifications include:
o Construction of the cantilever arms from 17-4 PH stainless steel
instead of the beryllium copper normally used. This change was
incorporated to match thermal expansions of the cantilevers to that

of the gage body.

-]

Use of high temperature (304°C). strain gages and solder.

-]

Addition of individual excitation leads for all three component

bridges.

-]

Use of teflan coated wiring and a teflon connector for cable to

gage connections.

-]

Addition of a thermoecouple installation hole in the rear bedy
of the gage.
 Protection of electrical leads from water damage with RTV-60 silicone

rubber compound.

These modifications were incorporated for gage operation up to 200°C;
however, gage operation up to 250°C is probably possible. Teflon components
break down at 260°C. |

Each diametral strain component is measured by applying a fixed
excitation voltage across the strain gage bridge and measuring the resulting
bridge voltage. The diametral displacement is related to the bridge voltage
Dy

u (m) =C (V- Vg) (1)
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where u, the diametral displacement, is given in millimeters; the slope C

in millimeters per millivolt; and V, the bridge voltage, and Vg, the starting
bridge voltage, are givén in millivolts. If no temperature changes are
expected, then gage calibration simply establishes the slope or calibration
factor C. The initial voltage Vg is read after insertion of the gage into
the borehole. A decrease in the borehole diameter is reckoned as a positive

displacement.

The temperature dependence of the slope of the diametral displacement
versus the bridge voltage response was evatuated in the Taboratory for a few
gages. Final calibration was performed in the field for each individual
gage. In addition, temperature correcfions were applied to account for the
thermal expansion of the gage and the borehole. A thermocouple was installed
with each gage to provide a temperature measurement at the same point as the
borehole deformation measurement. All temperature corrections are incorpor-
ated into the data reduction algorithm coded on the Modcomp computer at

Stripa.

3.2 Laboratory Evaluation of Temperature Effects

Calibrations for the modified USBM borehole deformation gage were conducted
in the laboratory at both ambient and elevated temperatures, to determine:

* the effect of temperature on gage performance

o gage resolution and its variability among components and among gages

o procedures necessary to calibrate the gages in the field.

Complete calibrations were performed on all three components of two. gages
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at room temperature. In addition, these gages were calibrated at temperatures

of 50°, 100°, 150°, and 200°C to determine temperature effects.

In the laboratory each gage waé powered aﬁd read by means of a Vishay
portable strain indicator and a switching and balancing unit with a gage
factor setting of 0.40. Hence, the laboratory results are given in units of
strain. while the field data, which was acquired with a constant applied
excitation voltage, are given with voltage as the output parameter. Since
all units were.fully calibrated 1afer in the fie]d, there was no need to

relate the two units of output.

Calibrations were performed using a calibration fixture (Fig. 27)
which holds the gage body firmly while depressing one component paik by means

of two micrometers scaled at 0.0025 mm (0.0001 inch). After allowing the gage

SECURING. PLATE

AGE BODY
GAGE B0 | B——THReAOED RODS (3)
N BODY OF FIXTURE
GAGE PISTONS :

R
\ /SET SCREW

Y

MICROMETERS (2)

XBL 803-8846

Fig. 27. USBM calibration fixture.
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and calibration fixture to come to oven temperature (usually overnight), each
micrometer was turned in until contact with the component pistons was made.
To produce diametral change instead of radial, the micrometers were then

each turned in one-half of the total incremental displacement desired. After
equilibration, gage output was recorded and the process repeated. Calibra-
tions were run over a range of 0.711 mm (0.0280 inches) of total displacement

faor both loading and unloading curves.

From each éalibration run (Toading or un]oading) a calibration factor or
slope was computed by least-squares linear regression. The term calibration
factor as used here refers to the average change in companent displacement
divided by the change in component output, whether read as a voltage»or,as a

strain.

Calibrations at elevated temperatures involved opening the oven daor
to permit turning of the calibration fixture mjgrometers. To determine the
time interval required to allow the oven and gage to temperature equilibrate,
a calibration run at 200°C was conducted in which readings were recorded at
U, 5, 10, 15, and 20 minutes after cidsing the aven door. Results of this
test indicate that after the initial 5-minute lag the gage reading never
changed by more than 0.0025 mm. To determine the effect of time on cali-
bration factor, the data points from each time interval were used to compute
& calibration factor. This comparison showed less than a 0.2% change in
calibration factor between the 5- and 15-minute data sets. These data indi-
cate that a 5-minute wait between readings is suitable during temperature

calibration of the modified USBM gages.
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vage Calibration Factor. Typical calibration runs-at room temperature-

and at 200°C (see Fig. 28) illustrate the linearity of the gage response with
cantilever displacement. The slope of a curve is the calibration factor
C, which changes only slightly with temperature. A complete listing of the

calibration runs conducted in the laboratory is given in appendix Table E-1.

The resuits of temperature calibrations on gage number 401 for all
three components is shown graphically in Fig. 29. The lines represent
the least squares fit to data points representing the siopes of the cali-
bration curves of several temperatures: the dashed lines indicate loading
curves; the solid lines, unloading curves. The percent change frem 20° to

200°€ is also listed in Table 6.

Temperature calibrations on gage number 428 indicate a similar change

USPM GABE ~TEMPERATURE CALIBRATIONS

GAGE NO. 40
COMPONENT #1

30

3
1
-3
°

DISPLACEMENT (1073 iN.)
i
ry
Qo

=)
(w3 01} LN3INIDYIdSIA

LOADING CURVES AT 23"C AND 200°C

[
o

i i 1
0 20 30
STRAIN READING (I6° cm/cm)

XBL8OI -8l

Fig. 28. USBM gage response at two temperatures, demonstrating linearity of
the displacement with respect to the strain gage output. Note the
small change in slope between the two temperatures. The offset

' between these two curves includes an offset resulting from the
expansion of the calibration fixture -- see Fig. 30 for the true
of fset measurements.
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Fig. 29. USBM gage calibration factor as a function of temperature.

Table 6. Change in calibration factor with temperéture
for USBM gage 401.

Component number - % change (20°C - 200°C)

1 6.6 (L)

5.7 (U)

2 5.4 (L)

6.9 (U)

3 4.8 (L)

5.4 (U)

Average 5.6 (L)
6.0 (U)
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in calibration factor with temperature (average 5.8% loading, 5.2% unloading).
This change in calibration factor can be related to a change in gage factor
for the cantilever strain gages. The gage factor is the fractional resistance
change per unit mechanical strain as defined by the eduation:
(AR/RO)
Gage Factor (F) = TZE7E;T

where: &R

= Change in strain gage resistance (ohms)
Ro . = Original strain gage resistance (ohms)
AL = Change in length of the strain gage filament

Lo = Original length of the strain gage filament.

The strain gages used in the manufacture of the USBM gages discussed
here were Micro. Measurements type WK06-125-AD350. Manufacturers' pub1iéhed
data on the average change of gage factor with temperatﬁre indicated a
5.7% linear decrease in gage factor from 20° to 200°C. For the bridge
configuration discussed here (Fig. 26) the output voltage of the unbalanced
pridge is directly proportional to the gage factor. In turn, the calibration
factor of each gage as defined in Eq. (1) is inversely proportional to
the output voltage. Thus a 5.7% decrease in gage factor correspdnds to a
5.7% increase in calibration factor, which is in direct agreement with the

experimentally determined results.

‘Hence, the laboratory calibrations indicate that (1) the change of
calibration factor with temperature is linear, (2) the change is small but
not neg]igib]e,vand can be taken as a 6% increase between 11° and 200°C, and
(3) the change is fairly constant between different gages and different

components of the same gage; that is, the change is not gage dependent.
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Gage Offset. The initial bridge voltage Vg [Eq. (1)] is also temperature
dependent. This was evaluated in the laboratory at elevated temperatures and
zero displacement for all three components of gages number 401 and 428. The
offset referred to here is attributed to the non-compensating thermal effects
of individual strain gages, and does not refer to expansion of the whole gage

body against a fixed reference as discussed later.

To insure a zero displacement (no load) condition, the component pistons
were removed from each gage. Both gages were then placed in an oven and
brought up to 200°C from room temperature by increments of approximately

50°C. Data obtained from two runs on gage 401 are shown in Fig. 30. The

USBI& GAGE - TEMPERATURE CALIBRATION
GAGE NO. 401

© RUN &2
Ll
© RUN &1 COMPOHENT 21

3 k- A RUNSZ
« RUN | COMPONENT &2

a RUN SR
MPONENT &
@ RUN&? | cof 3

OFFSET AT ZERO DISPL. (IO-'Em/em)

20 50 100 150 200
GAGE TEMPERATURE (C)

XBL 803-8340

Fig. 30. Change in strain reading
with temperature, canti-
levers in no-load condition.
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gyage offset versus temperature is both linear with temperature and repeat-
able. This offset, unlike the change of calibration factor with temperature
appedrs to be different for each individual component. In terms of the
measured displacement,the offset correction is fairly significant as will be

snown below.

urift Measurements. Drift measurements were conducted in the Taboratory on

one gage to determine the stability of the gage when held at constant

displacement at both room and elevated temperatures. The gage was placed in
a 38-mm (i.d.) aluminum pipe causing an initial deflection of approximately
0.5 mm. Measurements were made At room temperature, and at 50°, 100°, 150°,

and 200°C. Testing at 200°C was carried out for 114 hours.

Test results are shown in appendix %ab]e E-2, as the change of gage
output (millivolts) from the original, t{me iero, reading. After an equili-
pration period of about 1 hour, signal variations are generally less than
U.01 mV. The significance of this is treated below inpthe section on error

analysis.

3.3 Computation of Displacement and Stress

Interpretation of borehole deformation from gage readings involves
corrections arising from thermal effects on gage output. The following
discussion involves interpretation of these thermal corrections as based

on Taboratory findings.

The general form of the calibration curves for USBM gauges at ambient
temperature and at elevated temperature is shown in Fig.31. The cali-

bration factors or slopes (C;) of the calibration curves were found to be
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T=200°C

T=11°C

BRIDGE VOLTAGE V

XBL 798-1144

Fig. 31. . General form of USBM gage
calibration curves.

linear functions of temperature, thus:

.06 |
C; = 0 [ﬁ-g- (T, - 11) +1] (2)

where

= calibration factor at 11°C

(o]
—_
|

H

C; = calibration factor at T4OC.

There is an offset voltage (change of intercept) V;, which is produced

wnen the gage undergoes a change in temperature at constant displacement.

This offset voltage is also linear with temperature, and the voltage change
is gage dependent. The voltage change at zero displacement (component
buttons removed) was evaluated at Stripa for each bridge over the temperature

range 11° to 200°C. The offset voltage V; at temperature T; is given by

Eq. (3):
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where

Vo = initial bridge voltage at 11° and zero displacement

V1 = bridge voltage at 200°C and zero displacement.

when the gage is inserted into the borehole, the bridge voltage will
change to Vg due to deflection of the cantilevers to the starting dis-
placement ug. The value of ug may be computed as:

u
S

it
[
w
—
<z
w
]
|
[72]
I

where:

- 0.06 .
Cs = C1 [ng— (TS - 11) + 1]

T, = starting temperature

vV, -V
- _ 1 a
Vs - 7189 [%s - 11]‘ * Vo .

This scheme for determining ug is valid for any starting temperature Tq;

however, the procedure at Stripa assumed that T¢ was 11°C, so that

Egs. (4}, (5), and (6) reduce to:

S i

Tne data reduction algorithm for the USBM gages then proceeds as follows:

o Measure the new bridge voltage Vj and temperature Tj.

o Calculate the new slope énd offset.

_ ¢ |06
¢ = [189 (T - 11) + 1]

- Vl - Vo
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o Evaluate the displacement change uj.

uj = Cj |:VJ - VJ:| - Ug (10)
o Subtract out the difference in the thermal expansion of the rock

and the gage, to obtain the real displacement uy.

Ur- = Uj - (ag-ar)d (TJ - 11) (11)
where:

d = 38 mm, borehole diameter

o = 11.6 x 10-6/°C, thermal expansion coefficient of gage body

a. = 11.1 x 10-%/°c, thermal expansion coefficient of rock.

Since the gage body expands against the borehole wall creating an °

increase in the apparent measured displacement, the contribution of gage

expansion to the measured displacement must be subtracted as a correction.
Similarly, the borehole diameter (in a stress-free state) increases when
the temperature is raised, creating a decrease in apparent measured dis-
placement. Thus, the contribution of borehole expansion must be added
as a correction. |

o Compute the biaxial stress components dg, Oy, OF Oz as outlined

bhelow.

. The quantities uy, up, and u3 are the diametral displacements measured
by the USBM gauges (Fig. 32). The first displacement uj will always be
oriented in the tangential direction relative to the heater for both hori-
sontal and vertical holes. The principal stress components are dp and aq

where op > dq. If the angle © (the angle between op and uj measured counter-
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60°

8o, u,
XBL 798-1142]

Fig. 32. Displacement and stress
nomenclature for USBM
gages.

clockwise from uj) turns out to be near 90° (*10°) then the major principal
stress component op becomes o, or o, depending on whether the hole is ver-
tical (o) or horizontal (o,), and oq becomes og. From Obert and Duvall

(1967), the equations of interest are:

P (1 iz)sd { (uptuptug) + !%T [}“1'”2)2 * (UZ-U3)2 + (u3-u1)2 ] 172 } (12)

[o]
|

Q
|

<
1]

U,-U
1/2 tan_1 %Uirg—:%l
17273

where strain in the plane normal to the borehole is assumed to be zero.

. Note that the equation for Bp requires further inspection to deter-
mine in which quadrant the angle Op falls. This quadrant may be determined

by examining the sign of the numerator and denominator of the right hand
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portion of the expression for ep; +/+ = 0° - 45°, +/- = 45° - 90°, -/~ = 90°
- 135°, -/+ = 135° - 180°. At present, no such inspection is made by the data

reduction algorithm.

3.4 Data Storage

Data for each USBM gage are stored in two ways by the computer. Short-
term data, taken every 15 minutes, are stored on disk for 24 hours and can be
viewed by the operators as hexadecimal values from the analog to digital
converter, as voltage, and as displacement in millimeters. After each l5-minute
sample, the data are written to tape for permanent storage as a coded voltage.
Long-term data, an average of from 3 to 95 of the 15-minute samples, are
stored as millimeters. The graphics program uses the long-term data to
calculate stress values in accordance with Eqs. (12) and (13) which are

displayed on the plots. Stress values are not stored by the computer.

3.5 Field Calibration and Installation

The USBM gages were calibrated on site before field installation. By
calibrating on-site, the effects of the entire data acquisition system were
incorporated into the calibration. This two-part calibration involved measure-
ment of (1) thermal offset at constant displacement between 15° and 200°C, and
(2) the slope of displacement versus voltage output (Fig. 33) over the displace-

ment range of 0.71 mm at 15°C.

Thermal offset voltage was determined for each lot. First, the
component buttons were removed from all gages to eliminate the influence of
button expansion or friction. The gages were then placed in a forced convec-

tion oven with a resistance temperature device (RTD) as a temperature standard.
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Fig. 33. Displacement versus output voltage obtained from calibration at
Stripa of USBM gage U24-2. Calibration factor (slope) is 63.78
um/mV, with an RMS error of 0.43 um.

A11 gages were held at 200°C for several hours as a strain-gage annealing
process, and then tested during a second heating cycle, with data taken at

20°, 80°, 140°, and 200°C, as shown in Appendix E.

The slope of displacement versus output was determined using the
calibration fixture shown in Fig. 27. Each component was calibrated, at
ambient temperature (15°C) only, over a range of 0.71 mm (0.0280 inch).
Calibration step size was 0.051 mm (0.0020 inch).

Installation of the USBM gages involved (1) presetting the gage compo-
nents, (2) assembling and attaching the associated dewatering tubes (for
vertical holes only), ahd (3) locating the gage at the proper depth and
orientatipn. See section 6 for a detailed discussion of the dewatering

system.



The gages were preset by Towering them to a depth of 1 m and determin-
ing the necessary washer spacings to be added or subtracted to bring each
.component pair to the middle of its calibrated range. Spacers were available
in 0.005- ,0.007- , and 0.015-inch sizes. The 0-rings on the buttons as well

as all other seals were Tubricated with silicone vacuum grease.

Before the gage was lowered downhole, the thermocouple leads and de-

watering lines were attached to the gage body and cable. The 1nsta11ihg

rods were marked at 1-m intervals for convenience. Because the small-
diameter holes at Stripa are so long, the 1ﬁsta11ing rods had to be modified
to allow for passage of the main cable. Although slots were milled through
the screw connections, twisting of the rods and wall friction often jammed
the rods and cable. This problem can be avoided in future app]icatfonsAby:

redesign of the rods.

After Towering the gage to thekproper depth and orienting it so that
the first component was always placed in the tangential direction with
respect to the cylindrical coordinate system centéred on the heater, we
performed a final check on the componeht displacement and the'ho1é‘dewatering
system. The rods were then removed from the hole and a fiberglass packing
placed above the gage. For further detail on installation, refer to discus-

sion of Fig. 46, section 6.4.

3.6 Sensitivity Analysis

The sensitivity of the USBM gage measurement to gage and physical property
perturbations is considered in AppendiX E. 'The analysis is undertaken in two

parts: First are considered the errors in disp]acement‘caused by deviations of
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the various parameters in Eqs. (7) through (11). These errors are summarized
in Table E-4 for the two cases of 30°C and 90°C. It was found that the 1argesf
potential source of error lies in the thermal expansion correction. An error
of 1 ppm per degree Céntigrade in either the rock or gage thermal expansion

coefficient results in a displacement error 3.3 um at 90°C.

The second part of the error analysis examines the effect of parameter

perturbations upon the computer stress, using a simplified version of Egs.

(12) and (13). These results are summarized in Table 7, which is reproduced
from appendix Table E-5. As mentioned in Abpendix E, the errors adopted

for Young's modulus and Poisson's ratio are only rough estimates, represen-
tingv20%-variations from the established values. Despite its preliminary
nature, Table 7 contains several points of interest. The largest source of
error in the computed stress is the uncertainty of Youné‘s modulus, producing
an error three times greater than the disp]acement measurement. Another
point apparent from both appendix Table E-4 and Table 7 is that most errors
increase with temperature, although the increase may not necessarily be

directly proportional to temperature.

A final error analysis must refine the estimates of parameter fluctua-
tions and especially include the effects of long-term drift. Another factor
requiring assessment is the validity of the plane-strain assumption upon

which Egs. (12) and (13) are based.

3.7 Summary
For use at Stripa, equations defining the USBM gage response have been

established [see Eqs. (7) through (11)] and encoded into the data reduction
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Table 7. Estimated errors in stresses computed from a USBM
gage measurement, due to assumed errors in the
measured borehole displacement and in the mechanical
moduli. Base case values at 30°C and 90°C are 15

MPa and 35 MPa.

Magnitude of

assumed error Error in computed sfress (MPa)
- 30°C 90°C 30°C 90°C
Displacement 1.1 um 3.3 pm +0.8 +2.3
Young's modulus 10 GPa 10 GPa +3.0 +8.0
Poisson's ratio 0.05 0.05 +0.5 +1.0
Borehole diameter 1 mm 1 mm ‘ -0.4 -0.9

scheme. Four temperature corrections are applied to the gage output in order
to compute a borehole deformation:

1. In laboratory tests, the slope (calibration factor) C was found to
increase linearly with temperature. The change is small (approximately a 6%
increase between 11° and 200°C), and is uniform among different gages and
among different components of the same gage--that is, the change is not gage

dependent.
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2. Laboratory tests showed that the offset voltage V at constant dis-
placement changes significantly with temperature. The offset changes linearly
with temperature but is gage dependent, and must be determined for each
component of each gage prior to installation.

3. A correction is applied to account for the thermal expansion of the
gage body. This effect is separate from the temperature dependence of the
coefficients C and V.

4. A correction is applied to account for the change in borehole
diameter caused by thermal expansion of the rock. This effect is separate

from the deformation of the borehole induced by the thermal stresses.

A preliminary error analysis shows that items 3 and 4, the thermal ex-
pansion corrections for the gage and rock, are likely to be the largest
sources of error in establishing the borehole deformation caused by changes in
the roék stress. As shown in appendix Table E-4, these effects appear to
outweigh the uncertainties in other parameters, such as the temperature
correction for the initial bridge voltage and the stability of the bridge .
voltage. However, long-term variations in gage properties are at present
unknown and require assessment before the error analysis will be complete. A
surprisingly important term is the temperature correction for the ca1fbration

factor.

To compute the stress changes associated with borehole deformation,
physical property values must be used, and the uncertainty in the value of
Young's modulus dominates the uncertainty in the computed stress, as shown in
Table 7. ,Hence it appears thaf variations and uncertainties in physical

properties overshadow measurement errors.
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4, TIRAD VIBRATING WIRE STRESSMETER

4.1 UDescription of the Instrument

Vibrating wire stressmeters are used in the Stripa heater experiments to
measure stress changes in the rock mass resulting from thermal gradients
developed during the heater tests. These gages were manufactured by Irad
vage, Inc. of Lebanon, New Hampshire. The original design and the operation

of the gage are described by Hawkes and Bailey (1973).

Two stressmeters are wédged tightly inka 38-mm borehole which has been
drilled parallel to or in the radial direction from a line heat source. The
two devices are placed adjacent and at right angles to each other, and are
oriented in the two principalt stress directions (ae, of, or og, oy for ver-
tical or horizontal boreholes, respectively). A total of 13 boreholes are

instrumented with IRAD gages.

‘The vibrating wire stressmeter (see Fig. 34) operates on the principle
that a change in stress of a wire causes a change in its fundamental period
of vibration (Hawkes and Bailey 1973). The stressmeter consists of a highly
stressed steel wire stretched across a diameter of a hollow steel cylinder.
The cylinder is preloaded diametrically across the borehole, in the direction
of the wire axis, by means of a sliding wedge and platen assembly. The wire
undergoes a change in tension when the steel cylinder deforms as a result

of changes in the force applied by the surrounding rock.

This: change in wire stress is measured electronically by the IRAD MA-2

data logger or the MB-6 hand-held meter which detect the corresponding change
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Fig. 34. Vibrating wire stressmeter: (A) Photograph of assembled gage with
upper and lower platens, as used for soft rock. For granite, the
upper platen is smaller and the lower platen is deleted (IRAD Gage,
Inc. 1977). (B) Exploded sectional view.
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in the wire's resonate period of vibration. These instruments provide, as '
readout, the digital value of the measured resonant vibratory period of the
wire in units of 107 seconds. (For convenience in the following discussions
and in the data reduction calculations, this period, R, shall be taken to mean
the four digit meter reading rather than that number times 10-7 seconds.

For example, R will be 2,146 units and not 2,146 x 10-7 seconds.)

An IRAD gage is not accurate at readings greater than about 4,000 units
because the wire is then approaching a slack condition. For this reason the
useful range of a specific IRAD gage is a function of its initial period of
vibration. Gages of low period (high natural fréquency) will provide the
greatest range when installed in rock subjected to increasing compressive
stresses. The distribution of the as-manufactured period, Ro,lfor eéch of

the 35 gages purchased for this experiment is shown in Fig. 35.

By proper Ca1ibrat10n of the stressmeter, the changes in gage readﬁng:
can be related to stress changes in the rock at the point where the gage is
installed. For the general case, three gages‘are required in a borehole to
measure the biaxial stress changes in a plane normal to the borehole. For
the Stripa project, however, the principal stress directions are assumed

to be known and, hence, only two stressmeters are required for each borehole.

4.2 Gage Calibration and Evaluation of Temperature Effects

Because time was limited, it was possible to perform individual room-
temperature calibration tests on less than half of the individual gages, and

to perform only nine elevated-temperature (76° to 200°C) calibration tests.

H
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Fig. 35. Distribution of initial IRAD stressmeter readings. Individual
gage numbers are noted within each group.

sages were calibrated in the laboratory under conditions of uniaxial stress
in a rock sample taken from the Stripa mine. Gages were not calibrated in
the field. The calibration data provided a minimum statistical basis for the
interpretation of the in-situ rock stress changes as a function of the
observed gage temperatures and meter readings (vibratory period of the

stressed wire).

In order to determine if any offsets in gage reading would occur when

an unloaded gage (as supplied by the manufacturer) underwent a temperature
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increase, two IRAD gages were placed in an oven. During rapid heat up,
changes in the vibratory period were noted; after thermal equilibrium was
reached at 200°C, however,the gage readings were within 5 units of the
room-temperature reading. It was concluded from these measurements that gage
period readings would not be significantly offset by the very slow tempera-
ture changes to which these gages would be subjected during in-situ tests at
Stripa. These results are consistent with tests to 150°C reported by Hawkes

and Bailey (1973).

In six additional tests (ircluding duplicate tests on two of the gages)
four IRAD gages were mounted sequentially in a sample of Stripa granite (des-
cribed below) that remained free of external load. For each test, the gage
reading was noted at room temperature and again after thermal equilibrium had
been established at 200°C. Thermal equilibrium was assumed when the gage
reading reached a steady value at the elevated furnace temperature. The co-
efficient of linear expansion of the Stripa granite was measured by Pratt et
al. (1977) to be 11.1 x 1076 per degree Centigrade, while a handbook value
for the 4140 steel of the gage body (Smithells 1976) is 12.0 x 10-6 per degree
Centrigrade; This difference in the coefficient of expansion would suggest
that the period of vibration may be expected to increase slightly with increas
ing temperature, i.e., the gage preload is increased as a result of the
temperature increase. This effect was indeed observed for most of the tests;
nowever, for two gages a negative shift in reading was noted. The six gage
offsets ranged in value from +50 units to -35 units, with an average value of

+15 units.
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This offset was assumed to be a linear function of temperature--as
shown in Fig. 36. Future tests must locate the unidentified variables,
such as wedge position, which may have caused the large scatter in these

data, as well as the actual degree of Tlinearity.

bGages were calibrated (in a UniQérsa] testing machine)
by producing uniaxial compressive stress in a Stripa granite sample 22
cm long and 24 cm in diameter (Fig. 37). Sample end caps were fashioned
from Little Cottonwood Stock quartz monzonite. The granite block was wrapped
with electrical heater tape and thermal insulation to provide rock and
instrument temperatures up to 200°C. Eighteen gages were calibrated in
total. Four of these gages were tested both at ambientvand at one or more

elevated temperatures.

£Each stressmeter was installed in the rock sample by means of a hydrau-

lic setting tool, supplied by the gage manufacturer, which allowed control of

i5
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AVERAGE
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IN GAGE ) L TEMPERATURE, °C

READING g |~ 23° 200°
-10
-15

XBL 7911~-13418
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Fig. 36. Average Fesponse of IRAD gages when subjected to elevated tempera-

tures while installed in Stripa granite at zero applied stress.
Average offset = Rg(T) - Rg(23).

([l

Re(23) Installed gage reading at 23°C and zero applied
> load

oad.
Rg(T) = Installed gage reading at T°C and zero applied

load.
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Fig. 37. Granite sample for calibra-
tion of IRAD gages under
uniaxial compression.

the preset load developed by the wedging action. A preload equivalent to
approximately a 100-unit change in the meter reading on the MA-2 data Togger
was used for these laboratory tests. For example, if the initial gage
reading, Ro, was 1957, the installed gage reading, Rg, would be adusted to
approximately 2057. The rock sample, with installed gage, was placed ina.
large test frame and loaded uniaxially to a stress of approximately 14 MPa
(2,000 psﬁ). Data were recorded in 0.70 MPa steps during both loading and

unloading of the sample.

Without disturbing the gage, the sample temperature was increased
by applying the appropriate current to the heat tapes, and a second calibra-
tion was performed after a new thermal equilibrium had been reached. Thermal
equilibrium was reached after approximately 8 hours with a maximum heating rate
of 0.2°C/minute. Thermocouples, located near the bottom, midpoint, and top of

the exterior of the rock sample, as well as on the inside of the EX hole next
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~ to the stressmeter, were used to measure sample temperatures and to verify
the achievement of thermal equilibrium. At the conclusion of the testing on
a given gage, it was removed and the next gage was wedged into the same hole
for its calibration. Fig. 38(a) shows calibration curves obtained for gage
#3-18 at 23°C and at 200°C. Additional information regarding the calibration

curves is provided in Table 8.

In addition to the offset at zero load (described above), a change in
the shape of the Ag,. versus R uniaxial stress calibration curve was observed
as the temperature of the rock changed. In all cases tested, the calibration
curves showed lower sensitivity [see definition in Eq. (14) below] at higher
temperatures. That is, at any given value of R, the calibration curve for a

given gage at elevated temperature has a slope which is less than the slope
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Fig. 38. Calibration curves for IRAD gage 3-18, plotted in two different
planes: (A) Aoy versus R plane with manual curve fitting.
(B) Aoy versus R-2 with least-squares curve fitting.
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unloading to zero.

Table ©. IRAD gage calibration test results.
File Gage  Temp. C2(23) C1(23) Standard Comments
name ne. (°C) error
x109)  (x109) (MPa)
[RAD 1 3-18 23 60.03 -0.256 0.12 Max. load 7 MPa, load only
[RAD 2 3-18 23 54.00 -0.226 0.08 Max. load 7 MPa, unload only
IRAD 3 3-18 23 51.15 -0.213 0.9
IRAU 4 3-18 200 39.90 -0.170¢ 0.14 Cool before unloading cycle
IRAD 5 3-42 23 47.16  -0.305 0.18 Max. load 7 MPa
[RAU © 3-42 - 23 41,00 -0.260 0.24
IRAD 7 3-42 195 30.49 -0.190 0.03
1RAU 8 3-42 23 41.68 -0.253 0.32
[RAD 9 3-42 108 32.42 -0.205 0.12
[RAD 10 3-42 76 34.83 -0.219 0.16
IRAD 11 3-42 23 42.78 -0.262 ’ 0.34
iy 12 3-45 23 77.42 © -0.414 0.13 Max. load 7 MPa
IRAU 13 3-45 23 62.18 -0.321 0.12
IKAD 14 3-45 182 44.84 -0.228 0.06
IRAD 15 - 3-73 23 54.40 -0.234 0.03 Max.load 7 MPa
IRAD 16 3-73 23 54.53 -0.234 0.11 Strain gaged for modulus
erratic servo
IRAD 17 3-73 23 54.69 -0.233 0.04 " "
{RAU 18 3-73 88 45.70 -0.198 0.09 " "
IRAD 1y 3-73 120 44.33  -0.193 0.12 Strain gage failed
IRAD 20 3-73 155 45.90 -0.196 0.02
[RAD 21 3-73 190 46.84 -0.198 0.03.
IRAY 25 3-77 23 71.51  -0.300 0.20
ARAJ 26 3-74 237 68.53 -0.293 0.19
IRAD 27 3-62 23 71.78  -0.383 0.22
LKAD 28 3-71 23 68.88 -0.306 0.19
IRAD 29 3-92 23 45.72 -0.194 0.20
IRAU 30 3-80 23 92.01 -0.396 0.49
IRAv 31  3-82 23 72.18  -0.305 0.15
IKAU 32 3-90 23 84.40 -0.393 0.21
kA0 33 3-71 23 63.26 -0.281 0.26
{RAU 34 3-50 23 67.17 -0.338 0.17
IRAU 35 3-68 23 58.62 -0.267 0.17
IRAD 36 3-16 23 67.86 -0.279 0.19
Iknp 37 3-37 23 58.38 -0.289 0.21
[RAU 38 3-36 23 67.17 -0.338 0.22
[KAU 39 3-54 23 66.90 -0.344 0.23
NOTE: Except as indicated under comments, each test included loading to 14 MPa and
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of the ca]ﬁbration curve for that gage at room temperature. The dependence
of the gage calibration upon the Young's modulus of the host rock has been
described by Hawkes and Bailey (1973) and by Fossum, Russell, and Hansen (1977).
This loss of sensitivity would be consistent with a change in rock modulus to
lower values with increasing temperature. As a check on the assumed change 1in
rock modulus, strain gages were attached to the rock sample, and the Young's
modulus was measured during a uniaxial compression test. One measurement was
made at room temperature and a second measurement at 88°C. An 8.5% decrease
in Young's modulus (64.8 GPa to 59.3 GPa) was observed for a 65°C increase in
rock temperature. These data are consistent with independent Stripa granite
measurements reported by Swan (1978). Additional modulus measurements at

higher temperatures were aborted due to Strain gage failure.

The calibration data were analyzed from a least squares fit of the
data. A functional description of nonlinear calibration curves is easier to
handle, from a data reduction point of view, than are tables of discrete
calibration points for each gage, and requires less computer memery. An

analysis of the data proceeds as follows:

Uefine the gage sensitivity y to be:

Ao

I "
Y = 5, (14)

wnere ao, = change in stress of the vibrating wire

Ag change in uniaxial stress of the rock.

r

=
ol T

Since: [See Hawkes and Bailey (1973)1 (15)

prw]
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where:
R = gage reading (period of vibration)
Ky = constant, |
then: s = Ky A+ K (16)
W 1'E? 2 3
wnere:

where: Rg = installed gage reading before application of any external
stress.

Combining Egqs. (14) and (16):

1 1 '

Aoy = ‘; l:Kl (Ez)-“‘ KZ} (17)
or:

po. = (2) +c, (Mpa)

Oy 152 2
where:

C = F_l

1y

C = Eg

2y

If we define a new variable R = (R)~2 then Eq. (17) becomes a linear
equation in R, i.e.:

Ao, = C1 R + C2 ' (18)
Tnis equation was used to fit (least square sense) the Aoy VErsus R
calibration data for all stressmeters tested prior to installation. See

Fig. 38 for the room temperature and 200°C calibration data of gage #3 - 18.
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plotted in the form of Eq. (18). The values of the constants C; and Co
obtained for each least-squares curve fit and the standard errors associated
with these values are listed in Table 8. The maximum standard error for any
one test was 0.49 MPa (71 psi), and the average of the standard errors for
all tests is less than 0.16 MPa (23 psi) over the range tested (0 to 14 MPa).
This result lends credence to the use of Eq. (18) for describing vibrating
wire stressmeter calibration curves. Note that, because of the least-square
fit, the intercept of the Ao, versus R curve on the R axis will not be

will not be identically equal to (Rg)-2.

There is considerable scatter in these data, and it appears that the
relationship between the temperature and the values of these constants may be
nonlinear; however, because of the limited amount of test data available, a
linear relationship of the following form was assumed. [Note that the two
slopes (4.72 x 10° and -0.0817) are averages of the Teast squares fit to
the data shown in Fig. 39]:

C1(T)
Co(T)

4.72 x 10% (T-23) + C1(23) (19)

-0.0817 (T-23) + Cp(23) (20)

where C1(23) and C»(23) are gage-dependent constants determined from

room temperature (23°C) calibration tests.

Further experiments need to be done to better understand the dependence

of C; and Cy on temperature, Ry, and other factors.

These trends in the values of the constants are consistent with results
obtained by Fossum, Russell, and Hansen (1977), in which he shows that the

gage sensitivity factor v is related to the rock modulus (E.) by
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Fig. 39. Coefficients Cy and Cp
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d
y = L (21)

-6
Er x 10 © + d2

where dj and dy are functions of the contact angle, Poisson's ratio, and
gage stiffness. Because the rock modulus E,. decreases with temperature,
the value of y, as given by Eq. (21), must increase. The absolute values

of the constants C; and C, were shown previously [Eq. (17)] to be inversely
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proportional to y. Since y increases with temperature, the absolute values
values of the constants C; and C» should decrease with increasing tem-

perature.

4.3 Interpretation of Gage Reading

The equation describing stress change as a function of meter reading

for the IRAD gage is:

1]

where R = gage reading,

T

temperature of gage and rock (in degrees Centigrade),

Cy and Cy are functions of temperature, as given in Egs.(79) and (20).

Gages that could not be calibrated were matched to calibrated gages with
the closest Ro values, and the uncalibrated Cy(23) and C»(23) values were
assumed to be equal to those of the calibrated gages. The values of Cy(23)
and C»(23) used at Stripa for the computerized data reduction program,

ENGCON, are listed in appendix Tab]e F-1.

In evaluating the 1abofatory data from four gages tested at elevated
temperatures, we found that the ag, versus R curve, as generated using
Eq. (22) and the values of the constants extrapolated [Egs. (19) and (20)]
from temperature values, yielded a curve of the same shape as the experi-
mental data but with an offset of the entire curve in the +R direction. This
offset is paft]y due to the overly simplified straight line, least squares
fit used to correlate C1 and Cp versus T. The laboratory data suggest
that, in addition to the temperature dependence, this offset may to some

extent be dependent on gage and load history.
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Lacking complete data on the response to temperature change, we have
provided an offset in the value of R such that the intercept of fthe curve
at Ao, = 0 is forced to coincide with the average offset observed for four
test gages (see Fig. 36). To force this shift in the curve, Eq. (22) is

modified by the addition of an AR term, as shown in Eq. (23) and illustrated

in Fig. 40.
o (R, T) = Cp(T) x (R + &R)=2 + Cp(T) (23)
0.5 0.5
-C4(T) 1-C4(23) T-23
1 -1 V1 - x 15
here:  OR(T = (24)
where: - &R(T) T [T by

The elements of Eq. (24) are described below.

Curve 1 in Fig. 40 represents the room temperature calibration curve '
generated by Eq. (22) when using C1(23) and C»(23) values derived from a
least squares fit to the room temperature (23°C) calibration data. The

intercept of curve 1 on the R axis is equal to [—C1(23) g C2(23)]0'5. Note

Curve 1) Agy = C{2BXR2+C,(23)

19 - t

Curve 3) Ag=Cy{1 XR4BRI 2+ Co1)

Aoy T Curve 2) A, = C (1) XRZ4Cyt)

AR

[=]

—~| }-—IﬁX(T-ZS/ITT)

XBL 7911-13425

Fig. 40. Illustration of AR offset
as used for elevated tem-
perature data-reduction.
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that, as a result of the least-squares curve fitting procedure, this inter-
cept of the curve may not be identical with the observed value, Rg, when

calibrated.

Curve 2 in Fig. 40 represents the calibration curve, for temperature
(T), which would be generated by Eq. (22), when using C{(T) and Co(T) as
calculated by Egs. (19) and (20). The intercept of curve 2 on the R axis is

equal to [—Cl(T) : cz(TﬂO'S.

Curve 3 in Fig. 40 represents the calibration curve which will be
used for data reduction at Stripa. Curve 3 is generated by Eq. (23) when
using C1(T) and Co(T) as calculated by Egs. (19) and (20) and the values of
AR as calculated by Eq. (24). This equation generates a curve in the shape
of curve 2 but with its intefcept to the right of curve 1 by an amount which
is proportional to the average shift in R observed during elevated tempera-

ture testing of four gages (see Fig. 36).

Equations (19), (20), (23), and (24) are used to convert a change
in vibrating wire stressmeter reading tb an equiva]ént change in rock stress.
The apparent starting rock stress (computed from the value of R and T when
the gages were installed in the borehole) must be subtracted from all subse-
quent calculated values to obtain the next rock stress change. Figure 41
shows an example of the data reduction scheme applied to experimentally

measured values on gage #3-18.

In this example, we assume the starting temperature is 23°C, the preset
reading is R = 2,150, and the end point is at a value of R = 2,500 and 200°C.

From Fig. 41(a) we find that the calculated Ao, = 12.69 - 5.07 = 7.62 MPa.
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(A) Comparisen of

calculated versus

calibrated stress

change values.

(A) Stress change

calculated by com-
puter program ENGCON -
if gage 3-18 is

installed at 23°C

to a reading R=2150,
and then later
changes to R=2500
at 200°C. '

(B) Comparison of
calculated versus
calibrated stress
change values.

(B) Stress change
calculated by noting
the stress values
which were measured
during the labora-
tory calibration of
gage 3-18 at 23°C
and at 200°C.



From Fig. 41(b) we find that the direct calibration data would yield Ao, =

12.63 - 5.28 = 7.35 MPa. Although no formal error analysis was performed,
comparisons based on data for other gages and for intermediate temperatures
indicate that the uncertainty in indicated stress may be as large as 2 MPa at

full scale for variable temperatures and cyclic loading.

In-situ stress changes for two gages are required to determine the
biaxial stress change at that location in the rock mass. The stress changes
sensed by these two gages, which are oriented 90° apart and in the direc-

tion of the principal stresses o1 and op, are utilized as follows.

The equation, relating the biaxial stress changes, g1 and oy, to the
stress change as -sensed by an individual gage is'givén (IRAD Gages, Inc.
1977) as: ‘

ac = 1/3 (o1 + o3) + 2/3 (o1 - ap) cos 26 (éS)
where g is measured counter—chckwise from o1 , as shown in Fig. 42.
For the case at Stripa, the angle g is assumed to be zero, that is, the

two gages are aligned with the directions of the principal stress changes.

%2
Ao,
+6
o
XBL 7911-13424

Fig. 42. Sign,convention for
angular measurements.
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(Recall that this assumption is not made for the USBM gages, where three
diametral components are measured.) For the vertical holes, o1 = og and

g2 = op. For the horizontal holes, o1 = og and o3 = oz.

Rewriting Eq. (25) with 8 = 0° or 90° gives the following result for

vertical holes:

rog = 1/3 (og * op) + 2/3 (0g - op) = 0g - 1/3 or (26)
pop = 1/3 (o *+ op) - 2/3 (og = op) =op - /30 (27).
where
Acg = stress change from gage driented in the g direction

scr = stress change from gage oriented in the r direction

gé,,gr = biaxial principal stress changes in the rock.

Solving Egs. (26) and (27) for the biaxial Stress changes agg and oy gives

oo = 9/8 rag *+ 38 bop . -  (28)

op = 9/8 Aoy + 3/8 Aoy - - (29)
Similarly for horizontal holes: '
"o = 9/8 hag *+ 3/8 Aay - | | (30)

oz = 9/8 Aoy + 3/8 Agq | (31)
Equations (19), (20), (23), (24), and (28) through (31) are the equations
used by the computer program ENGCON to convert the in-situ reading from the

vibrating wire stressmeters to the equivalent biaxial stress changes in the

rock.

4.4 Data Storage

Data for each IRAD gage pair are stored by the computer in two ways.

Short-term data, taken eVery 15 minutes, are stored on disk for 24 hours and
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can be viewed by the operators as the measured vibratory period of each of the
two gages (in units of 10~/ sec) and as the principal rock stresses in MPa.
After each 15-minute sample, the raw data (vibratory periods) of the gages
are written to tape for permanent storage. Long-term data, an average of from
3 to 95 of the 15-minute samples, are stored as the principal rock stresses in

MPa.

4.5 Field Installation

A total of 26 vibrating-wire stress gages were installed at Stripa--
two per hole, 12 cm apart, and oriented in the two principal stress directions
oy and oy Or g, depending on the orientation of the installation hole
(vertical or horizontal). Note that the gages originally intended for holes
Cp, C3, and Cq were installed in holes U6, Ul5, and Ul7. An effort was
made to pair gdges that had similar ‘initial readings. Gages were placed
. and preset using the standard hydraulic setting tool and installing rods
;provided by the manufacturer. The setting tool applies hydraulic force to
pull the loading wedge and pre]badrthe gage. To mount the gage in the
installing tool, the cable is first thréaded through»the installing tool.
The gage then slides into the matched tool end énd the wedge/platen assembly
is fitted in place. Several strokes of the hydraulic pump draw the lever
holding the wedge back towards the tool, locking the wedge, platen, and gage
into place. The initial installed gage readings are given in appendix

Table F-1.

_Vertica1 Holes. IRAD gages were installed in five vertical holes in

the full-scale drift. The gage to be oriented in the radial direction was

always installed first.
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Water was pumped from all holes, leaving the bottom half-meter of
each hole filled for testing of the dewatering system (described in section
6). After each gage was lowered to the desired depth and oriented, we activated
the hydraulic setting tool using the manual hydraulic pump. Gage readings
were taken after each pump stroke. A1l gages were preloaded to approximately

the same indicated stress level (7 to 10 MPa).

tages installed in the field were thus set at a higher preload than
was used for laboratory testing. This was done to accommodate expansion of
the holes in response to tensile stresses anticipated during the early part of

the experiment. Laboratory tests were not performed at these higher preloads

to avoid tensile fracturing of the calibration rock sample.

The second or upper gage was installed in a similar manner. Both
electrical cables were threaded through the setting tool. The cable from the
lower gage was held tight while the setting tool, containing the second
gage, was slid into place. A fiberglass packing was tamped in place fol-
Jowing. installation of the second gage. Thermocouples were installed with

the pressure line of the dewatering system, as described in section 6.

Horizontal Holes. Horizontal installations were made in eight holes

projecting from the extensometer drift towards the full-scale heaters. These
gages were installed in an identical manner to that described for vertical
boreholes. Gages oriented in the z direction were installed first. After
the last gage was installed, thermocouples were attached to short (5 cm)
sections of iron pipe, and one was slid into contact with each outer gage. A
steel wire attached to the pipe permits easy removal of the thermocouples in

the event of a thermocouple failure.
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bage Removal. If a gage must be removed, all obstructions will be

taken out of the hole, including fiberglass packing, thermocouple, and de-

watering tubes. A stiff length of steel pipe will be used to dislodge the

wedge assembly and free the gage body. Platen and wedge assembly pieces will

be removed with a magnet.

4.6 Summary

Eighteen of the IRAD vibrating wire stressmeters were calibrated at

room temperature, and four at temperatures up to 200°C. Results of these

experimental measurements have yielded the following results.

L.

The meter reading (R,) of a gage free of any external loads,
i.e., not installed in a rock borehole, did not change by more than
5 units with an increase from room temperature to 200°C.

When gages were installed in a test cylinder of Stripa granite

‘and the entire assembly heated to 200°C at zero applied axial

stress, the installed-gage reading (Rg) changes varied from +50

to -35 units, with an average change of +15 units. The positive
sense of the changé is consistent with the fact that o gage is
greater than o rock. The variation was attributed to seating of
the wedges and differences in the coefficient of thermal expansion
of the steel gage and the rock. For the purpose of gage reading
interpretation at Stripa, this average offset in the value of R
(+15 units between 23°C and 200°C) is assumed to be the best fit
for all gages. The offset at other temperatures is assumed to be

linearly proportional to the temperature change.
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3. A curve of the form bo. = C; Ry + Cp, where R = [meter reading]-2,
fits all the calibration data well. The average standard error
for 21 calibrations using this curve fit was 0.16 MPa.

4. The changes in coefficients C1 and Cp with temperature were
approximated as linear functions of temperature. The linearity

constants were assumed to be independent of initial gage reading.

Although the individual calibration curves could be repfesented well
by the least squares curve fitting procedure, the curves' reproducibility.
is uncertain. Among the factors contributing to this uncertainty are: 1)
the relationship between the 1oéd1ng and femperature history of the grahite
sample and the values for its Young's médu]us and its coefficient of expansion;
2) tne variability in these mechanical properties at the many in-situ gage
locations; 3) the long-term stability of thé jn-situ gage; 4) gage-to-gage
variations; and 5) the jmpact of variations which are possible in the seating
of the wedges. A1l IRAD gages are scheduled for recalibration at the conclusion

~of the field testing.

5. THERMOCOUPLES

5.1 Introduction

Temperature is measured by 273 chromel/alumel (ANSI type K) thermo-
couples in the full-scale experiment, and 116 type K thermocouples in the
time-scale experiment. Thermocouples are attached to one or more points on
each instrument for the dual purpose of rock temperature measurement and
thermal compensation of the instrumentation. Others are located in indepen-

dent thermocouple boreholes distributed throughout the granite to compiete an
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array enabling three-dimensional measurement of the thermal fields in the
heater areas. Thermocouples are also mounted at several locations on each

heater canister.

Three types of thermocouple clad are used: Teflon (type TFE) for
temperatures up to 260°C, 304 stainless steel sheéth for temperatures up to
400°C, and Inconel sheath capable of temperatures up to 1150°C. The sheathed
thermocouples are electrically insulated with magnesium oxide (Mg0) between
wires and sheath material. Where possible fhermocoup]es were obtained from
the same chromel and alumel melts and from the same wire lots, to minimize
variability due to differences in metallurgy. A1l thermocouples were pur-

chased from Omega Engineering, Inc., Stamford, Connecticut.

A1l thermocouples are connected to ice-point temperature references
manufactured by Kaye Instruments. Five model K170, 100-channel units with
‘typical stability of *0.01°C and guaranteed stability of i0.025°C are used.
The ice point reference outputs' are connécted to scanners that feed wide-
range, analog-to-digital converters for digital transmission to the computer
system. Parallel outputs from the ice-point references are connecteq
to data loggers located in the éxperiment areas to provide computer back-

up and the canvenience of local readings.

5.2 Low-Temperature Thermocouples

The low-temperature thermocouples have extruded Teflon insulation
over the individual wires, with fused Teflon tape over the wire pairs.
TFE type Teflon was used with a maximum-continuous-use temperature of 260°C,

specified by the thermocouple manufacturer. A desired precision of *0.5°C
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over a temperature range of 10° to 220°C necessitated individual calibrations
in an environment as close as possible to actual operating conditions.
Thermocouples that met ANSI standard-limits-of-error of *4°F (approximately
+2.2°C) over the desired temperature range were used, since each unit was to

pe individually calibrated in any case.

A fourth-order-polynomial curve fit was used for each thermocouple
to reduce the quantity of calibration data to five coefficients per thermo-
couple. This was tested using the temperature-voltage calibration data
developed by the National Bureau of Standards (NBS) for type K thermocouples
(ANSI 1976). A standard error of less than 0.1°C was found by a least

squares fit of the fourth order polynomial to the NBS calibration data.

- Several laboratory. experiments were. conducted to investigate
protective coatings for the thermocouple junctions. The best coating found
was a two component, RTV-60 silicone rubber compound manufactured by General
Electric. Two thermocouples prepared with the coating were tested at high.
temperatures and in a 2% NaCl solution. for exténded periods of time. The
high-temperature test was for a period of 60-days at 180°C, and the salt
solution test was over 120 days at 50°C. Resistance between the thermocouple
wire and tnhe salt solution was measured periodically during the 120-day test.
No measurable (<100 M) resistances were ever recorded to indicate leakage of
the salt water to the thermocouple junction. After installation and in most
cases under elevated pressure and/or temperature, the integrity of some of
the protective coatings broke down. In a few cases electrical resistance to

ground became as low as several hundred ohms. However, the removal of a
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1

reference ground in the racks eliminated the possibility of erroneous readings

due to ground loops.

After data loggers, scanners, and the computer were connected and
operational, the low-temperature thermocoup]es were wired to their 1ce—p5int
references and field calibrated. Thus, calibration was done on a complete,
operational, temperature measuring system. Thermocouples for the full-scale
and time-scale experiments were calibrated separately in the proximity of the
two instrumentation sheds. The calibration bven (Blue M, model OV-560A-2) was
moved from area to area, so that the thermocouple output leads could be
wired directly into the ice-point reference units located in the two instru-

mentation sheds.

In each case, the thermocouples were partially unrolled from their
packaging coils until the open-ended leads could be laid along the cabling
trays into the instrument sheds and connected to the ice-point references.

The thermocouple ends were then uncoiled, tied together in a single bundle,

and inserted into the top of a thick-walled aluminum vessel designed to

act as a thermally stable mass that would damp out small temperature variations
inside the oven (oven temperatUre uniformity is rated at + 0.2°C). A platinum-
resistance temperature probe (Omega Engineering Model, PR-11-3-100-

1/4-18 inches E) calibrated at the Swedish Bureau of Standards to an ac-
curacy of * 0.05°C was also inserted into the aluminum vessel to record the
actual temperature during testing. After the vessel and its contents were
placed in the oven for 2 to 3 hours and allowed to reach thermal equilibrium,
the first calibration data point was recorded. The cven was then turned up and

permitted to stabilize for an additional 2-1/2 to 3 hours, and that calibration
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point was recorded. This procedure was repeated over a temperature range of
15° to 215°C at twenty-five discrete temperatures. At each temperature the
computer was instructed to scan and record the voltage values of all the
thermocouples, and the resistance reading of the platinum temperature standard

was manually recorded.

In this way, the éalibration of each thermocouple was recorded by
the computer as a series of incoming voltages, later associated with tem-
perature values. A fourth order polynomial was curve fitted to these data,
resuiting in a set of five coefficients for each thermocouple record on
file.. The temperature for a given voltage can then be determined as follows:

= ‘ 2 3 4
T = CO -+ C1 Vv + C2V + C3V + C4V

where CO’ Cl, C2, C3, C4 are the pq1ynom1a] coefficients

T is the temperature in degrees Centigrade
V is the output voltage in millivolts.
A sample graph of one of the thermocouple calibrations is shown in Fig. 43,

wnich also lists the raw calibration data, and five polynomial coefficients.

5.3. Medium-Temperature Thermocouples

Type K thermocouptes clad in stainless steel sheath were used where
initial calculations indicated that rock temperature might exceed 200°C.
Stainless steel was chosen over Inconel simply because of availability.
Sixty of these thermocouples were used in the twelve "close-in temperature"
porenoles, T13 to T24, (see Appendix A), which are within 1 m of either of

the two full-scale heaters; thirty-six were used with IRAD-gages and extenso-
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meter anchor points located within 1.5 m of the heaters; and ten were purchased
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as spares and calibration references.
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Sample plot and listihg of a thermocouple calibration.
coefficients describe the fourth order polynomial based on a least
squares fit to the calibration data.

The five

These tnermocouples, supplied by Omega Engineering, were fabricated from

1/1lo-inch-diameter thermocouple wire, sheathed in 304 stainless steel, and
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were from a single special-limits-of-error lot. Specified lengths allowed the
sheathed wire to exit any borehole into an ambient temperature environment

(10° to 20°C) before going into a transition junction, where it was joined to
Teflon insulated, AWG No. 24, type K extension wire that met ANSI standard-
limits-of-error specifications. The transition junction between clad and
teflon covered wire was welded and strain relieved. The teflon was sandblasted,
and the junction potted with epoxy. The epoxy was then coated with silicone

for added moisture resistance.

ANSI special-limits-of-error specify an initial tolerance of *2°F
(approximately £1.1°C) to 530°F (277°C) and +3/8% above 277°C. However, if
chromel-alumel accumulates 5 to 10 hours at 500° to 600°C, chromium in the
chromel precipitates out along the grain boundaries as chromium carbide,
causing an increase in temperature readings. This precipitation is complete

after about 30 hours.

Tne 106 stainless-steel clad thermocouples were, therefore, stabilized
by neat treatment at jﬂst below 600°C for 50 hours. ‘Five samples, calibrated
from U° to 300°C before the heat treatment, matched the NBS curves to better'
than -0.5°C at 0°C, and +1.0°C at 300°C. After heat treatment, they showed
negligible shift at 0°C, with a linearly increasing shift to +2° to +2.50C
from the NBS curve at 300°C. A second heat-treatment cycle of two of these

samples caused no further shift.

The heat treatment process may have lead to the subsequent failure of
many of the tnermocouples in the close-in temperature boreholes (T13 to T24)

because of corrosion of the stainless steel clad. It was discovered, after
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iﬁsta]]ation, that this same process also caused chromium to be precipitated
out into the grain boundaries of stainless steel as chromium carbide,

thus leaving the steel sensitized to corrosion. The cause of intergranular
corrosion is summarized in the section on corrosion failures in the Metals
‘Handbook (American Society for Metals 1975). Holding at temperatures

as low as about 400°C for prolonged periods has been reported to cause
sensitization of austenitic stainless steel. Future use of stainless-steel
sheathed thermocouples in a repository or test facility should probably be

avoided.

Because of limitations in the maximum temperature capability of the
calibration oven used in Sweden, the medium- and high-temperature range
thermocouples could not be calibrated in the field beyond about 215°C. The

five coefficients for a fourth order temperature-voltage polynomial were,

therefore, computed from déta contained in the NBS tables of type K thermo-
couple voltage-temperature characteristics. Laboratory measurements on
several heat-treated sample thefmocouples showed that these thermocouples did
not exactly match the NBS data. These éamp]e measuréments indicated an error

of up to 1°C near ambient temperature, which increased linearly to 3°C at

300°C.

5.4 High-Temperature Thermocouples

Type K thermcéoup]es clad in Inconel-600, and capable of tempera-
tures up to 1150°C, were used to monitor heater canister temperatures.
Initial calculations indicated these temperatures might exceed 500°C.
Sixteen thermocouples were used on the two full-scale heaters, twenty-four

on the eight peripheral heaters, and twenty-four on the eight time-scale
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heaters. Additional units were purchased as spares and for calibration

purposes.

These thermocouples were fabricated by Omega Engineering from 1/16-inch
diameter, Inconel-clad stock, with a transition junction to heavier, AWG No.
¢0 size, teflon-insulated extension wire. The high-temperature thermocouples
were fabricated to the same general specifications as the medium-temperature
thermocouples, with the exception that units for the time-scale and peripheral

neater were from a lot of standard-limits-of-error thermocouple wire.

These thermocouples were heat treated with the same process as was used
for the medijum-temperature units, and with nearly identical results. Five
samples, calibrated from 0°C to 300°C before heat treatment, matched the

NBS tables with an error of less than -0.5°C at 0°C and +1.0°C at 300°C.

After heat treatment there was no measurable shift at 0°C, with an increasing
shift (proportional to temperature) of between +2° and +3°C from the NBS

tables at 300°C.

The Inconel-clad thermocouples have proven to be reliable and rugged,
and there has been no problem with corrosion. However, solid-solution,
nickel-base alloys such as Inconel 600 are subject to grain-boundary carbide
precipitation if held at or slowly cooled through the temperature range of
540° to 760°C (American Society for Metals 1975). If thus sensitized, they
are susceptible to intergranular corrosion in hot, caustic solutions and in
high-temperature water containing low concehtrations of chlorides or other

salts.
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The same voltage-to-temperature conversion polynomial derived from the
. !
NBS tables for the medium-temperature thermocouples was used for these
Inconel-clad thermocouples,with essentialy the same error and correction

capabilities.

5.5 Data Storage

Data for each thermocouple are stored by the computer in two ways.
Short-term data, taken every 15 minutes, are stored on disk for 24 hours and
can be viewed by the operators as a hexadecima] value, a voltage, and a
temperature in degrees Centigrade. After each 15 minute sample, the data are
written to tape for permanent storage as a coded voltage. Long-term data, an
average of from 3 to 95 of the 15-minute samp]es; are stored as degrees

Centigrade.

5.6 ﬁie]d Installation

Time-Scale Experimenf. Because the rock in the time-scale experiment

was highly fractured, dewatering schemes were unsuccessful in the time-scale
instrumentation holes, as described in section 6. Borehole depth (14 m) and
size (38-mm diameter) ru]edrout vacuum or downhole pumping alternatives. Al1l
thermocouples were therefore grbuted in place, with the disadvantages of (1)
inability to remove and replace thermocouples, and (2) Toss of the hole for

geophysical logging after the test was completed.

Installation was relatively simple. First, the thermocouples were
uncaoiled and fastened tightly together with teflon tape so that the spacing
between them was precisely as it should be dowr the nole. Next, a small piece

of metal was hung from the lowest thermocouple as a weight to tenmsion the
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thermocouples as they were lowered into the hole. When the proper depth was
feached, the string of thermocouples was grouted in place using a standard
cement/sand mix. This completed installation, except for occasional "topping"

of the holes with grout as drying required.

Full-Scale Experiment. The thermocouples in the full-scale experiment

were installed and attached to the dewatering system in each hole. As in the
time-scale experiment, they were laid out with the proper spacing and fastened
together before being lowered into the holes. A description of the dewatering
apparatus and its installation and removal is included in section 6. After

installation, all holes were backfilled with sand.

6. -UEWATERING SYSTEM

b.1 Introduction

Infi]trationvof water into the instrumentation holes, even at very low
flow rates, posed two prob]ehé for.the.broper operation of borehole instru-
mentation.’ First]y the IRAD and USBM gages, partiéular]y the latter,
were nbf proven to be watertight and it was deéired that the electrical
components of thé gages bé kept as dry as possible. Secondly, convection of
fluid within the borehole would produce temperature anomalies not ré]ated to
the true temperature of the rock. This latter problem was addressed both
with the dewatering installation and with the emplacement of a sand backfill
or a fiberglass packing. Dewatering systems were also installed in the
heater holes (Burleigh et al. 1979), but for a different réason. There it
was realized the vaporized water would cause uncertainties in the amount and

distribution of heat delivered to the rock. The dewatering systems for the
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heater holes are completely different and separate from the systems used for

the instrumentation holes.

To avoid extra cost and reduce maintenance, it was desirable that the
dewatering system be as simple as possible. Due to the hole depths and
frictional line losses in pumping out water, a simple suction system alone
was not sufficient; therefore, it was planned to pressurize the borehole with
air and force the water to exit upwards through a small copper tube. Because
they offered the least clearance for the paésage of dewatering tubes, the
USBM gages posed the biggest problem in design. A laboratory mock-up, using
PVC pipe as a borehole, established minimum pressure requirements and relative
flow rates. Very small (1/16 inch)-diameter tubing was selected to bypass the
gage. Final testing and design was done in the field. The final system

used both air pressure and vacuum extraction, as described below.

inAthe field the sma11fdiameter boreholes were tested to see if they
would hold air pressure adequately. The procedure was to p]ugva hole near
the collar, apply air pressure by means-of a tube passing through the plug,
and allow water to vent through a second tube passing through the plug. In
some 1nstances, air leakage could be observed as air bubbles escaping from
the top of the water column in nearby holes, or as air bubbles escaping from
wetted cracks on the surface in the vicinity of the air injection hole. In
the time-scale drift, the thermocouple holes around heater hole H3 were found
to be interconnected to one another and to H3 through fractures. As a
result, the holes would not hoid pressure well enough to permit installation
of the dewatering system; therefore, the thermocouples in the T-holes in the

time-scale room were grouted. In the full-scale drift, no such gross inter-
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hole connections existed, although in a few cases some escape of air through
surface cracks could be seen. Hence all the small-diameter (38 mm) holes in
the full-scale drift were outfitted with dewatering tubes. None of the
extensometer holes were so outfitted, since all extensometers were grouted.
Nor were any of the horizontal holes (from the extensometer drift) as they
had all been drilled on a slightly upwards incline for the very purpose of
permitting dréinage. Hence, the following desckiptions apply only to the

vertical U, C, and T holes of 38-mm diameter in the full-scale drift.

The dewatering systems in the USBM, IRAD,'and thermocouple holes are
quite similar. There is a suction tube to a point near the bottom of each
hole, and an air pressure line to a point near the top of each hole which
assists the vacuum system by increasing the preésure in the entire hole. In
most cases, either the vacuum or the pressure applied tb a particular hole
could be used to dewater it; however, the reduhdancy helps to speed the
process and provjdes a safequard in case either the air compressor or the

vacuum pump fails.

6.2 Thermocouple Holes

A schematic diagram of the dewatering.system used in all thermocouple
holes is shown in Fig. 44. The bottom thermocouple is seen fastened to a
fiberglass plug wedged between two steel washers, soldered to the 1/8-inch
0.d. copper vacuum and pressure lines. Above this plug, the boreholes were
backfilled with sand to reduce heat convection along the hole. Any water
entering one of the holes filters down through the sand, through the fiber-

glass, and into the empty chamber at the bottom, where the vacuum line sucks
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it up and out of the hole with the aid of the pressure assist tube. The

fiberglass plug acts as a filter to trap the sand backfill.

At the top of each hole, a rubber plug was placed, which could be
sealed effectively in the hole by tightening the upper 3/8-inch nut, forcing
the two constraining washers closer together. This made it possible to
pressurize all of the holes, and substantially improve the rate at which

water could be removed.

Installation. The dewatering tubes and the thermocouples in each hole

were installed simultaneously. First, the thermocouples were uncoiled and
their ends positioned at the proper distances with respect to one another.
They were then fastened together with high-temperature teflon tape. The
pottom thermocouple was next secured to the fiberglass plug by means of a
small steel wire. Finally, the entirevassemb1y was pushed into the hole using
the hollow-cored CSM cell-positioning rods. When the bottom thermocouple
reached its proper location, the installing rods were removed, the holes were
backfilled with sand, and the ajr-tight rubber plug was secured into the top
of the hole. It was standard procedure to dewater each hole almost entirely
just before the installation of the thermocouple assembly, usually leaving
enough water in the bottom of the hole to test the system before backfilling

with sand.

Removal. 1In case it becomes necessary to remove a thermocouple, the
rubber cork should be removed, the hole blown completely free of sand above

the fiberglass plug, and the assembly lifted out of the hole by pulling on
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the copper tubes. There should be some resistive force due to the friction

between the fiberglass and the walls of the hole.

6.3 IRAD Holes

The dewatering tubing in the IRAD gage holes is very simple (Fig. 45),
consisting of a 1/4-inch o.d. copper vacuum tube pushed down below the
gage locations (almost to the hole bottom) and a 1/8-inch o.d. pressure
tube placed directly at the gage locations. A packing of fiberglass is
lightly pushed on top of the gages to help 1imit heat transfer by natural
convection. In the case of gages C3 and C4 (in holes Ul5 and Ul7) the holes
were backfilled with sand; however, this procedure was discontinued because
it made later removal of the gages extremely difficult. This was discovered

when one of the gages in hole Ul7 had to be removed.

Installation. The IRAD gages were first installed according to the pro-

cedure described in section 4. Then the copper vacuum line was pushed down
past the two gages, relying on trial and error to find sufficient space
between them for insertion of the tube.. Next, a shorter pressure line

with a thermocouple attachea to its end was Towered down past the first gage
and allowed to rest on the second. Finally, a fiberglass packing was posi-
tioned just above the upper gage, and a rubber cork was fastened in the top

of the hole just as in the thermocouple holes.

Removal. If there is any need to remove an IRAD gage, the cork should
be removed, the holes blown free of fiberglass (and sand in holes Ul5 and

Ul7), and the copper tubes pulled out.
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6.4 USBM Holes

A schematic diagram of a USBM gage and its dewatering system are seen
in Fig. 46. As in the IRAD and thermocouple holes, there is a short pressure
tube and a Tonger vacuum line extending beyond the gage; however, in this
case it was necessary to reduce the 1/8-inch o;d. vacuum line to a 1/16-inch
o.d. tube in order to pass between the gage body and the borehole wall.
USBM installations were completed around the H10 heater initially, leaving
only a short section of the slender brass tubing extending below the gages.
This extension of about 0.7 m did not prove sufficient, however, as certain
gages were "submerged" in water when dewatering was not performed over a
2-day period, such as a weekend. So, for subsequent gage installations, a
section of 1/8-inch o.d. copper tube several meters in 1ength’was added below
the 1/16—fnch o;d; bfass tube, and extended down near the bottom of each
hole. This procedure was followed with all USBMs around the H9 heater, and

with gages Ul6, U13, Ul4, and U20, which had to be reinstalled around H10.

Installation. Installation of USBM gages was a comparatively slow

task (about 3.5 gages per day), and at fimes required several attempts to
achieve proper positioning in the holes. It was nécessary that both the gages
and their dewatering tubes be placed down the hole simultaneously. Tﬁe first
step was to preset the USBM gage components by adjusting the washers in the
six sensory buttons according to the prdcedures described under USBM instal-
lation. Next, a vacuum line had to be fabricated for each gage consisting of
a 1/8-inch o.d. copper tube measured to the depth of the particular gage, a
section of 1/16-inch o.d. brass tubing long enough to bypass the gage body,

and a further extension of 1/8-inch o.d. tubing to reach the bottom of the
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hole. The narrow section of this tube was then fastened along the gage with
high-temperature teflon tape, and positioned with respect to the small pins
on the rear of the gages so that the slot in the installing tool could be
rotated on and off freely during installation. The vacuum tube was further
secured to the USBM cable where it entered the gage, and at intervals about 1
m apart. After this was accomplished, the gage and its dewatering tube were
ready to go down the hole. The hole was dewatered to a level just above
where the lower end of the copper suction tube would finally be positioned.
The gage was pushed down the hole slowly until the predetermined depth

was reached, and the orientation was then set by rotating the gage until

the upper handle on the installing tool pointed in the proper direction.

The data logger reading was next checked against the calibration curves to
verify an acceptable preset of all three channels and, finally, a bu]] was
applied to the dewatering tubes to make certain that they were in fact, at the
correct level in the hole. Only after this check 1ist was completed was the
installing tool disengaged and removed from the hole. A loose packing of
fiberglass was next pushed down to the gage level and, lastly, a rubber
stopper was placed in the top of the hole with a short section (about I m) of

1/8-inch o.d. copper tube extending through it as a pressure line.

Suggested Alternatives. The small, 1/16-inch o.d. brass tube that

was implemented to bypass the USBM gage bodies caused several problems
during both installation and subsequent dewatering. Its inside diameter was
so small that it restricted and retarded the ﬂdewatering}procedure greatly.
Une suggestion for the future is to mill a small groove in the gage body so

that a larger-diameter tube could be used, or to substitute a thin-walled
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tubing which could be flattened between the gage and the wall and stil;

provide a large aperture for water to pass through.

Removal. The task of removing the USBM gages will not be an easy
one. Une must first remove the cork at the top of the hole, blow out the
fiberglass packing completely, and carefully Tower the installing rods down
the hole. It will be necessary to "feel" very carefully with the rods to make
sure the slot in the end aligns with the dewatering tube before the tool can
pe slipped down completely over the back of the gage and locked in place.
Unce this is accomplished, one can pull the gage up. keeping a steady tension
on the cable and dewatering tube. Despite these precautions, the gage
may still become abruptly jammed in the hole on the way up. amming was
experienced two or three times when it became necessary to remove a gage
during the installation proceedings. If jamming occurs, it is probably due
to the small dewatering tube becoming twisted and wedged against some portion
of the gage, usually the pistons. In such a case, one must work the gage up
and down while trying to rotate it, using as much force as necessary.

Eventually the gage will free itself.

6.5 Dewatering Control System

The dewatering of all instrumentation holes is centrally controlled by
two pumping stations (see Fig. 47)--one on the H9 side, and one on the H10
side of the full-scale shed. A small Gast pump {(Model MAA-108-HO) creates a
vacuum which can be selectively connected to each hole by individual valves
on a collective header system. Positive pressure is applied to several holes
simultaneously through a pressure regulator which reduces the mine‘air

pressure from 150 psi to about 40 psi. In both the H9 and H10 areas, there
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are two groups of holes that are pressurized separately when dewatering is in

progress. These hole groupings are listed in Table 9.

Table 9. Pressurized hole groupings for dewatering.

H-9 area H-10 area
Pressure Pressure Pressure Pressure
valve #1 valve #2 valve #1 valve #2
T-19, T-22, T-23, T-20, T-21 T-16, T;l7, T-18 u-2, -5,
T-24, U-11, U-12, u-19, C-5 c-11, C-2, U-1, u-9
U-13, U-14, U-15, , u-3, U-4, U-6,
u-16, U-17, U-18, U7, U-8, U-10,

c-3, C-4. T-13, T-14, T-15

Those holes that were almost compltetely air tight were placed in one
grouping (pressure valve #1), while those that leaked air through open
fractures were placed in a secand grouping (valve #2). Water from each hole
is co]]ected;in a glass flask, which acts as a vacuum trap, then emptied

~into a graduated cylinder te record the rate of inflow into the holes.

7. WORK IN PROGRESS

The instrumentation for Stripa was evaluated and installed in a short
time, considering that this was an experimental project to be operated in a
hostile environment for 1-1/2 years. As would be expected in a measurement
system of this magnitude, a number of operational problems have been en-

countered. The more significant so far have been:
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a) Many of the USBM gages installed in the vertical boreholes have
failed due to the infiltration of water and consequent corrosion of com-
ponenté. Very few gages have been lost in the horizontal boreholes where
water drainage was provided.

b) Frictional sticking effects occur on many extensometers at low
displacements and at Tlow displacement rates. The lower limit of resolution
has not yet been established for various rod lengths and geometries.

c) Heat-treated thermocouples sheathed in stainless stée1 have cor-
roded (sée section 5), nécessitating their replacement aroﬁnd the H9 and
H10 heater experiments.

d) Only a very limited amount of physical property data was available
early in the experiment for ihpup to some of the data reduction algorithms.
Thermal expansion values and the rock mass moduli, for example, require

further experimental work.

We are now trying to resolve these and lesser problems that have af-
fected the data. Instrumentation and data acquisition routines are being

checked and improved during the heater experiments:

» Failed components are inspected visually, modified, and replaced if
practical. Down-time is recorded as an indicator of long-term reliability.
o Tests are underway to determine acturacy and resolution of instru-
mentation, and to better ascertain the parameters needed for data reduction.
For example, the USBM gages are cycled to several temperatures in-cylinders

of rock and metal to determine the correct thermal expamsion coefficients,

and to examine temperature hysteresis effects.
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o Using a mechanical load, an in-situ calibration with the instru-
mentation still in place after the heate; experiments have terminated will
provide a determination of calibration constants independent of thermal

-effects. |

o Post-experiment calibration of individual thermocouples, stress gages,
and extensometers will permit the assessment of long-term drift for the four
basic types of sensors employed in the heater experiments.

o Additional physical and thermal property tests are being conducted

to provide more accurate values for input into the data reduction algorithms.

The final reporting on-the instrumentation performance will document .
Tong-term stability, final calibration results, and the measurement accuracy

for eacn instrument type.
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9. APPENDICES

APPENDIX A. Sensor Locations

vescription of Coordinate Systems

The sensor locations were originally specified in a local coordinate
system unique to each of the three experimental sites. The local coordinate
system in the time-scale drift is inherently a rectangular system, while both
coordinate systems in the full-scale drift are inherently cylindrical. As
described by Kurfurst, Hugo-Persson, and Rudolph (1978), the local borehole
coordinates were converted to mine coordinates for the drilling and surveying
operations. Figure A-1 shows the spatfa] relationship among the three
coordinate systems. Note that the mine coordinate system specifies z as
positive downwards, while the local system specifies z as positive upwards.
Table A-1 gives the mathematical relationships among the fhree systems and
also gives the origin of each of the local systems in mine coordinates. The
local systems are centered on H9, H10, and El as indicated in Figure Al. The
z, coordinate given in Table A;l refers to the midplane of the heaters.

A11 distances and lengths are ‘given in‘meters; anglés are in degrees with

360° in a circle (the borehole survey by VIAK used 400 grads to a circle).

Borehole- Locations

The borehols layout and survey coor&inates of the top and bottom of
the holes have been given by Kurfurst, Hugo-Persson, and Rudolph (1978).. For
ready reference, the Kurfurst borehole layout figures are shown here as
Figs. A-2 through A-4. The only change from the figures presented by Kurfurst
is the deletion of boreholes C9 and C13, which were not drilled although they

were originally specified. Borehole nomenclature has remained as it was
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T I T T [ T ]
340 |
E mj 4 mognetic +
[] true north
* 110°
320~ : ‘ -
60.8676°
Z, positive downwards
z, positive upwards
soor L ! 1 ' 1 I | L7
960 980 1000
Ym(m) '

XBL 798- 11422

Fig. A-1. Relationships among the mine coord1nate system
. and the three local rectangular (x|, Y.» 2) and TocaT cyT1n-
drical (rp, 9, z|) systems. A1l rectangu ar systems are
right handed; cylindrical systems are left handed.
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fanle A-1. Transform equations relating to the mine and experimental coordinate systems.
Numerical values in meters and degrees.

Full-scale drift Time-scale drift
From mine coordinates riL = (Xp - Xg)/cos (60.8676° + o) rL = (Xp - Xg)/cos (8 - 61.0676°)
to local cylindrical .
Y -Y o Y=Y
o = tanh Il - 60.8676° o, = tan™t 330 + 61.0676°
m o . m o
I = Iy -Ip 4 = 1o -In
rrom local cylindrical xm =r cosa + X0 Xm =r cosa + Xo
to mine coordinates
Ym =r sina + Y0 Ym =r sina + Y0
Zm.= Z0 - ZL o Zm = ZO ':?L‘}
a = 60.8676? O a = 6L - 61.0676°
From local rectangular: X =X +X . Losa ) X =X +X cosa
to mine coordinates moTo 7L sing m. o "L sing
_ sina , ' _ sina
=Yt YL cos® ‘ m= Yt YL cos8
Zm = Z0 - ZL Zm = Z0 - ZL
H9 H10
tenter of local X0 = 323.412 X0 = 312.715 X0 = 334.714
coordinate systems Y0 = 1007.251 Y0 = 988.025 Y0 = 959,083

(in mine coordinates) o = 343.0 Z, = 343.0 I, = 347.0
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@ Heaters (H) ¢ 12Tmm

@ Monitoring (M)$38mm, 56mm ,76mm
& Extensometers (E) ¢#76mm/li6mm

x Thermocouples €T} ¢38mm

o Gaophysics (N) $46 mm

XBL 787-1986A

Borehole layout in the time-scaled drift.
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FULL-SCALE DRIFT
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Fig. A-3. Borehole layout in the full-scale drift.
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initially specified even though some gages were installed in different holes

than originally intended.

Description of Sensor Locations

Table A-2 is a list of all the sensors (one or more sensors make up
an instrument) and their locations for the three heater experiments at
Stripa. The mine coordinates for each sensor are determined from its depth
in the hole and the mine coordinates of the top and bottom of the hole. The
line through the top and bottom of the hole js calculated in the mine coor-
dinate system; then, using the sensor's depth i; the ﬁo]e; fhe mine coordi-
nates of the sensor are calculated. Using the calculated mine coordinates
and the transforms giveh in Table A-l,‘the local cylindrical and rectangular
coordinates are calculated. The error in a sen;or‘s goordiﬁates is due to
- the error in the measurement of the sensor's depth, because the borehole-
surveying accuracy is greater than the accuracy of sensor -positioning. This
error varies for the different sensors as fo]fdws:

Thermocouples ¥ 1 cm, depth is to center of thermocouple

Extensometers ¥ 2.5 cm, depth is to center of anchor point

+l

USBM gage ¥ 1 cm, depth is to the button location in the instrument

+l

IRAD gage ¥ 1 cm, depth is to midpoint between IRAD sensors.

¢

In Table A-2 all coordinates are given to the nearest centimeter, except
for the horizontal coordinates of the time-scale heater thermocouples. These
are given to the nearest tenth of a meter because the orientation of the
heater was not recorded at instatlation. The error of these thermocouple

locations is at most the diameter of the heater, 9 cm.
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A few of the sensor numbers allocated to thermocouples in Table A-2 do
not get their data from an actual sensor in the specified location, but
instead get it from a thermocouple in another location where the temperature
is judged to be equivalent. Temperatures obtained in this fashion are used to
correct for therthermal expansion of the extensometer rods. In such cases,
the sensor label is assigned a prefix "RF," designating it as a referenced
sensor. For example, on the first page of Table A-2, the temperature for
sensor number 130 in hole E6 is actually méasured by sensor number 128, which
is located at the collar of E7. This was done because the air temperature in
the drift is the same at all collar locations, and needed to be measured at
only one location. nSimi]ar1y, sensor 572 measures the air temperature in the
extensometer drift at the collar of hote E31, and the data are used for all the
horizontal extensometer corrections, as shown by the entry "RF572" in the

sensor Yabel coltumn.

The hole identification (first column in Table A-2) corresponds with
the hole labeling used in Figs. A-2 through A-4. The sensor label (fourth
column) in most cases is the same as the hole jdentification, with the addi-
tional refinement of a prefix or suffix to further identify the sensor type or
position in a hole. However, in a few cases the hole identification differs
from the sensor label, because the gages were installed in the wrong hole.

The gages which were switched are:
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Gage (sensor label) Hole Identifier
ue C2
c2 | U6
u1s C3
c3 | u15
iy C4
C4 ui7

The sensor number given in the third column of Table A-1 identifies
each sensor uniquely in the sensor parameter file, in the stored data,

and in thevsubsequent appendices of this report.
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Table A-2. List of all sensors and fheir locations for the three heater
experiments at Stripa.
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APPENDIX B. Sensor Parameter File

Description of File

The sensor parameter file is the master computer record of information
on all sensors in the Stripé experiment. Each sensor is assigned an indivi-
dual record containing 90 fields. These labeled fields contain numerical or
alphanumerical information such as calibration values and input channels.
These parameters are for use both as a general record and for executing the

graphics and engineering conversion computer programs.

File Input

Much of the file input can be performed before computer facilities are
set up in the field; however, corrections, changes, calibration data, exact
instrument locations (coordinates and depths), and sensor activation must be
performed in the field. Details of the sensor parameter program activation
and workings are given by Teknekron, Inc. (1978). The following information
concerning each field is of note.

Field 1 Record No. A permanent field and identifying
tag of this record. This field's
value is the sensor's disc record
number in the long-term data file.

Field 2 Active Sensor Activates sensor for wide record

scans on a timed interval to be
activated only by site personnel.

Field 3 | Sensor Name Identifies sensor type.

Field 4 Qualifier Note Identifies if sensor has been
y placed in another hole, is used
for temperature correction, or
uses data from another sensor
(dummy thermocouples).
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Field 8 Pair/Length Code Indicates component number of
instruments with more than one
sensor.

Field 9 Input Channel Identifies REMAC channel number.

Field 10 REMAC Number Identifies REMAC unit.

rield 11 Data Logger Identifies data logger unit.

Field 12 Experiment Code Indicates which experiment sensor

is associated with.

Field 13 Hole I.D. Indicates hole number in.which
sensor was placed.

Field 14, 15, 16  Sensor's Cylindrical Local coordinates: rho, theta,

Coordinates and z, in m,
Field 17 Depth Distance from sensor to borehole
top.
Field 13 Engineering Units Indicates units to which sensor

output is converted: for USBM = mm,
IRAD = MPa, extensometer = mm,
thermocouples = 0C.

Field 19 © Quantity Indicates quantity measured
by instrument: for USBM = displace-
ment, IRAD = stress, extensometer =
displacement, thermocouples =

temperature.
Field 22 Temperaturé @ Time For USBM, IRAD, and extensometers =
Zero ambient rock temperature.
Field 24 | Diameter Indicates hole diameter for USBM

gages, in mm.

Field 25, 26, 27 Indicates record numbers of asso-
ciated sensors (excluding thermo-
couples in borehole, not needed for
thermocouple records).

Field 28, 29, 30, Indicates record numbers of asso-
31, 32 ciated thermocouples (for USBM
and IRAD gages and extensometer
thermocouples only).
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Field 38, 39, 40 Sensor's Local X, VY,
Z Coordinates

Field 44 Orientation Code

Field b5l Sensor Calibration
(T or F)

Field 54 Zero Offset

Field b5 Rezero (Offset

Field 57 Slope

Field 58 Coefficient A

Field 59 Coefficient B

Field 6V, 61, 62 Coefficient C, D, E

Field 80 Data Logger Channel

Field 86 Temperature Correc-

tion Const.

Used only for graphics - calculated .
by sensor parameter program from

the local cylindrical coordinates
(fields 14-16).

Indicates hole orientation (verti-
cal or horizontal for extensometers).

Indicates if sensor has been cali-
brated.

Indicates zero (starting) voltage
for extemsometer DCDTs and USBM
gages, indicates zero reading for
IRAD gages.

Indicates USBM gage voltage with
buttons removed.

Calibration slope: for DCDTs and
USBM = mm/volt.

Calibration coefficient: for

USBM gages = coefficient of thermal
expansion (gage); IRAD gages =
coefficient Cq(23); thermo-
couples = X° term coefficient.

Calibration coefficient: for USBM
gages = coefficient of thermal
expansion (rock); IRAD gages = co-
efficient Cp(23); thermocouples =
X+ term coefficient.

Calibration coefficient: for thermo-
couple XZ, X3, and X% terms.

Indicates sensor's data logger
channel.

Indicates voltage offset for USBM
gages between ambient temperature
and 200°C.
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APPENDIX C. Properties of Pressurizing Fluids for Extensometer Anchors

Properties of Heat Transfer of Fluids

Table C-1 shows a compariéon of five heat-transfer oils tested for
thermal degradation in a study by Seifert, Jackson, and Sech (1972). These
tests were conducted on samples placed in a sealed stainless steel tube purged
by nitrogen gas. Following the test periods at the indicated temperatures,
the samples were cooled in dry ice and removed for examination and testing.
Table C-1 indicates the percentage of the sample lost (handling losses are

less than 4% by volume) and the physical states present in the sample.

A comparison of the physical properties of several heat-transfer fluids
js shown in Table C-2. The comparison shows surprising similarities between
the six oils with the exception of Dowtherm A, which exhibits a high freezing
point and a relatively low fire point. "Thermal expansion curves for several

heat-transfer fluids, as shown in Fig.C-1, also indicate few differences.
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Table C-1. Thermal degradation of five heat-transfer oils.

Test length Temperature Sample Physical

Compound (weeks) (°c) lost state* Color
(%)
Therminol 66 0 -- -- L Yellow
8 343 2.5 L Brown
2 371 10.6 L Brown
4 371 10.3 L Brown
2 385 | 9.4 L Brown
4 385 11.9 L Black
1 399 42.7 L&S Black
Dowtherm A 0 -- -- L Lt. Yellow
3 413 1.9 L Yellow
Dowtherm G 0 -- -- L Yellow
8 343 2-4 L Brown
4 371 2-4 L Brown
3 399 2-4 L Brown
3 413 2-4 L Brown
Humbletherm 0 : -- -- L Yellow
500
2 343 8.3 L Brown
4 343 57.6 L&S Brown
Mobiltherm 0 -- -- L Brown
500
2 343 8.5 L Brown
4 343 77.2 L&S Brown

*[ = liquid, S = solid.
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1.6
THERMAL EXPANSION
FOR SEVERAL HEAT
TRANSFER FLUIDS
1.6 —
1.4 —
Ve
Vo
1.3 —
1.2 —
1. DOWTHERM A
/./ —=---—CALORtA HT-43
- —THERMINOL 66
- - DOWTHERM G
— «— MOBILTHERM 600
1.0 | | I { i 1

0 50 100 [50 200 250 300 350 400
TEMPERATURE, °C

XBL B03-8839

Fig. C-1. Thermal expansion for
several heat-transfer
fluids.
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APPENDIX D. Extensometer Calibration Data

Appendix D shows voltage offsetsrvo (volts) and calibration coefficients
C (mm/volt) for the 35 extensometers in the time-scale and full-scale experi-
ments. The first triplet gives the coefficients for the anchor nearest the
collar, the fourth triplet for the anchor farthest from the collar. Hence,

each of the columns gives data for comparable rod lengths.
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APPENDIX E. USBM Gage Test Data, Calibration Data, and Error Analysis

Table E-1 summarizes all laboratory calibrations of gage displacement
versus output, using the procedures described in the text. Indicated from
Teft to right are: 1) the test identification, 2) the serial number of the
tested gage, 3) the gage component tested, 4) the range of displacement
(inches) over which the gage was tested, 5) the incremental disp]acements
(inches) for which gage eutput was recorded, 6) the temperature at which the
calibration was performed, and 7) the slope or calibration factor (inches/unit
strain reading) determined by a Tinear regression fit to the recorded data for

poth loading and unloading.

In Table E-2, the change with time in voltage readings of a gage in-
stalled in an aluminum pipe is noted with respect to an initial time zero
reading. Time zero readings were taken after allowing a few hours for temper-

ature equilipration at the test temperature shown.

The offset voltages shown in Table E-3 were recorded at four temper-
atures, with buttons removed from the gages. A least squares fit of the
offset voltages was used to establish Vi - Vg. V, was again measured
just before installation at ambient temperature with the buttons removed. The
starting voltage Vg was averaged from several readings over a 2-day period
prior to turn on. The slope C was established at ambient temperature using
the calibration fixture. All vo1tage§ are given in millivolts, C is given in

millimeters per millivolt.
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Table E-1. USBM gage-temperature calibration listing.

Run Gage Component Loading . Loading Temp CaTibration
no. no. no. range increments. (°c) factor
(inches) (inches) (inches/strain)

T 301 1 0 to 0 032 0.002 23
2 401 2 0 to 0.020 0.002 23

W W W WO

OO OOOOWOWWWIW
3 et N QD b - 00 WO 00 00 00 WO WO W 0 WO

3 401 3 0 to 0.032 .002 23

4 401 3 .004 23

o

to 0.020

5 401 1 to 0.032 .002 50

b 401 1 to 0.032 .002 104

o O O
o o o o O

7 401 1 to 0.032 .004 104

IO ORMNDOINDO OCTW

8 401 2 0 to 0.032 0.004 104
9 401 3 0 to 0.032 0.004 104
10 401 1 0 to

.032 .002 146

o e R bt b R O R R R R B R R R R R R O 00 00 0000000

11 401 1 0 to 0.032 .002 194

o o O

12 401 1 0 to 0.032 .004 199

o o O O

o

13 401 1 0 to 0.032 .004 197
14 401 2 0 to 0.032 0.004 197

15 401 3 0 to 0.032 0.004 197

et et e e fed e B e e e
A

[an]

i

Q
’\AAAA/‘\A/‘\AAAAA

*(L) = Toading, (U) = unloading. {continued)
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Table E-1 (continued)

Run Gage Component Loading Loading Temp Calibration
no. no. no. range increments (°C) factor
(inches) (inches) (inches/strain)

16 401 1 0 to 0.032 0.008 23 0.994
17 401 ? 0 to 0.032 0.008 23
18 401 3 0 to 0.032 0.008 23

OO OO
[Ye]
Yo
~nNo

19 401 1 0 to 0.032 0.008 51
20 401 1 0 to 0.032 0.008 102
21 401 2 0 to 0.032 0.008 102
22 401 3 0 to 0.032 0.008 102
23 401 1 0 to 0.032°  0.008 150
24 401 2 0 to 0.032 0.008 150
25 401 3 0 to 0.032 0.008 150
26 401 1 0 to 0.032 0.008 199

27 428 1 0 to 0.032 0.002 23

28 428 2 0 to 0.032 0.002 23

29 428 3 0 to 0.032 0.002 23

e s o » o o o
o
(Vo]

[
o
[en]
~

—

*(L) = loading, (U) = unloading.
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Table E-1 (concluded)

Run Gage Component Loading Loading Temp Calibration
no. no. no. range increments (°c) factor
(inches) (inches) (inches/strain)

30 423 1 0 to 0.032 0.004 184 .048 (L
.050 (U
.025 (U
: .049 (U
31 428 2 0 to 0.032 0.004 184 .002 (L
: .027 (L

.999 (U
(U

(L

(L

(U

(U

32 428 3 0 to 0.032 0.004 184 .026

.033

et et o el b O b B
« 5o

*(L) = loading, (U) = unloading.
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Table E-2. USBM gage-drift measurements.

Time Temperature Change in component (mV))
(hours) (°C) #1 #2 #3
0 23 0 0 0
1/2 " -0.11 0 +0.11
2-1/4 " -0.11 0 +0.11
3-1/4 " -0.11 0 +0.11
4-3/4 " -0.11 0 +0.11
0 52 0 0 0
16-1/2 " +0.05 +0.03 -0.03
18-1/2 " +0.04 +0.03 -0.03
23-1/2 " +0.05 +0.03 -0.03
0 102 0 0 0
1/2 " -0.01 0 0

2 " -0.01 -0.01 0
3 " -0.01 -0.04 0
4 " -0.01 0 0
5 " -0.01 0 0
) " -0.01 0 0
7 " -0.01 0 0
21-1/2 i -0.01 0 0
0 , 147 0 0 0
3-1/2 " +0.04 +0.09 +0.08
4-1/2 - +0.03 +0.09 +0.08
6-1/2 " +0.01 +0.08 +0.08
7-1/2 " +0.01 +0.08 +0.12
0 188 0 0 0
3 " -0.01 +0.01 +0.01
5 “ -0.04 -0.07 -0.06
0 192 0 0 0
1-1/2 " 0 +0.01 0
44 " -0.03 -0.06 -0.03
92 " -0.04 -0.08 -0.04




Table E-3. USBM gage offset measurements. (H9)

-152-

Number Offset voltages (mV) Voltage Slope
wage Sensor Component 12°C 87°C 137°C 190°C Vot Vp-Vptt Ve§ C
(hole)  number (mV) (mV) (mV) mm
mV

ul 201 1 0.063 -0.043 -0.192 -0.219 0.106 -0.320 7.471 0.0686

202 2 -0.063 -0.104 -0.156 -0.192 -0.038 -0.140 7.578 0.0665

203 3 2.395 2.435 2.465 2.478 2.445 0.090 10.732 0.0662

u2 204 1 0.205 0.199 0.202 0.217 0.207 0.012 5.571 0.0658

205 2 0.134 0.140 0.095 0.090 0.188 -0.054 5.947 0.0657

206 *3 ——- -—- ——- -—- 0.445 --- 6.772 0.0649

u3 207 1 -0.109 -0.079 ~0.046 -0.041 -0.11 0.076 7.041 0.0645

208 2 2.111 2.100 2.068 2.072 2.14 -0.047 7.627 0.0656

209 3 -0.295 -0.307 -0.332 -0.358 -0.264 -0.067 8.603 0.0646

U4 210 1 0.166 0.229 0.346 0.380 0.197 0.242 7.666 0.0642

211 2 -0.305 -0.233 -0.139 -0.095 -0.252 0.231 4.946 0.0659

212 3 0.285 0.299 0.280 0.258 0.397 0.0 4.894 0.0655

us 213 1 0.273 0.277 0.283 0.278 0.299 0.006 5.947 0.0651

214 2 -0.241 ~0.253 -0.271 -0.253 -0.235 0.042 5.561 0.0658

215 3 2.724 2.746 2.770 2.766 2.750 0.043 7.891 0.0637

Uo 216 1 -0.004 0.002 0.014 -0.002 0.046 0.029 6.143 0.0682

(C2) 217 2 0.354 0.338 0.334 0.336 0.362 -0.017 6.895 0.0661

218 3 0.280 0.345 0.410 0.429 0.304 0.165 7.334 0.0653

u7 219 1 -0.246 -0.279 -0.327. -0.361 -0.233 -0.124 7.227 0.0697

220 2 -0.034 -0.189 -0.217 -0.231 -0.038 -0.208 8.193 0.0632

221 3 0.610 0.592 0.568 0.578 0.631  -0.039 6.602 0.0668

ug 222 1 0.073 0.062 0.043 0.014 0.073 -0.061 8.281 0.0649

223 2 0.183 0.197 0.224 0.234 0.216 0.058 8.623 0.0641

224 3 -0.095 -0.077 -0.073 -0.046 -0.040 0.048 8.125 0.0639

u9 225 i -0.515 -0.445 -0.354 -0.329 -0.463 0.200 5.244 0.0581

226 2 -0.070 -0.069 ~0.058 -0.065 -0.033 0.008 7.334 0.0695

227 3 0.561 0.601 0.624 0.649 0.630 0.093 7.529 0.0671

ulo 228 1 0.034 0.012 0.007 0.009 -0.057 -0.026 4.844 0.0651

229 2 -0.170 -0.150 -0.090 -0.095 -0.154 0.091 5.02 0.0662

230 3 0.021 0.017 0.683 0.107 0.097 0.0 6.563 0.0658

{continued)

*Calibration unsuccessful.

TVO

TTVl = bridge voltage at 200°C and zero displacement.

gVS = bridge voltage as installed in the borehole.

= initial bridge voltage at 11°C and zero displacement.
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Table E-3 (continued)
(H10)
number 0ffset voltages (mV) Voltage Slope
"tage  Sensor  Component 21°C  83°C  142°C 209°C Vo Vp-Y Ve c
(hole)  number (mv) (mV) (mV) ( mm
mV )
Uil 711 1 0.146 0.146 0.168 0.175 0.177 0.033 7.617 0.0645
712 2 0.241 0.234 0.227 0.188 0.262 -0.058 6.336 0.0656
713 3 1.777 1.750 1.745 1.701 1.765 0.070 6.049 0.0657
Uiz 714 1 -0.004 0.022 0.031 0.007 -0.040 0.057 4.585 0.0666
715 2 0.178 0.151 0.083 ~-0.034 0.118 0.214 4.406 0.0650
716 3 0.043 -0.022 -0.048 -0.134 0.021 0.171 5.884 0.0675
ui3 717 1 -0.065 -0.043 -0.024 -0.041 -0.073 0.064 -t 0.0650
718 2 -0.058 -0.085 -0.129 -0.185 -0.072 -0.128 -—- 0.0658
719 3 0.061 0.080 0.114 0.1099 0.044 0.083 -— 0.0642
uig 720 1 0.119 0.148 0.212 0.249 0.128 0.136 5.629 0.0645
721 2 -0.141 -0.185 -0.241 -0.324 -0.152 -0.183 6.406 0.0644
722 3 -0.148 -0.146 -0.156 -0.173 -0.190 -0.025 6.712 0.0643
[1)%3) 723 1 -0.178 -0.202 ~-0.202 -0.271 -0.190 -0.086 4.671 0.0666
(C3) 724 2 0.109 0.124 0.124 0.087 0.105 0.022 5.323 0.0683
725 3 0.097 0.170 0.246 0.302 0.081 0.208 6.703 0.0692
Ui6 726 1 -1.339 -1.423 -1.435 -1.516 -1.354 -0.146 4.803 0.0657-
727 2 0.080 0.087 0.102 0.070 0.066 0.034 7.027 0.0691
728 3 0.329 0.249 0.168 0.068 0.327 -0.261 5.611 0.0659
u17 729 1 - - - - -0.221 - 8.242 0.0645
(Ca) 730 2 -0.148 -0.134 -0.107 -0.114 0.117 0.038 6.000 0.0655
731 3 -0.075 -0.100 -0.146 -g.190 -0.079 -0.117 7.736 0.0635
uls 732 . 1 ©0.017 -0.043 -0.065 -0.156 0.008 -0.165 6.264 0.0640
733 2 0.029 -0.007 -0.041 -0.124 0.049 -0.151 6.360 0.0647
734 3 -0.524 -0.551 -0.595 -0.642 -0.485 -0.120 6.244 0.0645
U19 735 1 -0.246 -0.261 -0.283 -0.293 -0.100 -0.049 4.826 0.0637
736 2 0.312 0.253 0.244 0.151 0.331 -0.149 6.404 0.0656
737 3 -0.705 -0.754 -0.798 -0.883 -0.698 -0.175 5.089 0.0655
uz20 738 1 0.092 0.112 0.105 0.105 0.065 0.008 5.473 0.0655
739 2 0.512 0.534 0.534 0.512 0.522 0.0 5.735% 0.0643
740 3 -0.043 -0.031 0.012 -0.004 -0.052 0.087 5.871 0.0666
*Calipration unsuccessful.
1'ﬁage failed early - nd starting voltage.
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Table £-3 (concluded)
(Extensometer Drift)

Number Offset voltages (mV) Volitage Slope

sage  Sensor  Component 10°C 84°C 144°C 201°C Vg  V1-Vg Vg C
(hole)  number (mv) - (mV) (mV) <mm)

mV
u2l 231 1 -0.051 -0.022 -0.078 -0.109 -0.003 -0.054 4,331 0.0713
232 2 -0.273 -0.310 ~-0.332 -0.349 -0.258 -0.074 3.716 0.0694
233 3 -0.064 -0.119 -0.231 -0.312 0.003 -0.252 5.669 0.0667
u22 234 1 ~-0.229 -0.261 -0.322 -0.302 -0.166 -0.085 5.063 0.0661
235 2 -0.446 -0.422 -0.427 -0.397 -0.418 0.042 4.971 0.0673
236 3 -1.577 -1.606 -1.630 -1.643  -1.53 -0.06% 4.248 0.0666

uz23 741 - 1 -0.014 -0.019 -0.134 -0.200 -0.0146 -0.195 6.121 0.068
742 2 1.560 1.613 1.6189 1.677 1.56 0.114 8.389 0.0667
743, 3 0.007 -0.0026 0.017 0.029 0.007 0.020 7.374 0.0678
uz24 744 1 1.713 1.696 1.647 1.657 1.714  -0.065 6.806 0.0631
745 2 -0.283 -0.312 -0.412 -0.461 -0.283 -0.186 3.287 0.0638
746 3 -0.297 -0.278 -0.239 -0.195 -0.298 0.101 5.049 0.0655
ues 747 1 -0.344 -0.266 -0.449 -0.400 -0.344 -0.100 6.118 0.0641
748 2 0.153 0.127 0.144 0.127 0.153 -0.019 7.169 0.0642
749 3 -0.898 -0.908 -0.983 -0.930 -0.898 -0.032 5.427 0.0648
uze 237 I ~-0.202 -0.148 -0.178 -0.131 0.290 0.055 5.537 0.0641
238 2 0.302 0.293 -——= 0.295 0.763 -0.006 8.242 0.0655
239 3 -0.231 -0.266 -——- -0.217 0.242 0.020 6.079 0.0643
uz7 240 1 0.034 0.000 -0.073 -0.105 0.518 -0.139 4.643 0.0626
241 2 -0.068 -0.053 -0.053 -0.039 0.454 0.026 5.337 0.0631

242 3 -0.197 -0.134 -0.119 -0.056 -0.141 0.130 6.592 0.065
uz28 243 1 0.078 0.004 -0.041 -0.083 0.079 -0.158 4.648 0.0625
244 2 ~1.596 -1.623 -1.684 -1.704 -1.58 -0.113 6.772 0.0663
245 3 ~-0.622 -0.617 -0.661 -0.634 -0.589 0.0 5.898 0.0666
U2y 750 1 0.368 0.378 0.376 0.371 0.369 -0.024 4.991 0.0674
751 2 -0.236 -0.363 -0.505 -0.610 -0.237 -0.374 3.459 0.0687

752 3 -0.061 0.158 0.190 0.280 0.061 0.205 4.812 0.066
u30 753 1 -0.307 -0.244 -0.224 -0.170 -0.308 0.128 7.156 0.0668
754 2 -0.085. -0.092 -0.139 ~0.148 -0.085 -0.069 5.209 0.0661
755 3 -0.346 -0.239 -0.200 -0.114  -0.347 0.219 8.918 0.0687
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Sensitivity Analysis of the USBM gage

The equations given in section 3 can be used to evaluate the
sensitivity of the computed stress to errors in measurement, efrors in
parameter evaluation, and to parameter changes due to temperature effects.
This evaluation is best done in two steps: first by assessihg the possible
errors in the measured displacement of the borehole wall as corrected for
temperature effects, and secondly by examining the errors associated with

computing the stresses from the displacements.

For example, consider the gage in horizontal hole U24. This gage
measures the vertical and tangential components of stress at a radial distance
of 2 m from the center of the 5-kW heater in heater hole H10, as given in
Appendix A. In the first 200 days of operation the stress levels are pre-
dicted to rise about 15 MPa and the température to increase about 30°C. After
the peripheral heaters are turned on, the stresses and temperature at U24 will
rise again, for total expected increases of about 35 MPa and 90°C. Isotropic
stress increases of 15 and 35 MPa induce bridge voltage increases of about
V.33 and-.0.77 mV, respectively, for the gage in hole U24. Hence the fol-
Towing analysis addresses the impact of the variation of 1ndiv1duaT para-
meters upon the computed disp]écements and stresses for the two cases (30°C,

V.33 mV, 15 MPa) and (90°C, 0.77 mV, 35 MPa).

Equations (7) through (11) in section 3 can be rewritten to give

Up = Cp (1 +66/Cq) (V- Vg = 8Vp) = Cq (Vg - V) - (a, - o) dsT  (E-1)

1''s 0 g

-where the three temperature-dependent terms are:
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_ 1%
Vo = 1gg (T-11)

_ 0.06
‘SC/CI = 189" (T-ll) .

For this analysis 6C/C; is ignored with respect to unity, and SV is ignored

with respect to V-V,.

a) Bridge voltage V and starting voltage Vi  Fpom Eq. (E-1) an error

in the bridge voltage affects the displacement by the calibration factor Cq,
which for gage U24 has the value 64 um/mV,

Au = Cl AV, (E-2)

Two factors affecting the bridge voltage stability are the bridge excitation
voltage and the analog-to-digital conversion stability. A change in excitation
voltage produces'an equivalent fractional change in the signal. Stability of
the excitation voltage is no better than 0.1% for a 30-hour time period,

which corresponds to 7 uv for a 7 mV operating point. The overall stability

of the analog-to-digital converter is given as *5 uV. In addition, the

drift measurements discussed previously also indicate a drift of less than 10 uV.
Hence a 10 uV figure seems reasonable for the electronic stability, producing

a displacement error of 0.6 um. An error in Vg will be of opposite sign to

an error in V, hence a voltage measurement error affecting both V and Vg

equally will very nearly cancel [see Eq. (E-1)].

b) Offset voltage Vo, Errors due to a change in the magnitude of

Vo will be quite small because the C{ terms in Eq. (E-1) cancel, leaving

Ay = <OC A
u C VO .
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At 90°C the va]ué of sC is 0.025 x 64 ym/mV or 1.6 ym/mV. The drift
measurements (refer to the discussion of Table E-2 in section 3) indicate
a value of 0.01 mV for aV,; however, the repeat reading done at Stripa just
pefore .installation (Table E-3) indicates that 0.05 mV is a more realistic
value. Using these values in Eq. (E-2) gives a displacement error of -0.08 um

at 90°C and -0.025 uym at 30°C.

c) Temperature correction term §V5.  The error due to sV, will be

au = =Cq A(SVO) ' | (E-3)

Since a linear fit is used to evaluate §V,, the error is best assessed by
evaluating the deviation from that linear fit. The average standard deviation
of all the linear regression fits to the offset voltage data of Table E-3 is
0.0096 mV. Hence the displacement error is -0.61 um, which does not seem to be
much affected by temperature.

d¢) Calibration factor C; = The errors due to variations in Cq will be

su = (V- )aCy . (E-4)

As given above, V-Vg will be 0.33 mV and 0.77 mV for the two temperatures
considered here. Repeat measurements in the laboratory (see Run No. 27 in
Table E-1) and repeat calibrations on five gage components in the field,
yielded a repeatability of about 0.5% for Cq. Hence aCq will be 0.005

x 64 ym/mV, or 0.32 ym/mV. ‘From Eq. (E-4), the displacement errors for

30°C and 90°C are 0.11 uym and 0.25 ym, respectively.

e) Calibration factor correction term §C1  The errors from §C1 are

su = (V-V ) & (6Cy) . (E-5)
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Comparing with Eq. (E-4), it is apparent that the correction term is more
important as an error source than the calibration factor itself, because
V-V, is considerably greater than V-V5. Hence, to minimize this error
source the operating point should be as close to Vo as possible. For our
case V-V, is 5.2 mV, and the correction term is judged to be about 6% * 1%,
so that

Au = 5.2 x 0.01 x 64 x (T-11)/189

0.53 um (30°C)

1.58 um (90°C) .

f) Thermal expansion coefficient o. Except for sign, the gage and rock

expansion coefficients can be treated together. An error of 10%, or 1 ppm
per degree Centigrade seems a reasonable precision for «. Hence, the error
in the displacement will be

Au = -d (8T) Aag

238 x 1073 x 30 x 1076 (E-6)

-1.1 um .

For the 90°C case, the displacement error will be -3.3 um for ag.

g) Temperature T. Differentiating Eq. (E-1) with respect to T gives

Au = {%é%ﬁ Cp (V=v, -8V ) -Cy (1+ 5C/C1)[V1_Zé] - (“g’“r) d }AT_ (E-7)
0.14AT '

1]

This correction does not change much with temperature. Assuming a measurement
accuracy of + 2°C (see discussion in section 5) gives a displacement error

of 0.28 um.
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h) Borehole diameter d. Since an error in the diameter affects both

the gage and rock thermal corrections, we have

AU = '(ag - ar) STAd

-0.5 x 1076 x 90 x 10°3 (E-8)

-0.045 um
where the diameter error ad is assumed to be 1 mm. So, the displacement error

is -0.015 um and -0.045 ym for the 30°C and 90°C cases, respectively.

This completes the error analysis of the measured displacements.
The results of steps a) through h) are summarized in Table E-4. It is clear
that the thermal expansion correction produces the largest uncertainty
in the displacement measurements, and that this source of error is tempera-
ture dependent. Next in order of importance are the errors associated with
the pbridge voltage reading V, and the temperature correction for the voltage
offset Vy. In addition, at high temperature, errors in the calibration
factor can be significant as this contribution 1s‘high1y temperature depen-
dent. Unimportant are the errors contributed by the offset voltage, the
temperature, and the borehole diameter. Note that the maximum error in Table
£-4 (3.3 um) is about 6% of the total displacement of 56 um as calculated from

Eq. (E-1).

Note that the correction for thermal expansion applied in Eq. (E-1) is
potentially a large correction to the displacement term. Ignoring secondary
temperature corrections, the ratio of the thermal expansion term to the
voltage term is (ag- op) 8T/Cy (V-Vg). Using the values given above

for the 90°C case gives a fraction of 0.035; so the thermal expansion
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Table E-4. Summary of estimated errors in the USBM gage measurement of borehole

disp1acement; including temperature compensation terms.

Error in
corrected displacement (um)

Base case Magnitude of ' Temperature

values assumed error (30°C) (90°C) independent
Bridge volitage V, 5.61 mV 10 wv +0.6
VS 5.05 mV -0.6
Uffset voltage VO 0.38 mV 50 wV -0.025 -0.08
Temperature correction
for offset, 6V0 -0.15 mV 10 uv . -0.6
Calibration factor C1 64 um/mv 0.32 um/mv +0.11 +0.25

(0.5%)
Calibration factor 0.06 0.01 +0.5 +1.6
correction SC./C
1"~1

Thermal expansion a 11.5 x 10:2 1x 1076 -1.1 -3.3
coefficients o 9 11.0x 10 +1.1 +3.3
Temperature T 30°, 90° 2°C +0.28
Borehole diameter d 38 mm 1 mm -0.015 -0.045

Notes: The base case values apply to gage U24 Tocated 2 m from heater H10.
If the errors do not appear to be temperature dependent, they are listed

in the third column. For comparison, the total displacements computed from
Eq. E-1 are 21 um and 48 um for the 30° and 90°C base cases.
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correction is only 3.5%‘of the total. However, since the precision in g
and @, is no better than * 1 X 1076, the value of ag=tyn could easily

be 2.5 x 10-0 per degree Centigrade instead of 0.5 x 106 per degree
Centigrade, thereby increasing its contribution to 15%. At higher tempera-

tures this contribution is of course increased even more.

The next step is relating the errors in displacement and in the mechani-
cal moduli to the computed stress. This is done by assuming that the gage is
supjected to a uniform stress so all three components are deformed equally
and respond equally to any perturbation. If this is the case, then Eq.. (12)
in section 3 simplifies to

Lu

0':_____’..__.
2(1-v2)d

(E-9)

The values E = 52 GPa, v = 0.23, and d = 38 mm, assumed for the theoretical
models, will be used in the following analysis.

i) Displacement u. The contribution of displacement error to the

stress error is
£

AT —
2(1-v2)d

Ay

H

0.78u (MPa/um).
From Table E-4, the Targest expected disp]acément error of 3.3 um gives a

stress error of 2.3 MPa.

j) VYoung's modulus E. Equation (E-9) gives

u

A0 = ——
2(1-v2)d

AE (E-10)

0.78 x 1073 AE (90°C case)

0.29 x 10-3 AE (30°C case).
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Uncertainties in the determination of Young's modulus stem from geological
neterogeneity and temperature dependence. Borehole measurements with the CSM
cell reported in Nelson et al. (1979) show standard deviations of E as large

as * 10 GPa, and a mean value that varies with the fracture intensity.
Laboratory data by Swan (1978) show a decrease of Young's modulus with temperaj
ture of -13.3 GPa per 100°C, but give average values greater than those
obtained in situ. For present purposes, a figure of 10 GPa for the uncertainty
in modulus is used, corresponding to a stress uncertainty of 3 MPa and 8 MPa

for the two cases.

k) - Poisson's ratio v. The error due to v is assessed by evaluating

Eq. (E-9) directly rather than by differentiating. Assuming a variation of
+ 20% in v gives values of 0.18, 0.23 (base case), and 0.28. Insertion of
these values in Eq. (E-9) gives errors of about 0.5 MPa and 1.0 MPa for

the 30° and 90°C cases.

1) Borehole diameter d. Borehole diameter affects both the displacement,

already assessed above, and the computed stress:
Eu
Ao = - Ad
¢ T 2(19)d?
= -0.91 ad (mm) (90°C)
= -0.40 ad (mm) (30°C) .

For 1 mm error of borehole diameter, the stress errors are 0.4 and 0.9 MPa.

Table E-5 summarizes the contributions of errors in the measured borehole
deformation and in the mechanical moduli upon the computed stress for the

hydrostatic stress field assumed for Eq. (E-9). The values used for the
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Table E-5. Estimated errors in stresses computed from a USBM gage measure-
ment due to assumed errors in the measured borehole displacement
and in the mechanical moduli. Base case values at 30°C and 90°C

are 15 MPa and 35 MPa.

Magnitude of

assumed error Error in computed stress (MPa)
30°C 90°C 30°C 90°C
Displacement 1.1 wm 3.3 um +0.8 +2.3
Young's modulus 10 GPa 10 GPa +3.0 +8.0
Poisson's ratio 0.05 0.05 +0.5 +1.0
Borehole diameter 1 mm 1 mm -0.4 -0.9

borehole displacement are the maximum values given in Table E-4, which are
attributed to the thermal expansion coefficients. The errors adopted for the
Young's modulus and Poisson's ratio are only rough estimates, representing
fluctuations of = 20% in the established values. As shown in Table E-5, the
error in displacement measurement contributes less to the overall stress error
tnan the uncertainty in Young's modulus. Unaccounted for in Table E-5 is the
effect of long-term drift upon the measurement accuracy. Another source of
uncertainty is the plane strain assumption used in deriving Eqs. (12) and (13)

in section 3, which relate the measured borehole displacements to the stresses.
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APPENDIX F. [IRAD Gauge Installation Data

H10 area
Sensor C1(23) C2(23) Initial  Installed
Gage no. Gage (hole) number Orientation <109 period,R, period,Rg
3-73* €3 (U15) 862 R -.233 54.69 1961 2180 1=
3-77* €3 (ul5) 861 0 -.300 . 71.51 1969 2167 177
3-63 €4 (U17) 864 R -.396 92.01 2036 2165 137
3-8 €4 (U17) 863 0 -.279 67.86 1868 2047 117~
3-35 C5 866 R -.279 67.86 1907 2086 ‘99\
3-82* C5 865 0 -.305 72.18 1980 2151 17e
3-45% €10 870 Z -.321 62.18 2204 2431 2 3¢
3-14 €10 869 0 -.383 71.78 2244 2476 2o
3-29 Ci4 874 YA -.194 45.72 2010 2166 15
3-9 Cl4 873 €] -.194 45.72 2005 2194 Ao
3-36 C15 - 876 YA -.338 67.17 2165 2350 {7
3-50% €15 875 0 -.338 67.17 2161 2371 ik
HY area
3-20 C1 272 R -.279 67.86 1926 2082 g
3-22 C1 271 0 -.279 67.86 1926 2053 12
3-16% €2 (Uue) 274 , R -.279 - 67.86 1937 2131 1y
3-18*% C2 (Us) 273 0 -.213 51.15 1958 2091
3-68* Cé » 276 Z -.267 58.62 2044 2277
3-55% Ce 275 0 -.267 58.62 2044 2276
3-74% c7 278 z -.293 68.53 1985 2195
3~92% C7 277 ¢ -.194 45.72 1973 2161
3-58 8 280 Z -.296 65.59 2051 2249
3-90* c8 279 ¢] -.393 84.40 2072 2276
3-37% Cl1 282 z -.289 58.38 2139 2324
31 €11 281 0 -.289 58.38 2131 2318
3-43 €12 284 z -.344 66.90 2195 2376
3-48 €12 283 0 -.383 71.78 2285. 2515
NUTES: Damaged gages = 3-56, 3-80*, 3-71, 3-70%, 3-54*, 3-62*.

Extra gages = 3-42, 3-4, 3-5 (high Ro values).

The initial and installed periods are in gage reading units (10-7 sec).

*Calibrated gages.
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THERMOCOUPLE PCLYNOMIAL COEFFICIENTS FOR EXPERIMENT 1

HOLE

Co
c7
cé
Cit
ciz
£E6
E6
cé
E7
E7
E7
E7
ET
E7
ET7
ET
£8
E8
E8
E 3
£8
EGQ
£9
£10
£410
£ 10
E10
E10
£10
£11
E1g
E11

£11
E11

£18
£18
£18
£E18
£13
£E13
£13
E13

St NSOR
NUMBER

79
80
81
82
83
122
123
130
21
22
23
24
124
125
128
131
25
26
27
28
132
133
160
33
3
35
36
1356
it
37
38
39

40
135

41
42
L3
is2
45
46

L7
163

Co

-572491

—e7 2631

~: 53194
~e72431

-.5319%4L
-1.90683
'1a63638
'1@1?568
-1.31435
-1.25915

-.81369
-10248“5
~1-35600
-1.03025
~-1.17570
-1.17568
-1.241¢€8
~1.,48172
~1.20746

-.92167
~1.175€8
~1.175€8
-1.24L8540

=.93973
-1.37030
~-1.07070
~1.02736
~1.17568
-1.24850

=.82313
-1.10127
-1.31975

-1.08173
-1.17568

-1.35764
-1.,17579

-.96611
~1.12€66
-1.,27504
-1.33471
-1.13048
~1.12€E6

POLYNOMIAL COEFFICIENTS

c1

2€-.53800
2€.E3800
28.,49380
2E-53800
25.49380
28, 025¢0
2753450
2€.41170
2€.83150
2€.74020
25.94120
2E€. 72850
27.04960
2€.421C0
26.41200

2€-41170

2E€.72920
27.122¢€0
2€.6244L10
2€.13000
26. 41170
2€a41170
z€.72800
2€.29760
2€.914L¢S0

2€.37570

2€.2S080
2€.41170
2€.72800
25.€3580
26044450
26.£8360
2€, 43410
2641170
2€.84930
2€.58820
2€.23170
2E.56190
26.78310
2€.87490
2€.52020
2€.56190

ce2

-1.013300
-1,0193040
°06“5966
-1.019300
-645906
=1.721950
-1.480530
-2995426
“102“9910
-1.170130
~--8038877
-1,193370

=1.258340

-1.063540
-23995430
-+995426

-1.195980

=1.342220

-1.0987420
~-870671
=-995426
-.3995426

-1.193400
~.368988

~1.236830
-+990339
~.946101

‘—-995426

-1.193400
=.786083

~1.031640

-1.245310

-1, 044730
-2995426

-1.245230

-1.111870
-.931314
'0094943

-1.203200

‘1018“250

-1.0658710
-s094943

C3

2154750
2154754
»1035270
2154750
2103520
2282717
«241607
«153588
2210827
2200259
2131111
2200932
«203125
»1£2625

+153590

«153588
2200310
0225867
- 184149
o 144857
+153588
«153588
»200830

- .165488

=2057¢1
« 164056
» 15€072
153588

- .200930

« 1263966
0172328
2212139
2173603
«153588
« 208904
0187277
- 1€052¢
«155351
2203537
202253
«-182176
+ 155351

CcYy

«007271C00
«007271CC0
. 005080310
«007271000
-005080310
»014919€00
»012E3CEQD
< 00744L2€EED
2011264800
«010827¢C00

-.00€E57€8¢<0

§

.010€97400
2010393300
«007<S4€EEDND
e 00744L2€50
«0074L2ZEED
~-010€3€CCO
»012097200

= 009772720

- 007488220
2 00744L2EED
«00744L2€E0
«010€97CC0
«008858¢€70
2010911500
. 008514420
« 008041750
«007ULLZ2EEQ
«010€C7C000

-.00630E740

-

-

- 00903€7¢0
. 01145€200

2009060680
«007L4L42EEQ

-20111225C0

-

. 009932520
-008639(30
«007€30390
2010€8€8100
«010C2€€00
-00%801€00
2 007S303¢0



E20
E2)
E20
E21
E21
£21
E£21
£22
E22
E22
z22
E23
E23
£E23
£23
£24
E24
E24
£k
E25
E25
E25
£25
E26
E26
E26
E26
uz

U3

Ug

us*
u7

ua

uio
vzt
ua2
u2s
uz27
uas

49
50
144
53
54
55
145
57
58
59
1486
61
62
63
147
65
66
67
148

149

-.83995
-94411
~1.12€€E6
~1.17437
~-297932
-1.30135
-1.12E€H
-.92702
-1.29387
-1.13387
~-1.12€€6
-1.04406

- =1.10258

~293837
-1-12666
-1.395810
-1.07491

‘090922
-1.12€66
-1.14555
-1.42775

-+99990
-1.12E€E6
-1.49002
-1.47539
-1.42315
~1.12€66
-1.73705
-1.68781
-1.11940
‘1.73705
-1.11940
-1.68781
=-1.11940
-1.73705
-1.68781
=1.11940
-1.73785
-1.68781
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26.15460
2€.210¢0
2€.56190
2€.7€050
2€.29580
2E. 81900
2€.56190
26.28250
2E. 81860
2€.£3080
2€.561940
2€. 368210
2€.5€830
2€.213080
2€.56190
2€.87620
2E. 4E24LD
2€.142€0
2€.56190
2€. L7480
2€.40410
2€.305480
2E.S6190
27-.021€0
2€.991180
2€.C30E0
2€.5€180
27.7297¢0
27.€E4870
2€.69020
2772970
2€.€9020
27.E43710
2€.€9020
27.729110
27.€4970
2€.€£39020
27.7291710
27.€49780

--935847

~a927744
-+ 094343

=1 168"0'70
-1.024520

-1.213480
-.980563

=1.215540
-1.120160

- o 09‘1’9“3
-1.020670

-1.100980

-0963‘000
-«09494L3

-1.,25235%0

~1.076140
_0905065
-2094943
-1,059140
-1.001240
"n993l¢81

“0 094943

-1295310

-1.2988340

=-1.285900
-.094343

-1.626510

-1.552940
-10179270

~1.626510

-1.1792790
-1.552340
-1.179270
-1.626510

-1.1792740

~1.626510

~1.552340

«15€132
- 154832
«155351
+184168
«170759
2208459
«1£5351
«1€2286
2207717
«188272
2155351
2173188
«1901¢€4

«=1E€676

«155351
.209888
.180127
<14 €358
4155351
2174550
CLEERBLT
«1E4984
< 155351
«224122
.224228
2217687
.155351
0267041
257666
«187450
< 267044
«187490
.257666
C1E7490
« 267041
«2E76E6
187490
$ 2670041
.257666

-.008118330
~.008061830
-, 007630350
~.009200270
-.008961380
-.011308€00
-.007S30350
-.008292080
-.011238800
-+ 009950420
-. 007530390
-, 009225710
-.010227800
-.008295930
-. 007530350
~e01114€400
-.006502930
-.007557310
-.007%30350
-.009017820
-.008754C00
~.008553€20
-.007%303¢0
-.012335€00
-.012295€00
-.011689000
-.007$30350
-~ 01407€500
-.013682200
- 009444550
~.01407ES00
-oD0G444ESD
-.013€82200
- 009644550
-.01407€S00
~.013€82200
- 00G444550
-, 014076500
~.013€82200
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THERMOCOUPLE PCLYNOMIAL COEFFICIENTS FOR EXPERIMENT 1

THE FOLLOWING THERMCUCCOUPLES LSE THE NBS STANDARD CURVE '
COEFFICIENTS 2« 31595 23.92€810 « 151076 -, 010743 « 000167568

HOLE SENSOR HOLE SENSOk HOLE SENSOR HCLE SENSOR

NUMBER ' NUMBEK NUMBZR MUMBER
o - 77 c2 7 E6 17 E6 18
E6 19 £6 20 E9 29 19 30
E9 31 £9 32 E18 44 19 48
E20 51 £E20 52 E2i 56 z22 60
E23 YA E24 68 E25 72 :26 76
K9 114 HQ 115 H9Y - 116 19 117
+9 118 h9 119 K9 120 13 121
113 Bl T13 85 T13 86 L3 87
743 88 Tik 89 T1i4 90 fit g1
Ti4 92 T1i4 93 T15 a9y 15 g5
T15 96 T15 g7 T15 98 Ti6 99
116 100 Ti6 1014 T16 102 116 103
117 104 T1i7 105 Ti7 106 Ty7 107
117 108 T18 109 T18 110 ree 111
118 112 T18 113 U1 2 J6 78

us 9
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THERMOCOU#LE PCLYNOMIAL COEFFICIENTS FOR EXPERIMENT 2

HOLe

Ch
C1id
Cle
Ci5
E12
E12
E12
E12
E12
E13
E13
E13
EL3
El4
E1h
E1l4
Ei&
E15
E15
E15
E15
E17
E17
E17
E17
E27
gar7
27
E29
E28
E28
EZ23
€23
£ 30
E3D
E30
£31L
E£31
E31
E 31

SENSOR
NUMBER

433
506
508
509
b42
W43
bl
445
573
L6
W47
448
b49
450
451
452
453
454
455
4586
457
462
463
L6k
465
466
467
468
470
474
W72
W74
475
478
479
480
482
483
N.YA
572

co

-1.61187
-1092615
-1.52€82
-1.59953
-1.33830
-1.27056
-1.37816
~1.36184
-1.07050
~1.44362
-1.30567
=13 Ge19
-1.415155
-1.28901
-1.16788
-1.38411
=1, 102970
~1l.16444

~1.14€E48

-1.22312
-1.24916
-1.21919
-1.21013
-1.21996
-1.3€8162
=-1.24551
—10“0950
-1.348906

- 47697
-1.26€96
-1049832
-1.57797
-10114156
-+60657
-1.18540
~-1.26794
-1.08527
-1.19¢65
~1.29098
-1.12670

POLYNOMIAL COZFFICIENTS

Cc1

27.749790
28.051¢D
27.4E77¢C
27259180
2€.9130¢C
2€.785510
2€.249710
2€.94200
2€e 74400
27.05310
2E. 87390
2€.94550
2E.560840
2€.72470
2€. 47430
2€.866610
2€.951¢0
2€.481970
2€.449610
26.61040
2€.£29¢€0D
2€.69020
2€. €754 10
26.€20590
2€«%14 20
2E.E1330
2€.791280
2E.68160
25.17040
2E. €47 20
27. 045610
27.1€330
2€.41100
2E.665610
2E.T712410
2€.74850
2€. 306000
2€.62700
2€.87910
2E.5€E200

c2

-1.6064580

-1.738620

=-1.503130

-1.538030

-1.296130

=-1.230230
~1.295070
-1.282040
-1.193300
-1.283650
-1.262330
-1.287600
-1.107230
-1.186010
-1.056630

-1.240260

-1.283720
-1.054130
-1.060520
=1.131440
~1.128230

-1.1843110

=1.172960

=1.174230

-1.2212390
-1.129810

=1.2095590
-1.155870

-e465173
-1.152140
-1.341230
=1.326600

-1.017680

-.660577

-1.176070
~1.188150
--982835
~1.1397610
-1.244650
~2094943

c3

«264E5T
2263608
02473¢%6
«252242
«21€796
2207373
«218337
2222817
162500
»2159397
2212712
«21G141
»187638
+2051€8
«175622
«20£€857
0221027
«17€428
»17€C73
«160229
-195013
»200593
01S6408
-1 €659
2203509
0161420
2202032
»1€2891
« 071657
«195178
«22TELT
«225809
«174S9¢0
.112408
«20E5€3
=20£5828
«167808
0167211
2215245
«155350

C4

-.013971100
-.015674700
-,013060300

=< 013183900

-.01172Cz00
-.011055000
-.011€88500
-2012255300
-0009784250
-.011901500
-,01135£¢000
-=011807800
- 009%CG9CCED
=20112247¢0C0
-2 009162C70
-.011123300
-.012068300
-.00926€EC20
-. 008272390
-.0101210¢C0
-.010€1120¢0
~-.010715¢€00
-,010402108
~.010€38S00
-201130€€00
-o010272600
~-.010€6EC00
--01020¢5010
-,0032290¢0
-=010CS0€700
-.012292700
-.012252¢7C0
-.0094772¢0
-. 005630610
=,01135¢700
-+011292200
-. 009024230
-.010820€00
~.01182¢0700
--007%303¢S0



E32
£32
E32
E33
33
£33
E3&
E34
£34
£35
E 35
E35
uiz
Ui13
uiL
Uib
uirz
uis
uig
uzo
uz3
U2k
uzs
uze
U3

486
487
488
490
L9yl
492
L9k
495
496
498
499
500
428
429
430
L32
503
L34
435
436
437
438
439
L4(
Gl

=,92140
_10114331
~. 47697
"059149‘4
~e868332
=.611¢3
-1.29284
- L7 €97
“a 4 76C7
=1-21122
-1.12218
=1.09942
~1.72291
~.78521
47697
-1.43258
-1.75217
-1.08490
~1ebbb7l
-1.53517
-1.41305
~1.28803
~1. 17437
~1.246106
-1.67514
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2€.2€930
2€.E4950
2. 17040
25-ELB5 [
2E.24TED
2€.720710
cE-89310
250170410
25.17040
2E.7E020
2E-687L1T
2€.52720
2774210
2€.127¢0
25.17040
27.427¢Q
27. 88040
2€.955¢0
27.491 230
27.725210
2€.94064 0
2€.897570
2E€.7€0580
2€.856310

27-.€3320

-1.023020

-1.155150
e “65173
~2656615
~-.9568210
=.736020

~1.230700

-2 LbE&5173
e “651?3

-1.138870

-1.1463230
-1.086200
-1.616350

~888034

2465173

=1.452050
-1.618420
~1.254580
~-1.505030

=1.5956840

-1253030
-1.291600
=1.1668470

=-1.193630
~-1.573100

0172424
2154619
. 071657
e1G4988
+1€2851
<12€828
2207439
< C71€57
«071657
«154787
.1G3752
« 182349
«263653
<13 €1 €4
. 071657
<23€733
.270862
0202474
2245077
+262860
2154891
. 20€867
2184168
<1887¢h
.2576¢9

-.009204cC¢<0
-.010364700
=.00322S050
~-005077240
-2 008€6€010
-.006702370
-.011128£00
-2 003229050
-,0032290¢0
~-010£83900
-.010404900
-+, 009€31€00
-013781300
- 00€43E57CS40
=,003229050
=2 012302000
=.014E57000
-«0103348¢C0
-2 012767300
-,013892000
- 00S€E4C070
-.010E849000
=,009200370
~+ 009442220
-«013E115G0
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THERMOCOUPLE POLYNOMIAL COEFFICIENTS FOR EXPZIRIMZNT 2

THE FOLLOWING THERMOCOUPLES USE THE NBS STANDARD CURVE

COEFFICIENTS 231595 23.92680 «151074% -2 010743 -0001S7¢<¢<8
HOLE SENSOR HOLE SENSOR HOLE SENSOR HCLE SENSOR
NUMBER NUMBER NUMBER MUMBER
c5 504 E16 458 EL6 459 - El6 460
El6 461 E27 469 E28 473 229 476
E29 477 " E30 481 E31 485 232 489
£33 433 £34 437 E35 501 Hi0 540
H10 561 H10 54,2 ri0 543 410 Sl
Hi0 545 H10 546 Hig 547 11 €48
M1t 549 Hi1 550 H12 551 412 552
Hi2 €53 H13 554 Hi3 556 H13 556
it 557 Hib 558 Hi4 559 H15 560
H1S 561 H1S . 562 H16 563 . H16 564
Hi6 565 H17 566 H17 567 417 568
H18 569 H18 570 H18 571 T19 510
T19 511 T19 512 - T19 513 ri9 514
T20 515 T20 516 T20 517 T20 518
120 519 T21 520 T21 521 ra1 522
721 523 T21 524 722 525 r22 52¢
T22 527 .T22 528 T22 529 ra23 530
123 531 T23 532 T23 533 rzs3 E34
T24 535 T24 536 T24% 537 T2y 538

Te4 539 U1l 427 L1s 502
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THERMOCOQUPLE POLYNOMIAL COEFFICIENTS FOR EXPERIMENT 3

HOLE

Bl
El
E1l
El
EL
E1

ES

SENSOR
NUMBER

902
903
204
905
385

1014
1015

906
907
908
909
989
910
911
912
913
993

L1016
1017

1

914
915
916
917
997
918
919
920
921
001
922
923
924
925
926
927
928
929
930
931
932
933
934
935
336

co

-o 45256
'045256
-0“5256
-, 452506
"."05256
-e45256
45256
« 45256
+45256
45256
-oh5256
-.45256
‘.“5256
-s 45256
-, 45256
‘-“5256
'-“5256
'.‘05256
-«45256
-o45256
-. 45256
045256
«45256
» 45256
245256
« 45256
-« 45256
'.“5256
- 452586
~a716810
~e87672
82407
- 70847
".62020
"0813‘§9
=.91419
"-79013
-.649822
= 76050

'-7 091“ .

-066775
-.83316
-.80508

POLYNOMIAL COEFFICIERNTS

Ct

2. 84430
25.844310
25.84630
25. 846430
C.84430
2884430
25, 84430
2S.84L20

Co84430
25.844L30
2884430
2%.84430
2584430
2€.84430
2. 84430
25.84430
25.84430
25. 684430
2. 84430
25.84430
2. 8L430
25.84430
2%.84430
2. 84430
2584430
25.84430
25.84430
284430

25. 84430

2€.33050
2€.546860
2E-70630
2€.€3900
2€.56460
2E.49750
2€.73920
2E.TLZB O
2E.EE730
2€. 49740
2€.€1170
2€.59900
2€.53720
26.72540
2€.€9620

ce

~e 766430
- 7664304
~e 766434
~e 766434

~= 766434

- 76643L
~e 766434
~o 766434
‘0766“3"}
=~ 766431
‘0766‘03‘0

"= 7T6B6L3G

- 766434
- 766L3L
-, 766434
- 7664304
""0766“3“
=, 766434
e 766‘#3‘4’

-~ 76b6U3L .

= 7H6LIL
-8 766“’3‘#
-~ 766434
~. 766L3G
-~ 76643
~o 766430
o 766434
~e 766’#3‘9
~a 766434
--925792

-1.008110
-1.104110

-298228¢

-1.001040

-0363762

-1.122870
-1.,044L380
-1.057610

-e943011

=1. 043530
‘1-“208‘#0
-1.04172510
" =-1,087850

C3

0125494
0125494
125494
0125494
0125494
125494
«12549y
2125494
125494
0125494
125494
0125494
«1 25434
0125494
0125494
«125494
«125494
0125494
0125494
2125494

2125494

«125494
«1254G4
e 125494
2125494
0125494
0125494
«125494
2125484
+13€296
0«157455
«1€2297
2142282
01532¢€1
147527
«1€6770
0156386
e 162417
=142027
0156149
155047
«147750
«166833
e 1ELBTB

Cy

-, 006242€70
-« D0624L2ET70
- 00€242€70
. 00€6242€70
- 0062L2ETQ
- 006242€70
- 00€£242€70
—000521232&70
- 00E824L2ETD
= 0062L2ETD
- 00E24L2ET70
=, 006242E70
-« 006242E70
-o 006242ET7D
-, 006242870
- 00€242ET7D
- 0082L2ET7D
-, 006242E70
-.006242€70
- 006242€70
=~o0DE2L2ETD
-2 006242€70
=, 006242€70
-, 006242€70
- 00€EZLZETD
- 006242€70
=, 00824L2€70
- 006242€70
- 00€242¢€70
-.006248000
=, 007623940
- 007305040
e UO&ZB?EEG
=, 007260450
- 00702€€40
-.007€32€E0
-, 0073168€30
—000?72204#0
-.00E5649€0
s 007694030
-~ 007160€S0
~-a 006480230
-, 007865160
- 007782€20



Ta
Ta
T4
Th
Ty
TS
15
15
T5
TS
Té
T6

TE
TE

T6
T7
T7
T?
1.7
17
T8
T8
T8

T8
T8

79
T9
T9
T9
79
T10
T10
T10
T10
T10
Tit
T11
T1i1

T11

T1is
T12
T1i2
T12
Ti2
T12

937
938
336
940
941
St
943
44
945
946
947
948

949
950

951
952
953
954
355
956
957
958
959

960
961

962
963
964
965
966
967
968
969
970
971
972
973
974
375
976
977
978
grg
380
981

«84E59
650464
62048
.81265
66411
.68550
.60552
«71250
<71460
.83247
.75563
-73233

-85510
80150

- 84799
81774
85124
«7 0359
. 66286
«62647
‘-862‘03
. 89492
-893397

-.91206
.82390

-68819
«7 4459
.62877
«79562
~4 8833
«50381
-4 8997
243004
«L4EL58
«45256
47832
- 44 €90
«59387
«40758
-.55819
-.48€61
-.58357
~.52067
-.55086

i

i

[
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2€.71940
2€. 40050
2E.48820
2€.71650
2€. 45380
2E.S6770
2E.46620
2€e €4270
2€.4899¢
2E.73460
2€.52250
2E.5€84 0

2€.73710
2€.6696¢0

2€.71900
2€,753680
2E-7E€E34LQ
2€.52818
2E-46910
2€.,40000
2€.792C0
2€.777280
2673270

c€.77050.

2€,7068¢0
2€.5129¢
2€.582210
2€.43370
2€.69310
25.87580
2%.91910
25.92690
25.80300
25. 88080
2. 844 3D
2%.87700
2€. 87830
2€.07070
25.75560
25.94500
25.88020
2€.07090
2€.86090
25.90470
25.€€360

-1.0235390

-+.895835
-«972851

-1.078260

—.959364

-1.056030
~1.0092180
-1.086230
-1.003150
-1.0746210

“a 997581

-1.009500

-1.033160

-1.067860

~-1.0322080
-1.087700

~1.095760

-2 391326
=-1.009360

=.954224

-1.1080310
=1.107130
-1.074140

-1.048310

-1,060440

~1.013260
-1.011730

-,991832
-o711803
-.7865287
-794038

- 745619
-2 763336

~a 766“3“

"0730124

=.799771
-«856127
~a717725
-a737732
-+766725
~.883783
~.708688
-+797073
“0826386

«152415
2131573
148153
« 185495
» 144655
«158318
« 150732
» 1629100
«14ETI7
«1E33€E4
« 1547106
«155246
+153620
2162781
«1521 €6
21€7066
«1EESET
«151748
« 151204
0138478
-« 1££953
»170318
«162505

« 156430
«1€0850

«150617
.155201
148102
<1EL3G6
0113401
0124220
2130505
«123€61
c12€847
125494
«117400
126428
«140582
«1175¢k
.11358€
+123372
<137078
2110353
«121159
<134041

-.006877180
-, 005830540
-.006941150
-.007873890
-.,006700880
-.007221920
-.006G75C40
~s00755%380
-.00ELTEEDD
~. 007661870
~. 007478130
-.0072944E0
-.006S5E1E0
-.007€07€20
- 006513640
-, 007523740
~.007764840
-.007212510
-.007062€¢0
-.006155100
- 007843910
-.008123400
-.007511080

-.0071842€0
-, 007470170

--006C6EEEQ
-.G073783¢0
-.006¢1€220
-<007770040
~- 0055123340
-.006192730
-« 00€530240
-« 00€265¢20
-, 006433010
-2006242€70
-0 005732200
-.006188850
-«007023730
-~ 005830850
- 005134730
=+ 00583C¢€50
- 00€EH2L4ED
-2 005047370
-.005417800
-« 00€5427¢E0
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THERMOCQUPLE PCLYNOMIAL COEFFICIENTS FOR EXPERIMENT 3

THE FOLLOWING THERMOCOUPLES USE THE NBS STANOARD CURVE

COEFFICIENTS . 31595 23.92680 151074 =s 010743 » 000197¢
HCLE SENSOR - HOLE SENSOK HOLE SENSOR HCLE SEMSOR
NUMBER NUMBER NUMBER FUMBER
H1 982 H1 983 Hi 984 H2 956
H2 <87 H2 988 H3 3890 H3 991
H3 332 Hb 99¢ Hé 9385 Ak 996
H5 238 HS 599 H5 1000 16 1002
Ho 1003 HE 1004 H7 1006 17 ioo7

K7 1008 H8 ioigo K8 1014 18 1012
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