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Abstract

Nonlinear propagation of spherical waves generated by a point-pressure source is considered for

the cases of monochromatic and impulse primary waveforms. The nonlinear five-constant elastic

theory advanced by Murnaghan is used where general equations of motion are put in the form of

vector operators, which are independent of the coordinate system choice. The ratio of the nonlinear

field component to the primary wave in the far field is proportional to ln(r) where r is a propagation

distance. Near-field components of the primary field do not contribute to the far field of nonlinear

component.

1 Introduction

This work was done in 1993 during a multi-lab DOE project on nonlinear seismic effects. The author’s

contribution back then resulted in two reports with theoretical results (Korneev et al., 1998; Korneev,

1998). The experimental LBNL results are covered in Daley et al. (1992). By the end of the project,

the results for a point-pressure source had neither a quantitative part nor data and were abandoned

until now. Currently, there is a renewed interest to nonlinear phenomenon in seismic prospecting. Some

publications demonstrate correlations between the observed nonlinear properties of seismic fields and

hydrocarbon reservoir characteristics (Zhukov et al.,2008). In this connection, the results of the report

might be of interest for geophysicists dealing with seismic nonlinear phenomenon. Another possible

application of the considered problem is the physics of powerful underground explosions. The results of

this report take into account the elastic nonlinearity within a framework of the five-constant Murnaghan
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theory (Murnaghan, 1951), and the relative smallness of the nonlinear field component compared to the

linear one. The author assumes that the basic equations and expressions of this theory can be found

in several studies (Zarembo and Krasil’nikov, 1971,1966; Taylor and Rollins, 1999; Landau and Lifshitz,

1953;Hughes and Kelly, 1953; Gedroits and Krasil’nikov, 1963) and the other sited publications.

2 Equations of motion

Following the work of Jones and Kobett (1963), we will use the equation of motion in an perfectly elastic

solid

ρ
∂2Ui

∂t2
− µ

∂2ui

∂x2
k

− (λ + µ)
∂2uk

∂xk∂xi
= Fi (1)

where Fi, the iith component of F, has a value of the second order in smallness and is given by:

Fi = C1

(
∂2us

∂x2
k

∂us

∂xi
+

∂2us

∂x2
k

∂ui

∂xs
+ 2

∂2ui

∂xs∂xk

∂us

∂xk

)
+ C2

(
∂2us

∂xi∂xk

∂us

∂xk
+

∂2uk

∂xs∂xk

∂ui

∂xs

)

+ C3
∂2ui

∂x2
k

∂us

∂xs
+ C4

(
∂2uk

∂xs∂xk

∂us

∂xi
+

∂2us

∂xi∂xk

∂uk

∂xs

)
+ C5

∂2uk

∂xi∂xk

∂us

∂xs
(2)

where constants

C1 = µ +
A

4
, C2 = λ + µ +

A

4
+ B , C3 = λ + B (3)

C4 =
A

4
+ B , C5 = B + 2C (4)

contain the nonlinear constants A,B,C by Landau and Lifshitz (1953), which can be expressed through

the constants introduced by Murnaghan (1951).

After some algebra, the nonlinear term (2) can be represented in the general form:

F = C1W1 + C2W2 + C3W3 + C4W4 + C5W5 (5)

where

W1 = [∆u× rotu] +
1
2
∇∆(uu) + divu∆u − ∆[u× rotu] + rot[u×∆u] − u∆divu (6)
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W2 =
1
2

(W + ∇(rotrotu · u) − rot[∇divu× u] − [∇divu× rotu]) (7)

W3 = divu∆u (8)

W4 =
1
2

(W + [∇divu× rotu] − rot[∇divu× u] − ∇div[utimesrotu]) (9)

W5 = divu∇divu (10)

W =
1
2
∇∆(uu) − u∆divu + divu∇divu (11)

independent of a choice of coordinate system.

3 Spherical Symmetry

In the case of a full spherical symmetry, we have radial displacement only, and the equation of motion

(1) can be reduced to a scalar form

d2u

dr2
+

2
r

du

dr
− 2

r2
u − 1

v2

d2u

dt2
= − F

λ + 2µ
, v =

√
λ + 2µ

ρ
(12)

F = D

(
du

dr
+

2
r
u

)(
d2u

dr2
+

2
r

du

dr
− 2

r2
u

)

+ E

(
d2u

dr2

du

dr
+

1
r

(
du

dr

)2

− u2

r3

)
(13)

where we use the notations

D = λ + 2B + 2C = λ + 2l (14)

E = 2(λ + 3µ + A + 2B) = 2(λ + 3µ + 2m) (15)
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with nonlinear constants l and m by Murnaghan (1951). The similar equation was obtained in Beresnev

(1990) by direct transformation of equation (2) where the numerical finite difference scheme was used to

solve it. Here we develop an analytical approach using the relative smallness of F , which allows one to

seek the solution in the form

u = u0 + u1 (16)

where u0 is the solution of reduced equation (12) when F is assumed equal to zero. Putting (16) into (12)

and assuming that |u0| >> |u1| we obtain a linear equation for u1, where the left-hand side contains

components of u1 and the right-hand side F depends exclusively on the previously determined function

u0. We also can take an advantage of u0 being the solution of the reduced equation (12) to simplify the

equation (13) for F .

F = D

(
du0

dr
+

2
r
u0

)
1
v2

d2u0

dt2
+ E

(
d2u0

dr2

du0

dr
+

1
r

(
du0

dr

)2

− u2
0

r3

)
(17)

Two time-dependence cases for the primary field u0 will be considered: monochromatic and the impulse

like. In the next section, this method will be applied to the problem of propagating monochromatic

elastic spherical waves in an isotropic homogeneous nonlinear medium.

4 Monochromatic Primary Wave

We seek the solution for the primary wave

u0 = I
sin(ωt − z) + zcos(ωt − z)

rz
, z =

ωr

v
(18)

where I is an arbitrary constant. After substitution of (18) in (17), function F has the form

F = F0(r) + Fs(r) sin2(ωt − z) + Fc(r) cos2(ωt − z) (19)

where functions F0(r), Fs(r), Fc(r) are finite sums of negative powers of r

F0(r) = −I2D
k2

2r3
− I2E

k3

2r2

(
1
z3

+
9
z5

)
(20)

Fc(r) = I2 k2

r3

[
D

2
+ E

(
2 − 17

2z2
+

9
2z4

)]
(21)
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Fs(r) = I2 k3

r2

[
−D

2
+ E

(
−1

2
+

5
z2

− 9
z4

)]
(22)

The structure of (19) allows us to seek the solution for u1 in the form

u1(r, t) = u0
1(r) + Re

(
e2iωtũ1(r)

)
(23)

where function u0
1(r) satisfies the equation

d2u0
1

dr2
+

2
r

du0
1

dr
− 2

r2
u0

1 = − F0

λ + 2µ
(24)

and for the complex function ũ1(r), we have inhomogeneous spherical Bessel equation:

d2ũ1

dr2
+

2
r

dũ1

dr
+

(
4k2 − 2

r2

)
ũ1 = −Fc − iFs

λ + 2µ
e−2iz, k =

ω

v
(25)

Solutions for equation (25) when its right-hand side has the form e−ikr

rn , n = 2, 3, 4, 5, 6, 7 can be found

in Appendix A., which after some algebra enable us to obtain the expression for the nonlinear field:

u1 = − I2Dk3

λ + 2µ

(
1
4z

+ u
(1)
1 (z)

)
− I2Ek3

λ + 2µ

(
− 1

8z3
− 1

4z5
+ u

(2)
1 (z)

)
(26)

where

u
(1)
1 (z) =

1
4
Re

(
e2iωt

[
h

(1)
1 (2z)Ei(−i4z) + h

(2)
1 (2z) ln 2z

])
(27)

u
(2)
1 (z) =

1
4
Re

(
e2iωt

[
h

(1)
1 (2z)Ei(−i4z) + h

(2)
1 (2z) ln 2z +

(
−3i

2
− 5

2z
+

2i

z2
+

1
z3

)
e−2iz

z2

])
(28)

with first index spherical Hankel functions

h
(1)
1 (z) = − i + z

z2
eiz , h

(2)
1 (z) =

i − z

z2
e−iz (29)

of the first and second kind, respectively. Function Ei(−ix) is defined by

Ei(−ix) = −
∫ ∞

x

e−iξ

x
idξ (30)
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Any function of the form

u
(0)
1 =

a0

z2
+ a1

sin(ωt − z) + zcos(ωt − z)
rz

+ a2
cos(ωt − z) − zsin(ωt − z)

rz
(31)

with arbitrary coefficients a0, a1, a2 may be added to the solution (26) to match boundary conditions at

reference radius R . In the far field, when z >> 1, the nonlinear field (26) has the asymptotic value

u1 = I2 ω2

v2

(3λ + 6µ + 2A + 6B + 2C)
8(λ + 2µ)

ln(r/R)
r

cos2(ωt − z) (32)

Assuming that x = r −R << R, we obtain from (32):

u1 = I2 ω2

v2

(3λ + 6µ + 2A + 6B + 2C)
8(λ + 2µ)

x

R2
cos2(ωt − z) (33)

which differs from the result for the plane compressional primary wave (Polyakova, 1964) by a factor of

1
R2 .

The obtained analytical solutions of equation (24) are verified by comparison with its finite-difference

solutions.

5 Impulse Primary Wave

Here we consider the nonlinear propagation of the pulse generated by the primary wave

u0 =
q,τ (τ)

vr
+

q(τ)
r2

, τ = t − r

v
(34)

where source function q(τ) describes an initial waveform. Substituting (34) in (17) and taking the inverse

Fourier transform over t we have

f(ω) =
1√
2pi

∫ ∞

−∞
F (t)e−iωtdt = − D

λ + 2µ

Q2

v4r3
e−ikr(1 +

ikr

2
)

− E

λ + 2µ

[
ik

2v4r2
Q2 +

1
v2

(
−k2

r3
+

ik

r4
+

1
r5

)
Q1 +

(
− ik3

r4
− 4k2

r5
+

9ik

r6
+

9
r7

)
Q0

]
e−ikr (35)
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Functions Q0, Q1, and Q2 from (35) depend on waveform q(τ) of the primary signal:

Q0 =
1√
2π

∫ ∞

−∞
q2(τ)e−iωτdτ (36)

Q1 =
1√
2π

∫ ∞

−∞
q2
,τ (τ)e−iωτdτ (37)

Q2 =
1√
2π

∫ ∞

−∞
q2
,ττ (τ)e−iωτdτ (38)

Therefore, in a frequency domain, a nonlinear component satisfies the equation

d2ũ1

dr2
+

2
r

dũ1

dr
+

(
k2 − 2

r2

)
ũ1 = f (39)

which is similar to equation (25). Integrating (39) and returning to the time domain, we have for the

nonlinear field

u1 = − D√
2π(λ + 2µ)

1
4v4

∫ ∞

−∞
kg1(kr)Q2e

iωtdω

− E√
2π(λ + 2µ)

∫ ∞

−∞

(
k

4v4
g2(kr)Q2 +

k3

v2
g3(kr)Q1 + k5g4(kr)Q0

)
eiωtdω (40)

with dimensionless functions gi(x) that have forms

g1(x) = h
(1)
1 (x)Ei(−i2x) + h

(2)
1 (x)lnx (41)

g2(x) = h
(1)
1 (x)Ei(−i2x) + h

(2)
1 (x) ln x +

2i

x2
e−ix (42)

g3(x) =
1 + 2ix

4x3
e−ix (43)

g4(x) = −e−ix

2x3

(
1
2
− i

x
− 1

x2

)
(44)
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Integrating in(40), we obtain

u1 = − D + E

λ + 2µ
I1(r) +

E

λ + 2µ
I2(r) (45)

where

I1(r) =
1

4rv4

(
q2
,tt(t0) ln r +

∫ ∞

r

q2
,tt(t +

r

v
− 2x

v
)
(

2lnx

r
− 1

x

)
dx

)
(46)

I2(r) =
2q,tt(t0)q(t0) + 3q2

,t(t0)
4v2r3

+
q,tt(t0)q,t(t0)

v3r2

+
q(t0)q,t(t0)

vr4
+

q2(t0)
2r5

− 1
2v3r2

∫ t0

−∞
q2
,tt(τ)dτ, t0 = t− r

v
(47)

An arbitrary field of the form (34) may be added to solution (45) to match the boundary conditions.

This specifically enables us to represent equation (45) in the form

I1(r) =
1

4rv4

(
q2
,tt(t0)ln

r

R
+ v

∫ t0

−∞
q2
,tt(τ)

[
1
r

ln
(

vt + r − vτ

2R

)
− 1

vt + r − vτ

]
dτ

)
, (48)

where the far-field part of the nonlinear field becomes equal to zero at r = R . Therefore, in the far-field

approximation, we have

u1 = − (3λ + 6µ + 2A + 6B + 2C)
4(λ + 2µ)v4

ln(r/R)
r

q2
,tt(t−

r

v
). (49)

The obtained forms for nonlinear field make it equal to zero at the reference radius r = R .

It is a quite common case when the velocity of the displacement, rather than displacement itself is

being recorded. Taking the time derivative of the field (45), we have for the velocity of the total-field

displacement

u,t =
q,tt(t0)

vr
+

q,t(t0)
r2

=

−D + E

λ + 2µ

1
2rv4

(
q,tt(t0)q,ttt(t0)lnr +

v

r
(1− 2lnr)q2

,tt(t0) + v

∫ ∞

r

q2
,tt(t +

r

v
− x

2v
)
(

2
rx

+
1
x2

)
dx

)
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− E

λ + 2µ

(
2q,ttt(t0)q,t(t0) + q2

,tt(t0)
2v3r2

+
q,ttt(t0)q(t0) + 4q,tt(t0)q,t(t0)

2v2r3
+

q,tt(t0)q(t0) + q2
,t(t0)

vr4
+

q(t0)q,t(t0)
r5

)

(50)

Obtained analytical solutions for equation (39) are verified by comparison with its finite-difference

solutions. Expressions for the source function qτ can be found in Appendix B.

6 Discussion

Obtained results for nonlinear field components show a complex dependence of near-field terms on prop-

agation distance. If field measurements are taken close to powerful sources (such as explosions), then this

complexity should be taken into account when estimating medium parameters (nonlinear constants and

attenuation).

If the condition

β0 =
D + E

λ + 2µ
=

3(λ + 2µ) + 4m + 2l

λ + 2µ
= 0 (51)

is satisfied, then the nonlinear field vanishes in the far field. Using data from Huges and Kelly (1953)

for solid materials, we have β0 = −6.5 for polystyrene, β0 = −7.3 for armco iron, β0 = 4.4 for pyrex.

Observations in rock showed much higher nonlinear coefficients. For sandstone, β0 can be as high as

7000 (Johnson et al.,1993). These evaluations, however, were obtained for small strains on the order

of 10−5 − 10−4. Seismic waves caused by large explosions and earthquakes strains have the order of

10−3 − 10−2.

7 Conclusions

Solutions have been presented for spherical wave propagation in cases involving the harmonical time

dependence of a primary wave and a pulse. It was shown that a nonlinear component in the far field has

resonant character and ln r/r dependence as propagation distance r grows. A nonlinear field gives relative

enhancement to both low-frequency and high-frequency parts of the total field. The near-field component

of the primary field does not generate a far field of the nonlinear component (in the approximation

considered). A numerical approach is required to reveal the details of the nonlinear field generation.
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Appendix A

The following equation

d2u

dr2
+

2
r

du

dr
+

(
k2 − 2

r2

)
u =

e−iz

rn
, z = kr (A1)

has the following solutions:

u = − i

2

(
h

(1)
1 (z)Ei(−i2z) + h

(2)
1 (z) ln z +

2i

z2
e−iz

)
, for n = 2 (A2)

u = − ik

2
e−iz

z2
, for n = 3 (A3)

u = − ik2

6

(
2h

(1)
1 (z)Ei(−i2z) +

i

z2
e−iz

)
, for n = 4 (A4)

u =
ik3

2

(
2i

3
h

(1)
1 (z)Ei(−i2z) −

(
i

2
+

z

3

)
e−iz

z3

)
, for n = 5 (A5)

u =
ik4

10

(
2h

(1)
1 (z)Ei(−i2z) +

(
iz − 3

2
− i

z

)
e−iz

z3

)
, for n = 6 (A6)

u =
ik5

18

(
− i8

5
h

(1)
1 (z)Ei(−i2z) +

(
4z

5
+

6i

5
− 4

5z
− i

z2

)
e−iz

z3

)
, for n = 7 (A7)

with first index spherical Hankel functions

h
(1)
1 (x) = − i + x

x2
eix , h

(2)
1 (x) =

x − i

x2
e−ix (A8)
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of the first and second kind, respectively. Function Ei(−ix) is defined by

Ei(−ix) = −
∫ ∞

x

e−iξ

ξ
dξ (A9)

Appendix B

For a step pressure source when the pressure inside of a spherical cavity has the form

P (t) = P0U(t), (B1)

where U(t) is a unit step (Heavyside) function, we have the following expressions for q(τ) and its deriva-

tives

q(τ) = U(τ)
P0R

3

4µ

(
1 − e−η v

R τ

[
cos(ω0τ) +

η√
2η − η2

sin(ω0τ)

])
(B2)

q,τ (τ) = U(τ)
P0R

2v

2µ

η√
2η − η2

e−η v
R τ sin(ω0τ) (B3)

q,ττ (τ) = U(τ)
P0Rv2η

2µ
e−η v

R τ

[
cos(ω0τ) − η√

2η − η2
sin(ω0τ)

]
(B4)

q,τττ (τ) = U(τ)
P0v

3η2

µ
e−η v

R τ

[
η − 1√
2η − η2

sin(ω0τ) − cos(ω0τ)

]
(B5)

Waveforms for Haskell’s reduced displacement potential (Banghar,1983; Saikia et al., 2001) are described

by the functions

q(τ) = U(τ)
[
1 − e−kτ

(
1 + kτ +

(kτ)2

2
+

(kτ)3

6
− B0(kτ)4

)]
(B6)

q,τ (τ) = U(τ)ke−kτ

(
(4B0 +

1
6
)(kτ)3 − B0(kτ)4

)
(B7)

q,ττ (τ) = U(τ)k2e−kτ

(
(12B0 +

1
2
)(kτ)2 − (8B0 +

1
6
)(kτ)3 + B0(kτ)4

)
(B8)

q,τττ (τ) = U(τ)k3e−kτ

(
(24B0 + 1)kτ − (36B0 + 1)(kτ)2 + (12B0 +

1
6
)(kτ)3 − B0(kτ)4

)
(B9)

where

kR =
24B0 + 1

6B0
(B10)

and constant B0 has a value in the 0.2− 0.8 range.
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