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ow-frequency fluid waves in fractures and pipes
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ABSTRACT

Low-frequency analytical solutions have been obtained
for phase velocities of symmetrical fluid waves within both
an infinite fracture and a pipe filled with a viscous fluid. Three
different fluid wave regimes can exist in such objects, de-
pending on the various combinations of parameters, such as
fluid density, fluid viscosity, walls shear modulus, channel
thickness, and frequency. Equations for velocities of all these
regimes have explicit forms and are verified by comparisons
with the exact solutions. The dominant role of fractures in
rock permeability at field scales and the strong amplitude and
frequency effects of Stoneley guided waves suggest the im-
portance of including these wave effects into poroelastic
theories.

INTRODUCTION

We consider and compare the propagation of a fundamental sym-
etrical mode �fluid wave� for two model geometries: a fracture and
pipe, both infinite along the symmetry axis, filled with viscous flu-

d, and surrounded by an unbounded elastic medium. The impor-
ance of this fluid wave is well-established for boreholes �tube wave�
nd supported by numerical modeling results for fractures
Groenenboom and Fokkema, 1998; Ziatdinov et al., 2006; Korneev
t al., 2009; Frehner and Schmalholz, 2010; Derov et al., 2009�, indi-
ating the dominant role of this wave in wave propagation phenome-
a in saturated rock. In Korneev �2008�, it was found that in fractures
lled with viscous fluid, a fluid wave can propagate in different re-
imes. While in one regime the dispersion exists only in viscous flu-
ds and does not depend on wall elastic parameters, for the other re-
ime the fluid wave is dispersive, even for zero fluid viscosity, and
epends on the wall’s shear modulus. The third regime takes place at
he zero limit of a fracture thickness. Relationships between these re-
imes remain unclear: What are the conditions of their existence?
hat is the difference between fractures and pipes in fluid wave

ropagation? In this paper, we derive the simple analytical condi-
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ions for these three different propagation regimes within both of the
onsidered geometries and present explicit analytical expressions
or the correspondent phase velocities. Hereafter, we refer to a chan-
el when addressing fluid-containing parts for both a fracture and a
ipe, which is a useful notation for discussion of similarities and dif-
erences between them.

THEORY FOR A FRACTURE

revious work

The Stoneley guided wave, which propagates in a fluid layer
ounded by elastic walls, was first obtained as a mathematical result
y Krauklis �1962�. Paillet and White �1982� re-derived that solution
hile comparing waves in a borehole and its 2D analogue. Their so-

ution has an implicit form as a fundamental symmetric mode that
ropagates along the fracture, with a velocity approaching zero at
ero frequency.

Fluid-filled fracture waves have also been investigated, both nu-
erically and in laboratory studies to explain volcanic tremors and

or monitoring hydraulic fracturing �Chouet, 1986, 1988; Ferazzini
nd Aki, 1987; Ferrazzini et al., 1990; Tang and Cheng, 1988;
oloshubin et al., 1994; Groenenboom and Falk, 2000; Groenen-
oom and van Dam, 2000; Yamamoto and Kawakatsu, 2008�. Fluid
aves are essential in generating tube-wave reflections from inter-

ecting fractures �Hornby et al., 1989; Kostek et al., 1998a, b; Derov
t al., 2009; Ziatdinov et al., 2006�. The high amplitudes of such
aves make the solution of relevant problems rather simple because
e can ignore most other types of waves without compromising the

esult. Because of the low velocity of fluid waves at low frequencies,
he fluid-filled channels are capable of trapping wave energy and car-
ying it for long distances, exhibiting waveguide features. Propaga-
ion of the Stoneley guided waves in a fracture filled with viscous
uid was described in Korneev �2008�. In the latest developments on

he subject, Frehner and Schmalholz �2010� modeled these waves
or intersecting fractures using a finite-element method, and Korn-
ev et al. �2009� compared analytical results with those obtained us-
ng OASES software.

March 2010; published online 2 December 2010.
korneev@lbl.gov.
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N98 Korneev
luid waves in a fracture

Here, we consider all low-frequency symmetrical fluid waves us-
ng the results from Korneev �2008� but change some notations to

ake them uniform with a similar problem for a cylindrical pipe.
he symmetric model consists of a layer, �h /2�z�h /2, filled
ith viscous fluid between two homogeneous elastic half-spaces

omprised of the same material. The index j�1 indicates the pa-
ameters and fields related to the viscous fluid layer, while index j

2 indicates the values related to elastic half-spaces.
In both media, the relationship between the body wave velocities

nd media parameters is the same: a longitudinal �P-� wave propa-
ating with velocity

VPj��� j�2� j

� j
�1�

nd a shear �S-� wave with velocity

VSj��� j

� j
, �2�

xpressed through Lame constants � j, � j, and density � j � j�1,2�.
e assume that VP2 � VS2 � VP1, which is the most common case

or rocks at depth.
The linearized equation of motion for compressible viscous fluid

akes the form �Korneev, 2008�

�2u

�t2 �
�

� f
�2

�u

�t
�

1

� f
�� �

�

3
�� � ·

�u

�t
�cP

2 � � ·u�0,

�3�

ith the particle velocity u, time t, fluid density � f ��1, viscosity
oefficients � , � , and speed of sound cP for the zero-viscosity limit.

Using the time dependence of the fields in the form exp��i�t�,
ith angular frequency �, equation 3 describes the propagation of
issipating P- and S-waves with complex velocities

VP1��cP
2 � i

�

� f
�� �

4�

3
�, �4�

VS1���
i��

� f
, �5�

nd complex Lame constants

�1�cP
2 � f � i��� �

2�

3
�, �6�

�1��i�� . �7�

e seek a solution in the form of a surface wave with wavenumber

x�
�

v f
, propagating along the x axis with phase velocity v f.

Velocities in both media have corresponding wavenumbers

kPj�� /VPj, kSj�� /VSj . �j�1,2� . �8�

ontinuity conditions for the two components of both stress and dis-
lacement at the boundaries z��h /2 lead to four linear equations
or coefficients of those components. The dispersion equation for
ymmetric modes is obtained by finding values of v f for which the
eterminant of the system is zero
	s1���1�c�2
 1
 2	p2	s2kx
2� �b�c�2
 1� 1� ic�kx�a�

��kx�b�kx�	p2� 1�
 1	s2��kx
2�kx�ac�2	p2	s2

�kx
2�ca�b�2��0, �9�

here


 1� i	P1 tanh�i	P1
h

2
�, �10�

� 1� i	S1 coth�i	S1
h

2
�, �11�

	Pj��kPj
2 �kx

2, 	sj��ksj
2 �kx

2, �j�1,2� �12�

nd coefficients a, b, and c have expressions

�kx�1�
v f

2

2VS1
2 �, b�kx�1�

v f
2

2VS2
2 �, c�

�1

�2
. �13�

n equation 9, the factor in square brackets is exactly that of equation
2 from Korneev �2008�. The factor 	S1 in equation 9 gives an extra
oot for the fluid wave propagating with the �rather small� velocity of
he shear wave in viscous fluid, given by equation 5. Low-frequency
pproximation means that both frequency � and thickness h are
mall enough to provide the conditions

�	P1
h

2
��1, �	P2

h

2
��1 and �	S2

h

2
��1, �14�

hich reduces the equation for the roots of the square brackets factor
n equation 9 to

� 1	kxh�1�
v f

2

VP1
2 ��

� fv f
2

�2�1�
 2�VS2
2 
�2. �15�

Approximating � 1 in equation 15 by the truncated Taylor series of
he coth function

� 1�
2

kxh
�1�

kx
2h2

12

v f
2

VS1
2 �, �16�

e get the cubical polynomial equation

v f
3�

VS0
3

VP
2 v f

2�
VS0

3 VB0
2

VP
2 �VB0

2 �0, �17�

or determining v f.
Equation 17 contains three parameters, all of which are velocities

ith the forms �Korneev, 2008�

1. VS0���h�2

� f
�1�
 2�� 1

3
, �18�

a low-frequency Stoneley guided wave velocity in a fracture filled
ith nonviscous fluid, where 
 �VS2 /VP2�;

2 . VBF�VP1�� i�� fr� f

�
, �19�
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Low-frequency fluid waves N99
a low-frequency fluid wave velocity in a fracture with rigid walls,
here � fr�h2 /12 is fracture permeability�; and

3 . VP�VP1, �20�

a P-wave velocity in the fluid from equation 4�.
Equation 17 has three roots, which can be explicitly found using

he Cardano formula �Abramowitz and Stegun, 1972�. Among these
hree roots, only one has a positive real part and therefore describes a
hysical wave. However, the structure of equation 17 allows for
nding its asymptotic solutions in a straightforward way. If the sec-
nd term in equation 17 is much smaller than the first term, then

v f �VS�VS0�3 VBF
2

VP
2 �VBF

2 . �21�

ubstitution of equation 21 into equation 17 shows that the second
erm is much smaller than the first one when


VS
��VS0
3

VP
2 � . �22�

f in equation 21,


VP
2 
� 
VBF

2 
, or 1�
�� fr� f

�
��h

S
�2

, �23�

here viscous skin depth

S��12�

�� f
�24�

s much smaller than fracture thickness, the elastic forces dominate
iscous ones, and the fluid wave

v f �VSF�VS0�1�
i�� fr� f

3�
�, �25�

ropagates as the Stoneley guided wave with some attenuation. This
egime exists for “thick” fractures and/or low fluid viscosity.

If, in equation 21,


VP
2 
� 
VBF

2 
, or 1��h

S
�2

, �26�

hen viscous forces are becoming dominant and

v f �VNF��3 VB0
2

VP
2 �h�3 � i

�2�2

12�
�1�
 2�, �27�

hich was called a “thin” fracture regime in Korneev �2008�.
If, in equation 17, the second term dominates over the first term,

hen

v f �VB�
VPVBF

�VP
2 �VBF

2
. �28�

ubstitution of equation 28 into equation 17 reveals that the second
erm is much larger than the first one when


VB
��VS0
3

VP
2 � . �29�

t low frequencies �inequalities 26�, equation 28 gives
v f �VBF�VP1�� i�� fr� f

�
, �30�

hich is a propagation in a regime when interaction of the fluid wave
ith the fracture walls occurs exclusively through viscous friction

orces.
At high frequencies, when the inequalities 23 take place, equation

8 gives

v f �VP, �31�

hich is the propagation of body P-waves in the fluid.
Velocities VSF, VBF, and VNF correspond to three different regimes

f fluid wave propagation in a fracture, where subscript F indicates
heir relation to the fracture model. Similar regimes also can exist for
fluid wave in a pipe.
After simple algebra, it is easy to demonstrate that inequality 22

ssociated with the solution 21 is equivalent to


VS
� 
VB
, �32�

nd that the inequality 29 associated with solution 28 is equivalent to


VS
� 
VB
, �33�

hich is exactly opposite to the inequality 32.
The inequalities 32 and 33 mean that for any parameter set, a wave

ropagation regime corresponds to a regime with the slowest veloci-
y. The regime change occurs when


VS
�
VB
 . �34�

hus, when


VS
� 
VP
, �35�

he wave propagates with the velocity of P-waves in the fluid �equa-
ion 31�. If both VS and VB are less than 
VP
 then, after substitution of
xpressions 21 and 28 into equation 34, we obtain

�T�
1

h
	�� 6�

h� f
�2

�� � f
VP
3 


�2�1�
 2�
�2

�
6�

h� f

 �36�

or a transitional frequency �T that separates different propagation
egimes.

For thick fractures and small viscosities, when

� h� f
2
VP

3 

6��2�1�
 2�

�2

�1, �37�

transition between VSF and VBF regimes takes place, and equation
6 becomes

�T�
� f
VP

3 

h�2�1�
 2�

. �38�

f the inequality sign in equation 37 is reversed �a case of a thin frac-
ure or large viscosity�, then

�T�

�1

3

12��2

2�1�
 2�2 , �39�

nd the transition occurs between V and V regimes.
BF NF



m
e
h
v
v
a
r
e
e
t
t

e
w
e
a
t
�
1
e
e
t
3

t
w
f

F
f
1
t
d
V

F
f
s
a

F
f
T
g

F
f
T
s

N100 Korneev
NUMERICAL RESULTS FOR A FRACTURE

The derived exact and asymptotic solutions were compared nu-
erically for a set of media models with different parameters. The

xact solution was obtained by a direct root search when the left-
and side of equation 9 was computed on a dense grid for complex
elocity v f. Both the real and imaginary parts varied from zero to a
alue exceeding velocity in the fluid. The computed function was an-
lyzed numerically, always revealing the presence of two roots. One
oot corresponded to the velocity of shear waves in the fluid; the oth-
r root numerically coincided with the only physical solution of
quation 17, which was computed using Cardano formulas. Among
he three roots of equation 17, just one has a positive real part, giving
he only physically interpretable estimate for the exact solution of

P
h
a
s
e

v
e
lo

c
it
y
(k

m
/s
)

Density (g/cm3)

0.5

0.4

0.3

0.2

0.1

0.0

Exact

V
NF

V
BF

V
SF

0.001 0.01 0.1 1

igure 1. Real part of phase velocity of fluid wave in a 10�3 m thick
racture as a function of fluid density. The fluid has sound velocity of
500 m /s and viscosity of 1 cP; the frequency is 20 Hz. Shown are
he exact solution �solid line� obtained from equation 9, VB �short
ashed line, equation 28�, VSF �long dashed line, equation 25�, and
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igure 2. Real part of phase velocity of fluid wave in a 10�3 m thick
racture as a function of frequency for the “air” at atmospheric pres-
ure. The curves marked as on Figure 1. Solution VB gives accurate
pproximation to the exact solution.
quation 9. The asymptotic solutions 25, 27, and 28 were compared
ith the exact solutions. For all examples presented here, the param-

ters of the elastic medium were VP2�5000 m /s, VS2�3000 m /s,
nd �2�2.7 g /cm3. Figure 1 shows the real part of the phase veloci-
ies as the functions of density. The parameters of the model are cP

1500 m /s, the viscosities � �� �1 cP, frequency 20 Hz, cP�
500 m /s, and the fracture thickness 10�3 m. At low densities, the
xact solution follows the solution for the VBF regime, while at high-
r densities, it follows the VSF regime. Note that the transition be-
ween these two regimes corresponds to the condition from equation
4.
In Figures 2–6, the function VBF is shown instead of function VBF

o demonstrate a transition of this regime into propagation of P-body
ave �equation 31�. Figure 2 shows phase velocities as a function of

requency when the fluid has the same parameters as the “air” at at-
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igure 3. Real part of phase velocity of fluid wave in a 10�4 m thick
racture as a function of frequency for the air at 10 MPa pressure.
he curves marked as on Figure 1. At low frequencies, the VNF re-
ime approximates the exact solution.
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Low-frequency fluid waves N101
ospheric pressure, when cP�330 m /s, � f �0.0013 g /cm3, and
�� �1 cP. Here, the exact solution accurately follows the VBF

egime solution; however, for a fracture 10 times thinner �h
10�4 m�, the VNF regime takes place at low frequencies �Figure

�. The case for air compressed at 10 MPa �hydrostatic pressure at
1 km depth� is shown in Figure 4, where � f �0.13 g /cm3 and h
10�3 m. In this set of parameters, the dispersion curve belongs to

transition between the VSF regime and the high-frequency solution
equation 31�. The water-filled fracture case with cP�1500 m /s, � f

1.0 g /cm3, � �� �1 cP, and h�10�3 m is shown in Figure 5.
esults for an oil-filled fracture when all the parameters have the

ame values as in Figure 5, except that viscosities � �� �10 cP,
re shown in Figure 6. For the seismic range of frequencies, the solu-
ions for water and oil are well represented by VSF regime.

We will discuss these results together with similar results for a
ipe — the subject of the next section.

THEORY FOR A PIPE

revious work

Fluid-filled boreholes are one of the most important signal-carry-
ng channels in prospecting geophysics, and the literature on the
roperties of borehole fluid waves is quite extensive �Burridge et al.,
993, Schoenberg et al., 1981, Cheng and Toksoz, 1981; Chang et
l., 1988; Haddon, 1989; Norris, 1989, etc.�. Tube waves �Stoneley
aves in a pipe� are used for permeability logging, fracture detec-

ion, reservoir monitoring, and borehole integrity testing. The simi-
arity of Stoneley waves to Biot slow waves has been noted �Chang
t al., 1988�; Norris �1987� even described the tube wave as “a limit-
ng case of the Biot slow wave.” In poroelastic theory �Biot, 1956b�,
t is assumed that on a pore scale, the channel walls are rigid and a
uid wave in a cylindrical pipe is a core model for fluid-solid interac-

ion. In reality, however, values of liquid rigidity are comparable
ith those of elastic rock, and therefore wall-rigidity assumptions
eed to be evaluated, as was done for the case of fractures in the pre-
ious section. Here, we revisit the problem of low-frequency wave
ropagation in a cylindrical pipe filled with viscous fluid and demon-
trate the existence of three fluid wave propagation regimes similar
o those found in the fracture model.

luid waves in a pipe

We are interested in the low-frequency properties of purely sym-
etric fluid waves propagating along a thin cylindrical well �or a

ipe� filled with viscous fluid. Outside of a cylinder with radius R,
he medium is elastic. In the following, index j�1 refers to a fluid,
hile index j�2 denotes an elastic medium. Here, we also use nota-

ions introduced in equations 1–8.
It is assumed that longitudinal �P-� and shear �S-� waves in both
edia of the pipe satisfy welded boundary conditions at the pipe
all, providing continuity for stresses and displacements. �Mathe-
atical formalism and the main expressions for wave propagation

roblems with cylindrical symmetry are presented in Appendix A�.
he pure symmetry of the problem leaves only terms with m�0 in

he general field expansion �equation A-6�. As a result, the propaga-
ion velocities v f of the fluid waves can be found as the roots of the
quation
	s1�
�
 1 �kz� 1 
 2 kz� 2

�kz 	s1 kz �	s2

q31 q32 q33 q34

q34 q42 q43 q44

��0

q31�2�1kz
 1, q32��1�2	s1
2 �kz

2�� 1

q33�2�2kz
 2, q34���2�2	s2
2 �kz

2�� 2

q41��1kp1
2 �2�1	p1

2 �1�

 1

	p1R �, q42�2�1kz�1�
� 1

	s1R �,

q43���2kp2
2 �2�2	p2

2 �1�

 2

	p2R �, q44��2�2kz�1�
� 2

	s2R � .

�40�
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igure 5. Real part of phase velocity of fluid wave in a 10�3 m thick
racture as a function of frequency for water �fluid viscosity is 1 cP�.
he curves marked as on Figure 1. Stoneley wave regime approxi-
ates the exact solution at seismic frequencies.
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elocity v f is directly related to propagation wave number kz through
he expression v f �

�

kz
, parameters 	Pj,	Sj are defined through the

ormula

	pj��kpj
2 �kz

2, 	sj��ksj
2 �kz

2, j�1,2, �41�

nd the functions 
 1, � 1, 
 2, and � 2 have the expressions

1�
J1�	p1R�
J0�	p1R�

, � 1�
J1�	s1R�
J0�	s1R�

, 
 2�
H1

�2��	p2R�
H0

�2��	p2R�
, �42�

� 2�
H1

�2��	s2R�
H0

�2��	s2R�
,

here Jk�Z� is a Bessel function and Hk
�2��Z� is a Hankel function of

he second kind.
For 
Z
�1, the asymptotic expressions

J1�Z�
J0�Z�

�
Z

2
�1�

Z2

8
�,

H1
�2��Z�

H0
�2��Z�

��
1

Z ln�Z/2�
�43�

an be used.
Assuming low enough frequency, when


	p1R
�1, 
	p2R
�1, 
	s2R
�1, �44�

nd the asymptotic expressions 43 can be applied to equation 40.
his reduces equation 40 to

	s1	kz
2��2

2� 1

	s1R
��2�1�

	p1
2 R2

8
���1�

�kp1
2 ��1��1��2�1�

	p1
2 R2

8
��
�0. �45�

ote that according to equation 42, the ratio
2� 1

	s1R from equation 45
as a limit equal to one if the argument of � 1 goes to zero, meaning
hat the pipe radius is much smaller than the wavelength of the shear
ave in the fluid.
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igure 7. Real part of phase velocity of fluid waves in a pipe filled
ith oil �fluid viscosity is 10 cP� as a function of pipe radius. Fre-
uency is 20 Hz. Shown are the exact solution �thin solid line� ob-
ained from equation 40, VBP �short dashed line� obtained from equa-
ion 52, VSP �long dashed line� obtained from equation 48, VP �thick
olid line, equation 4�, and V �dashed-dotted line, equation 55�.
NP
Factor 	s1 gives equation 45 an immediate solution for a shear
ave in a viscous fluid �equation 5� that is the same as in the fracture

ase.
At higher frequencies, when


	s1R
�1, �46�
nd the argument for � 1 is large �and � 1 � i�, the expression within
he square brackets of 45 gives

kz
2

�ks1
2 �kz

2
� i

R

2�
�kp1

2 ��1��1��2��kz
2��1��2��, �47�

hich can be put in the form of a cubic polynomial with respect to kz
2

nd solved explicitly using Cardano formulas. For a small viscosity
, the expression in square brackets must approach zero, and we ob-

ain

v f �VSP�VP� �1��2

�1��1��2
, �48�

hich for zero viscosity gives

v f �VP� �2

�1��2
, �49�

hich is the velocity of the Stoneley �tube� wave �White, 1965�,
ropagating along a well filled with fluid.

When 
	s1R
�1, then approximation 43 can be used for � 1 and
eads to the following quadratic equation with respect to kz

2:

kz
2�

8kp1
2 ��1��1��2�

R2�2�ks1
2 �2kp1

2 ���1

. �50�

ntroducing a dimensionless real parameter

p�
R2�2� f

8�2 , �51�

hat determines the main component in the denominator of equation
0, we find that when p�1, then the module of the square of the co-
fficient for kz

2 is much larger than the module of the last term. Thus,
or p�1, from equation 50, we obtain

v f �VBP�VP� �2

�1��2
��i��c� f

�
, �52�

here �c�
R2

8 is pipe permeability. This wave has a velocity close to
hat of the slow fluid wave �Appendix B� for a cylinder with the

Stoneley” correction factor � �2

�1��2
. If the rigidity of the fluid goes

o zero, then v f �equation 52� approaches the solution fromAppendix
�, and

v f �VP��i��c� f

�
. �53�

hen ���c� f

�
�1, �54�

he fluid wave velocity becomes nondispersive and propagates as a
ube wave described by equation 49.

When p�1 �small pipe radius�, then from equation 50 we have

v f �VNP�VP� � i��
�1� i�� ��2

. �55�

egimes VSP, VBP, and VNP for the pipe relate, respectively, to the re-
imes VSF, VBF, and VNF derived for a fracture earlier in this paper.
he presence of character P in the subscript indicates the regime for
pipe model.
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NUMERICAL RESULTS FOR A PIPE

The main idea behind the numerical study of wave propagation in
pipe is the same as that for a fracture, which is to evaluate the valid-

ty of derived asymptotics for realistic rock parameters. The exact
olution was obtained by the direct root search of equation 40,
hich, as in the case of fractures, revealed the existence of two roots.
ne of the roots corresponds to the velocity of shear waves in the flu-

d; the other root represents the symmetric fluid wave, which propa-
ates in different regimes, depending on the parameter values. For
ll data presented here cP�1500 m /s, VP2�1800 m /s, VS2�800
/s, �2�2.7 g /cm3, and fluid viscosity � �� �10 cP �oil�. Fig-

re 7 shows the phase velocities for a pipe as a function of the pipe
adius R for 20 Hz frequency. Also shown are VP1, VSP, VBP, and VNP.
igure 8 shows phase velocities as a function of frequency for a pipe
ith 10�4 m radius, while Figure 9 presents computations for a thin-
er pipe with 10�8 m radius.

DISCUSSION

Theoretical and numerical results presented in this study reveal
everal similarities in wave propagation between a fracture and a
ipe. The fluid symmetrical wave is always present in the solution,
nd it can propagate in different regimes. The first regime, described
y VSF �equation 25 for a fracture� and VSP �equation 48 for a pipe�,
an be called a Stoneley regime. Ferrazzini and Aki �1987� found
hat their solution �which has VS0 from equation 18, as a low-fre-
uency asymptote� approaches to propagation of Stoneley waves for
solid-fluid plane interface as the fracture thickness grows. At the

ame time, the Stoneley �tube� wave character of the solution VSP is a
ell-recognized fact �White, 1965�. Velocities of these waves direct-

y depend on fluid viscosity, frequency, and the shear modulus of the
alls; consequently, wall elasticity is an important parameter here.
The second regime is represented by VBF �equation 30 for a frac-

ure� and VBP �equation 53 for a pipe� and can be called a Biot regime.
he relationship of solutions representing both the Biot propagation

egime and the Biot slow wave in poroelastic theory follows from
he similarity in asymptotic expressions for these waves at low fre-
uencies as well as from assumptions used for deriving dynamic po-
oelastic equations. When modeling an interaction force between
uid and elastic components at pore scale, Biot �1956b� first consid-
rs the oscillatory flow of fluid between two rigid parallel walls,
hich is the same problem for the low-frequency solution consid-

red in Korneev �2008�, using a somewhat different technique. In the
ext section of the same paper, Biot solves the analogous problem
or a cylindrical tube �see Appendix B�. Then, Biot calculates a fric-
ion force acting between fluid and elastic skeleton using “the as-
umption that the variation of friction with frequency follows the
ame laws as found in the foregoing for the tube of uniform cross
ection” �Biot, 1956b, p. 182�. At low frequencies, the solutions for
he Biot’s second slow wave in a poroelastic material �equation C-1�,
nd Biot regimes for the fracture �equation 30� and a pipe �equation
3� have the same dependence on frequency, permeability, fluid den-
ity, and fluid viscosity, in the form

Vf �V�� i��� f

�
�56�

here V is some velocity, which is independent of any parameters
nder the radical, � is permeability of the porous media, � �

h2

12 for a
racture, and � �

R2

for a pipe.
8
The third regime described by VNF �equation 27 for a fracture� and
NP �equation 54 for a pipe� occurs at very small scales, when chan-
el width is much smaller than the skin depth, and can be called a
arrow channel regime. These waves propagate by squeezing in flu-
d through the narrow channels of fractures and pipes when the
avelength of the shear wave in the fluid is larger than the channel
idth. In this regime, the waves also quickly dissipate. This is gener-

lly a rather slow wave, but it can be faster than the other fluid wave
e.g., the shear fluid wave�, depending on the parameters �see Figure
�.

A Stoneley wave propagation regime is very different for the con-
idered geometries. In a pipe with a large radius �or in absence of vis-
osity� at low frequencies, the Stoneley wave has virtually no disper-
ion propagating as a tube wave. By contrast, in a fracture, the Stone-
ey guided wave has a strong dispersion. In a pipe, the Stoneley wave
egime converts to a Biot-wave regime quite rapidly, as soon as the
ondition
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�
�1 �57�

s valid. In a fracture, the Biot wave regime can be achieved for the
igh-contrast cases only when the fluid is in a gaseous state. A quite
ommon derivation of the Biot regime occurs when the rigidity of
he walls is placed at infinity �e.g., Chang et al., 1988�. Such an as-
umption is hard to justify from the physical point of view. Indeed,
ommon densities and shear-wave velocities for known rock differ
n density and sound wave velocity in water by a factor of 2–3, which
s far from the high-contrast assumption between the channel walls
nd the fluid. Such a contrast can be achieved by applying the theory
o a gas only, but this restriction is too severe for poromechanical ap-
lications.

Although having some aforementioned similarity, the narrow
hannel regimes described by equations 27 and 54 differ in their de-
endence on fluid viscosity. In a fracture, this regime starts relatively
uickly as the fracture thickness decreases, while for realistic pa-
ameters in pipes, it takes place surprisingly at a nano-scale level �the
ipe radius is 10�8 m for the example on Figure 9� at seismic fre-
uencies. For liquids, wall rigidity is always a factor affecting wave
ropagation.

The considered problems have just one fluid-channeling element,
aken as infinitely spreading in one or two directions. Real rock con-
ains a wide variety of pores and fractures that can intersect and are
istributed in sizes and shapes that provide conditions for different
uid wave regimes. The fractal character of fracture and pore distri-
ution in rock suggests a rapid increase in their numbers for decreas-
ng length scales. Diffusion waves are slow and propagate short dis-
ances, but the abundance of both small-scale channels and reflec-
ion-refraction on rock heterogeneities, where diffusion waves can
irectly impact boundary conditions, can possibly make significant
ontributions to overall wave propagation. �Accurate consideration
f all wave propagation effects in such media is a very complex
roblem, one that is beyond the scope of this study.�

The hydrogeology results provide strong evidence that fractures
lay a key role in rock permeability. Permeability was measured for
wide range of scales in a number of comprehensive studies for a va-

iety of geologic environments. Typically, five-orders-of-scale in-
rease corresponds to 5–7 orders of permeability increase, suggest-
ng the dominant role of fractures in fluid flow at field scales.

CONCLUSIONS

Analytical solutions have been obtained for the phase velocities
f fluid waves within both an infinite fracture and a pipe filled with a
iscous fluid at low frequencies. Two fluid waves can coexist in such
bjects: a diffusive wave propagating with shear-wave velocity in
he fluid and a general fluid wave that can propagate in different re-
imes, depending on object parameters. These include Biot, Stone-
ey, and “narrow channel” wave regimes. Computations for realistic
ock parameters suggest that for pipes, the most common regime is
he Biot slow wave; for fractures, it is the Stoneley �guided� wave.
toneley guided waves have a strong energy-trapping ability; in-
luding these effects into poroelastic theories needs to be consid-
red.
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APPENDIX A

CYLINDRICAL VECTOR SYSTEM

The cylindrical vector system used in this paper was introduced
y Korneev and Johnson �1993�. Use of those vectors makes expres-
ions for the Lamé equation especially simple since they thoroughly
mply a special symmetry of the problem. They allow formulation of
ave propagation problems in displacements, avoiding the poten-

ials.
The cylindrical vector system has the form

Ym
0 �Yme3, Ym

��
1

2
�Yme1� iYme2�, �A-1�

Ym
��

1

2
�Yme1� iYme2�,

here

m�Ym��,z��exp i�m��hzz�, m�0,1,2, . . . , �A-2�

nd hz is the projection of the wavenumber onto the OZ-axis, i
��1. Vectors e1,e2,e3 are the natural unit vectors of the cylindri-

al coordinate system �r,�,z�.
The cylindrical vectors of the system in A-1 are orthonormal at

ny point on a cylindrical surface. In the space of vector functions
f����,0�� �2� defined on a circle r�const., z�const. the vec-
ors A-1 satisfy the following orthogonality relations

�
0

2�

�Ym
� · Ȳm1

�1 �d��� mm1
� ��1

, � �0,� ,� �A-3�

here � kl is equal to 1, when lower indexes are the same, and equal
ero otherwise.

The system A-1 is complete in the sense of convergence in the
ean for a Fourier series expansion. This means that any vector

unction

u� �u��r,�,z��U� �r,��exp��ihzz� �A-4�

an be represented in the form

u��r,�,z���
�

�
m�0

�

fm
� �r�Ym

� ��,z� . �A-5�

he Lamé equation for a homogenous elastic medium is

������ � ·u� ��� � � �u� ���2u� �0 �A-6�

here the dependence of the displacement field u� on time t is given
y exp�i�t�, where � is the angular frequency. The parameters � and
from A-6 are the Lamé constants, and � is the density. Substitution
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f the form A-5 into equation A-6 and use of the orthogonality prop-
rty A-3 yields the differential Bessel equations for radial functions

fm
� � fm

� �r�:

fmq
0 �dmq

0 Zm�	qr�, fmq
� �dmq

� Zm�1�	qr�,
�A-7�

fmq
� �dmq

� Zm�1�	qr�, q�p,s,

here Zk�x� are the cylindrical Bessel functions of order k, and dmq
�

re the arbitrary constants. The parameter 	q from equation A-7 has
wo forms:

	p��kp
2 �hz

2, 	s��ks
2�hz

2, �A-8�

here kp�� /vp, ks�� /vs

vp�����2��/�, and vs���/� �A-9�

re the propagation velocities of compressional �u�p� and shear �u� s�
eld components.
The simplicity of equation A-7 illustrates the main advantage of

mploying the cylindrical vectors of the form A-1. In other systems,
he expressions for radial functions contain combinations of Bessel
unctions and their derivatives.

Introduction of functions

� mp�Ym��,z�Zm�	pr� and � ms�Ym��,z�Zm�	sr�

�A-10�

llows representation of the field u� from equation A-7 in the form

u���,�,z�� �
m�0

�

�amP�m��bmSV
�m��cmSH

�m�� �A-11�

ontaining the canonical compressional p- waves

P�m����� mp� ihzZmYm
0 �	pZm�1Ym

��	pZm�1Ym
�

���	pZm� e1�
im

r
Zme2� ihzZme3�Ym �A-12�

nd two sets of shear s- waves

SV
�m�� � �� mse3� i	s�Zm�1Ym

��Zm�1Ym
��

�� im

r
Zme1�	sZm� e2�Ym, �A-13�

SH
�m��

1

	s
� � � �� mse3

�	sZmYm
0 � ihzZm�1Ym

�� ihzZm�1Ym
�

���ihzZm� e1�
mhz

	sr
Zme2�	sZme3�Ym.

�A-14�

n expressions, the Bessel functions and their derivatives have argu-
ents 	pr and 	sr correspondently for compressional P�m� and shear

�m�,S�m� fields, which satisfy the equations
V H
� �P�m��0, � ·SV
�m�� � ·SH

�m��0, �SV
�m� ·SH

�m���0.

�A-15�

hen h�0, the field SH
�m� is polarized along OZ axis, while polariza-

ion of SV
�m� is always orthogonal to this axis.

For any integer index m�0,�1,�2,. . . the fields P�m�, SV
�m�, and

H
�m� satisfy equation of motion A-6, and represent an independently
ropagating harmonic of this index.

The expressions for the traction field on a surface r�const.

tr�u����� ·u�e1���2
�u�

�r
�e1� � �u�� �A-16�

ave forms:

tr�P�m���2i�	phzZm� Ym
0 ���

2
kp

2Zm��	p
2Zm�1� �Ym

�

���

2
kp

2Zm��	p
2Zm�1� �Ym

�

� ���kp
2Zm��	p

2�Zm�1� �Zm�1� ��e1

�i�	p
2�Zm�1� �Zm�1� �e2�2i�	phzZm� e3�Ym

�A-17�

tr�SV
�m�����mhz

r
ZmYm

0 � i	s
2�Zm�1� �

Zm

2
�Ym

�

� i	s
2�Zm�1� �

Zm

2
�Ym

��
��	i	s

2�Zm�1� �Zm�1� �e1�	s�	sZm�1�

�
m�1

r
Zm�1�e2�

mhz

r
Zme3
Ym �A-18�

tr�SH
�m������2	s

2�ks
2�Zm� Ym

0 � ihz	sZm�1� Ym
�

� ihz	sZm�1� Ym
��

���ihz	s�Zm�1� �Zm�1� �e1�hz	s�Zm�1�

�Zm�1� �e2� �2	s
2�ks

2�Zm� e3�Ym �A-19�

APPENDIX B

SLOW FLUID WAVE FOR A PIPE

Consider equation 3 in a cylindrical coordinate system and use the
igid wall assumption. In such a model, the interaction between
alls and the fluid occurs through viscous friction forces.At low fre-
uencies, the fluid motion is mostly directed along the central axis
ith a parabolic distribution across the fracture, which reaches the
aximum at the center line z�0 and zero at the walls, so

u�uzz1�u0�R2�r2�z1, u0�const. �B-1�

ntroducing the total flow
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F�2��
0

R

uzrdr �B-2�

cross any z�const, reduces equation 3 to

�2F

�t2 �
8�

R2� f

�F

�t
�

1

� f
�� �

4�

3
� �2

�z2

�F

�t
�cP

2 �2F

�z2 �0.

�B-3�

ote that pipe permeability is �c�R2 /8; therefore, it is embedded
n the denominator of the second term of equation B-2. �Compare to
fracture permeabilty � fr�h2 /12�. In the frequency domain, equa-

ion B-3 has the solution �Korneev et al., 2004�

u�expi�kx��t�, �B-4�

ith the complex wavenumber k, and the angular frequency �. The
avenumber has the form

k�
�

cP

�1� id

1� ig
, �B-5�

here

d�
�

��c� f
, g�

��� �
4�

3
�

� fcP
2 . �B-6�

t low frequency, the phase velocity Vf of the wave described by
quation B-4 has the asymptotic form

Vf�cP��i��c� f

�
�B-7�

APPENDIX C

BIOT SLOW WAVE AT LOW FREQUENCY

Low-frequency asymptotic for the Biot slow wave can be found in
he original papers �Biot, 1956a, b�. Since then, numerous papers
ealing with Biot’s poroelastic equations were published. For exam-
le, in more contemporary notations, this equation can be found in
utta and Ode �1979�. Slightly changing their notations �in order to

void interference with those used in the main text�, one can obtain a
ow-frequency asymptotic for Biot’s slow wave in the form

Vf ��2D�2DG2�H�
H

��i��� f

�
, �C-1�

here � is a fluid shear viscosity, � is an angular frequency, � f is flu-
d density and � is a permeability of the rock. Parameters

D�
Ks

2
	G�

�

Kf
�Ks�Kf�
�1

, �C-2�

H���2�, �C-3�
G�1�
Km

Ks
. �C-4�

rom equation C-1 depend on the bulk moduli Ks, Kf, and Km of the
iscrete solid grains; the fluid, and the matrix, respectively; Lame
onstants of the fluid-filled matrix � and �; and porosity �.
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