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Low-frequency fluid waves in fractures and pipes

Valeri Korneev'

ABSTRACT

Low-frequency analytical solutions have been obtained
for phase velocities of symmetrical fluid waves within both
aninfinite fracture and a pipe filled with a viscous fluid. Three
different fluid wave regimes can exist in such objects, de-
pending on the various combinations of parameters, such as
fluid density, fluid viscosity, walls shear modulus, channel
thickness, and frequency. Equations for velocities of all these
regimes have explicit forms and are verified by comparisons
with the exact solutions. The dominant role of fractures in
rock permeability at field scales and the strong amplitude and
frequency effects of Stoneley guided waves suggest the im-
portance of including these wave effects into poroelastic
theories.

INTRODUCTION

We consider and compare the propagation of a fundamental sym-
metrical mode (fluid wave) for two model geometries: a fracture and
a pipe, both infinite along the symmetry axis, filled with viscous flu-
id, and surrounded by an unbounded elastic medium. The impor-
tance of this fluid wave is well-established for boreholes (tube wave)
and supported by numerical modeling results for fractures
(Groenenboom and Fokkema, 1998; Ziatdinov et al., 2006; Korneev
etal., 2009; Frehner and Schmalholz, 2010; Derov et al., 2009), indi-
cating the dominant role of this wave in wave propagation phenome-
nain saturated rock. In Korneev (2008), it was found that in fractures
filled with viscous fluid, a fluid wave can propagate in different re-
gimes. While in one regime the dispersion exists only in viscous flu-
ids and does not depend on wall elastic parameters, for the other re-
gime the fluid wave is dispersive, even for zero fluid viscosity, and
depends on the wall’s shear modulus. The third regime takes place at
the zero limit of a fracture thickness. Relationships between these re-
gimes remain unclear: What are the conditions of their existence?
What is the difference between fractures and pipes in fluid wave
propagation? In this paper, we derive the simple analytical condi-

tions for these three different propagation regimes within both of the
considered geometries and present explicit analytical expressions
for the correspondent phase velocities. Hereafter, we refer to a chan-
nel when addressing fluid-containing parts for both a fracture and a
pipe, which is a useful notation for discussion of similarities and dif-
ferences between them.

THEORY FOR A FRACTURE
Previous work

The Stoneley guided wave, which propagates in a fluid layer
bounded by elastic walls, was first obtained as a mathematical result
by Krauklis (1962). Paillet and White (1982) re-derived that solution
while comparing waves in a borehole and its 2D analogue. Their so-
lution has an implicit form as a fundamental symmetric mode that
propagates along the fracture, with a velocity approaching zero at
zero frequency.

Fluid-filled fracture waves have also been investigated, both nu-
merically and in laboratory studies to explain volcanic tremors and
for monitoring hydraulic fracturing (Chouet, 1986, 1988; Ferazzini
and Aki, 1987; Ferrazzini et al., 1990; Tang and Cheng, 1988;
Goloshubin et al., 1994; Groenenboom and Falk, 2000; Groenen-
boom and van Dam, 2000; Yamamoto and Kawakatsu, 2008). Fluid
waves are essential in generating tube-wave reflections from inter-
secting fractures (Hornby et al., 1989; Kostek et al., 1998a, b; Derov
et al., 2009; Ziatdinov et al., 2006). The high amplitudes of such
waves make the solution of relevant problems rather simple because
we can ignore most other types of waves without compromising the
result. Because of the low velocity of fluid waves at low frequencies,
the fluid-filled channels are capable of trapping wave energy and car-
rying it for long distances, exhibiting waveguide features. Propaga-
tion of the Stoneley guided waves in a fracture filled with viscous
fluid was described in Korneev (2008). In the latest developments on
the subject, Frehner and Schmalholz (2010) modeled these waves
for intersecting fractures using a finite-element method, and Korn-
eev et al. (2009) compared analytical results with those obtained us-
ing OASES software.

Manuscript received by the Editor 7 August 2009; revised manuscript received 31 March 2010; published online 2 December 2010.
Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A. E-mail: vakorneev @1bl.gov.

©2010 Society of Exploration Geophysicists. All rights reserved.



N98 Korneev

Fluid waves in a fracture

Here, we consider all low-frequency symmetrical fluid waves us-
ing the results from Korneev (2008) but change some notations to
make them uniform with a similar problem for a cylindrical pipe.
The symmetric model consists of a layer, —h/2=z=h/2, filled
with viscous fluid between two homogeneous elastic half-spaces
comprised of the same material. The index j = 1 indicates the pa-
rameters and fields related to the viscous fluid layer, while index j
= 2 indicates the values related to elastic half-spaces.

In both media, the relationship between the body wave velocities
and media parameters is the same: a longitudinal (P-) wave propa-

gating with velocity
A+ 2u;
Vej =\ ‘T‘ (1)

J

and a shear (S-) wave with velocity

M.
VSj: \ _J', (2)
Pj

expressed through Lame constants A;, u;, and density p; (j = 1,2).
We assume that Vp, > Vg, > Vp,, which is the most common case
for rocks at depth.

The linearized equation of motion for compressible viscous fluid
takes the form (Korneev, 2008)

0*u a1 ou
—-2Z 2———<§—Q>VV-——c§vv-u=o,
(3)

with the particle velocity u, time ¢, fluid density p, = p,, viscosity
coefficients 7, {, and speed of sound c¢p for the zero-viscosity limit.

Using the time dependence of the fields in the form exp(—iwt),
with angular frequency w, equation 3 describes the propagation of
dissipating P- and S-waves with complex velocities

f

VS] = -, (5)
Py
and complex Lame constants
. 27y
A= cjzppf— uo({ - ?>, (6)
m = —ion. (7)

We seek a solution in the form of a surface wave with wavenumber
_ . L .

k.= v ;.)r.opggatlng along the x axis with ph.ase velocity v,.
Velocities in both media have corresponding wavenumbers

(j=12). (8)

Continuity conditions for the two components of both stress and dis-
placement at the boundaries z = =+ h/2 lead to four linear equations
for coefficients of those components. The dispersion equation for
symmetric modes is obtained by finding values of v, for which the
determinant of the system is zero

ag[—(1— 0)25152%2‘1‘&&% —(b—c)*éx1 —iclk, — a)
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where
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gl = 1dp; tanh(laplz), (10)
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T
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ap = kp;— ki ag=\kj—k. (=12) (12)

and coefficients a, b, and c have expressions
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In equation 9, the factor in square brackets is exactly that of equation
22 from Korneev (2008). The factor ay; in equation 9 gives an extra
root for the fluid wave propagating with the (rather small) velocity of
the shear wave in viscous fluid, given by equation 5. Low-frequency
approximation means that both frequency w and thickness & are
small enough to provide the conditions

<1, <1 and <1, (14)

h h
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which reduces the equation for the roots of the square brackets factor
inequation 9 to

2 2
Ny Py |
X1 kxh(l— )— }—2. (15)
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Approximating y, in equation 15 by the truncated Taylor series of

the coth function
2 K2h? v?
Xlz_<1_x__2f_ ) (16)
k.h 12 Vi

we get the cubical polynomial equation

Vs VooV
Vit V- ot =, (17)
Ve Ve + Vi
for determining v,.

Equation 17 contains three parameters, all of which are velocities
with the forms (Korneev, 2008)

1

h 3

1. vso=(“’ Ry —ﬁ)*, (18)
Py

(a low-frequency Stoneley guided wave velocity in a fracture filled
with nonviscous fluid, where y = V,/ Vp,);

— WK sp
2. VBF: Vp] —an, (19)



Low-frequency fluid waves N99

(a low-frequency fluid wave velocity in a fracture with rigid walls,
where k;, = h*/ 12 is fracture permeability); and

3. Vp=Vp, (20)

(aP-wave velocity in the fluid from equation 4).

Equation 17 has three roots, which can be explicitly found using
the Cardano formula (Abramowitz and Stegun, 1972). Among these
three roots, only one has a positive real part and therefore describes a
physical wave. However, the structure of equation 17 allows for
finding its asymptotic solutions in a straightforward way. If the sec-
ond term in equation 17 is much smaller than the first term, then

Y Vi
VfZVSEVSO S 5 - (21)
Vi + Vi,

Substitution of equation 21 into equation 17 shows that the second
term is much smaller than the first one when

V3
Vsl>| 75 (22)
P
Ifin equation 21,
WK 4P r h\?
Vol < Vi, or1<<—nﬂ:(§), (23)

where viscous skin depth

12
§=+/—2 (24)

is much smaller than fracture thickness, the elastic forces dominate
viscous ones, and the fluid wave

WK P
V= Vep= Vso(l - _37’Lf), (25)

propagates as the Stoneley guided wave with some attenuation. This
regime exists for “thick” fractures and/or low fluid viscosity.
If, in equation 21,

h 2
[V3|> V2], or 1>><§> . (26)

then viscous forces are becoming dominant and

’ V%zo 3\/ wz,U«z
Vi=Vyp=A\—5 =h\| —i 1—9%), (27
f NF V% 127 ( YY) (27)
which was called a “thin” fracture regime in Korneev (2008).
If, in equation 17, the second term dominates over the first term,
then

Vo= VPVBF
B= > ——F> -
A% V%) + VéF

Substitution of equation 28 into equation 17 reveals that the second
term is much larger than the first one when

(29)

Atlow frequencies (inequalities 26), equation 28 gives

— [OKupr
Vf = VBF = VPl —nLZ7 (30)

which is a propagation in aregime when interaction of the fluid wave
with the fracture walls occurs exclusively through viscous friction
forces.

Athigh frequencies, when the inequalities 23 take place, equation
28 gives

sz Vp, (31)

which is the propagation of body P-waves in the fluid.

Velocities Vg, Vpg, and V- correspond to three different regimes
of fluid wave propagation in a fracture, where subscript F indicates
their relation to the fracture model. Similar regimes also can exist for
afluid wave in a pipe.

After simple algebra, it is easy to demonstrate that inequality 22
associated with the solution 21 is equivalent to

[Vs| < |V, (32)

and that the inequality 29 associated with solution 28 is equivalent to

[Vs|> V4, (33)

which is exactly opposite to the inequality 32.

The inequalities 32 and 33 mean that for any parameter set, a wave
propagation regime corresponds to a regime with the slowest veloci-
ty. The regime change occurs when

[Vs|=[V4l. (34)
Thus, when

[Vs|>|Vp

) (35)

the wave propagates with the velocity of P-waves in the fluid (equa-
tion 31). If both Vg and V are less than | V| then, after substitution of
expressions 21 and 28 into equation 34, we obtain

U (em L (_edvil )6
wWr= + 2 - (36)
h hps o1 = y7) hps
for a transitional frequency wy that separates different propagation

regimes.
For thick fractures and small viscosities, when

hp2|V3| )2
ot i 0 o B
>1, (37)
(677M2(1 -7

a transition between Ve and Vg regimes takes place, and equation
36 becomes
3
_ Pf| Vil
T~ .
huy(1 = y?)

If the inequality sign in equation 37 is reversed (a case of a thin frac-
ture or large viscosity), then

(38)

A
129u3(1 — y2)¥

and the transition occurs between Vg and Vi regimes.

wr (39)
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NUMERICAL RESULTS FOR A FRACTURE

The derived exact and asymptotic solutions were compared nu-
merically for a set of media models with different parameters. The
exact solution was obtained by a direct root search when the left-
hand side of equation 9 was computed on a dense grid for complex
velocity v,. Both the real and imaginary parts varied from zero to a
value exceeding velocity in the fluid. The computed function was an-
alyzed numerically, always revealing the presence of two roots. One
root corresponded to the velocity of shear waves in the fluid; the oth-
er root numerically coincided with the only physical solution of
equation 17, which was computed using Cardano formulas. Among
the three roots of equation 17, just one has a positive real part, giving
the only physically interpretable estimate for the exact solution of
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Figure 1. Real part of phase velocity of fluid wave ina 10~* m thick
fracture as a function of fluid density. The fluid has sound velocity of
1500 m/s and viscosity of 1 cP; the frequency is 20 Hz. Shown are
the exact solution (solid line) obtained from equation 9, Vj (short
dashed line, equation 28), Vg (long dashed line, equation 25), and
Vyr (dashed-dotted line, equation 27).
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Figure 2. Real part of phase velocity of fluid wave ina 10~3 m thick
fracture as a function of frequency for the “air” at atmospheric pres-
sure. The curves marked as on Figure 1. Solution V; gives accurate
approximation to the exact solution.

equation 9. The asymptotic solutions 25, 27, and 28 were compared
with the exact solutions. For all examples presented here, the param-
eters of the elastic medium were Vp, = 5000 m/s, Vs, = 3000 m/s,
and p, = 2.7 g/cm’. Figure 1 shows the real part of the phase veloci-
ties as the functions of density. The parameters of the model are cp
= 1500 m/s, the viscosities 7 = ¢ = 1 cP, frequency 20 Hz, c, =
1500 m/s, and the fracture thickness 103 m. At low densities, the
exact solution follows the solution for the Vg regime, while at high-
er densities, it follows the Vgg regime. Note that the transition be-
tween these two regimes corresponds to the condition from equation
34.

In Figures 2—6, the function Vg is shown instead of function Vg
to demonstrate a transition of this regime into propagation of P-body
wave (equation 31). Figure 2 shows phase velocities as a function of
frequency when the fluid has the same parameters as the “air” at at-
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Figure 3. Real part of phase velocity of fluid wave ina 10~% m thick
fracture as a function of frequency for the air at 10 MPa pressure.
The curves marked as on Figure 1. At low frequencies, the Vyr re-
gime approximates the exact solution.
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Figure 4. Real part of phase velocity of fluid wave ina 1073 m thick
fracture as a function of frequency for the air at 10 MPa pressure.
The curves marked as on Figure 1. For most frequencies, the exact
solution is in transitional regimes.
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mospheric pressure, when ¢p = 330 m/s, p,= 0.0013 g/cm?, and
n = ¢ =1 cP. Here, the exact solution accurately follows the Vgg
regime solution; however, for a fracture 10 times thinner (h
= 10* m), the Vs regime takes place at low frequencies (Figure
3). The case for air compressed at 10 MPa (hydrostatic pressure at
~1 km depth) is shown in Figure 4, where p, = 0.13 g/cm?® and h
= 1073 m. In this set of parameters, the dispersion curve belongs to
a transition between the Vi regime and the high-frequency solution
(equation 31). The water-filled fracture case with ¢, = 1500 m/s, p,
=1.0g/cm’, p=¢=1cP,and h = 1073 m is shown in Figure 5.
Results for an oil-filled fracture when all the parameters have the
same values as in Figure 5, except that viscosities 7 = ¢ = 10 cP,
are shown in Figure 6. For the seismic range of frequencies, the solu-
tions for water and oil are well represented by Vsgregime.

We will discuss these results together with similar results for a
pipe — the subject of the next section.

THEORY FOR A PIPE
Previous work

Fluid-filled boreholes are one of the most important signal-carry-
ing channels in prospecting geophysics, and the literature on the
properties of borehole fluid waves is quite extensive (Burridge et al.,
1993, Schoenberg et al., 1981, Cheng and Toksoz, 1981; Chang et
al., 1988; Haddon, 1989; Norris, 1989, etc.). Tube waves (Stoneley
waves in a pipe) are used for permeability logging, fracture detec-
tion, reservoir monitoring, and borehole integrity testing. The simi-
larity of Stoneley waves to Biot slow waves has been noted (Chang
etal., 1988); Norris (1987) even described the tube wave as “a limit-
ing case of the Biot slow wave.” In poroelastic theory (Biot, 1956b),
it is assumed that on a pore scale, the channel walls are rigid and a
fluid wave in a cylindrical pipe is a core model for fluid-solid interac-
tion. In reality, however, values of liquid rigidity are comparable
with those of elastic rock, and therefore wall-rigidity assumptions
need to be evaluated, as was done for the case of fractures in the pre-
vious section. Here, we revisit the problem of low-frequency wave
propagation in a cylindrical pipe filled with viscous fluid and demon-
strate the existence of three fluid wave propagation regimes similar
to those found in the fracture model.

Fluid waves in a pipe

We are interested in the low-frequency properties of purely sym-
metric fluid waves propagating along a thin cylindrical well (or a
pipe) filled with viscous fluid. Outside of a cylinder with radius R,
the medium is elastic. In the following, index j = 1 refers to a fluid,
while index j = 2 denotes an elastic medium. Here, we also use nota-
tions introduced in equations 1-8.

It is assumed that longitudinal (P-) and shear (S-) waves in both
media of the pipe satisfy welded boundary conditions at the pipe
wall, providing continuity for stresses and displacements. (Mathe-
matical formalism and the main expressions for wave propagation
problems with cylindrical symmetry are presented in Appendix A).
The pure symmetry of the problem leaves only terms with m = 0 in
the general field expansion (equation A-6). As a result, the propaga-
tion velocities v, of the fluid waves can be found as the roots of the
equation

=& —kxi & kxo
—k a, k. —«a

a,, z sl z 52 =0
q31 q32 433 434

q34 q42 443 qua

q31 = 2pk;§ ), 93 = Ml(zafl - k?)xl

33 = 20k &5, 934 = *Mz(zafz - kg))ﬂ
é X

qu = Alklz,l + 2,u,1a§1(1 - ?:R), qar =2k (1 — ?:R ’

I3 X
4= —hokpy — 2y, (1 — a,;R)’ Gas = —2pok(1 = 2 75).
(40)
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Figure 5. Real part of phase velocity of fluid wave ina 10~* m thick
fracture as a function of frequency for water (fluid viscosity is 1 cP).
The curves marked as on Figure 1. Stoneley wave regime approxi-
mates the exact solution at seismic frequencies.
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Figure 6. Real part of phase velocity of fluid wave ina 1073 m thick
fracture as a function of frequency for the oil (fluid viscosity is
10 cP). The curves marked as on Figure 1. Stoneley wave regime ap-
proximates the exact solution at seismic frequencies.
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Velocity v, is directly related to propagation wave number k. through
the expression v, = i, parameters ap;,as; are defined through the
formula A

ay =k — k2 ag=k,—k% j=12, (41)

z

and the functions &, x 1, &,, and x, have the expressions

(@R JegR) . HP(apR)
gl - o X1 = s §2 - 502 > (42)
Jo(a,R) Jo(agR) Hy'(a,oR)

2
_ H(l )(Q/SZR)
=5,
HE) )(aSZR)
where J,(Z) is a Bessel function and H?(Z) is a Hankel function of

the second kind.
For |Z| < 1, the asymptotic expressions

X2

JI<Z)~z<1 Z_) @1
Jo(Z) 2 8) HP2  ZInz2)
can be used.
Assuming low enough frequency, when
la, RI<1, |apR|<1, |apR|<1, (44)

and the asymptotic expressions 43 can be applied to equation 40.
This reduces equation 40 to

2X1 az R2
as{k?(,“«za R - ,U«2<1 + —%’— — M

a* R?
I\ A+ o+ 1+—1’é— =0. (45)

Note that according to equation 42, the ratio % from equation 45
has a limit equal to one if the argument of y, goes to zero, meaning
that the pipe radius is much smaller than the wavelength of the shear
wave in the fluid.
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Figure 7. Real part of phase velocity of fluid waves in a pipe filled
with oil (fluid viscosity is 10 cP) as a function of pipe radius. Fre-
quency is 20 Hz. Shown are the exact solution (thin solid line) ob-
tained from equation 40, V» (short dashed line) obtained from equa-
tion 52, Vs (long dashed line) obtained from equation 48, V; (thick
solid line, equation 4), and Vy, (dashed-dotted line, equation 55).

Factor ay; gives equation 45 an immediate solution for a shear
wave in a viscous fluid (equation 5) that is the same as in the fracture
case.

Athigher frequencies, when

lag R[> 1, (46)
and the argument for y, is large (and y, =~ 1), the expression within
the square brackets of 45 gives

kg _.R 5 2
S = i [k, (A + wy + ) — K(p + )], (47)

N ksl - kz 2 7
which can be put in the form of a cubic polynomial with respect to k>
and solved explicitly using Cardano formulas. For a small viscosity
7, the expression in square brackets must approach zero, and we ob-

tain
[ Mt
Vf = VSPE Vp N (48)
Ayt gt g

which for zero viscosity gives

M2
ve= Vo[ —, (49)
TN + o

which is the velocity of the Stoneley (tube) wave (White, 1965),
propagating along a well filled with fluid.

When \a,v1R| <1, then approximation 43 can be used for y; and
leads to the following quadratic equation with respect to k2:

2_ 81‘;271(/\1 + py + po)

= e : (50)
: R21u’2(ksl - 2kpl) - M
Introducing a dimensionless real parameter
R*uyp
P="25" (51)

87>
that determines the main component in the denominator of equation
50, we find that when p>> 1, then the module of the square of the co-
efficient for k2 is much larger than the module of the last term. Thus,
for p> 1, from equation 50, we obtain

_ Mo —lWK Py
v,=Vpp=V, \/ \/ , (52)
R 7

where k. = %2 is pipe permeability. This wave has a velocity close to
that of the slow fluid wave (Appendix B) for a cylinder with the
[ M2
At po

“Stoneley” correction factor . If the rigidity of the fluid goes
to zero, then v, (equation 52) approaches the solution from Appendix

B), and '

&nﬁpb 1, (54)

‘When

the fluid wave velocity becomes nondispersive and propagates as a
tube wave described by equation 49.
When p < 1 (small pipe radius), then from equation 50 we have

R St )/ R
Vf_ VNP_VP )\I — lw7] T ,U,z- (55)

Regimes Vp, Vip, and Vy; for the pipe relate, respectively, to the re-
gimes Vg, Vg, and Vi derived for a fracture earlier in this paper.
The presence of character P in the subscript indicates the regime for
a pipe model.
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NUMERICAL RESULTS FOR A PIPE

The main idea behind the numerical study of wave propagation in
apipe is the same as that for a fracture, which is to evaluate the valid-
ity of derived asymptotics for realistic rock parameters. The exact
solution was obtained by the direct root search of equation 40,
which, as in the case of fractures, revealed the existence of two roots.
One of the roots corresponds to the velocity of shear waves in the flu-
id; the other root represents the symmetric fluid wave, which propa-
gates in different regimes, depending on the parameter values. For
all data presented here c, = 1500 m/s, Vp, = 1800 m/s, Vs, = 800
m/s, p, = 2.7 g/cm?, and fluid viscosity 7 = s = 10 cP (oil). Fig-
ure 7 shows the phase velocities for a pipe as a function of the pipe
radius R for 20 Hz frequency. Also shown are Vpy, Vsp, Vip, and V.
Figure 8 shows phase velocities as a function of frequency for a pipe
with 10~* m radius, while Figure 9 presents computations for a thin-
ner pipe with 10~% mradius.

DISCUSSION

Theoretical and numerical results presented in this study reveal
several similarities in wave propagation between a fracture and a
pipe. The fluid symmetrical wave is always present in the solution,
and it can propagate in different regimes. The first regime, described
by Vse (equation 25 for a fracture) and Vi, (equation 48 for a pipe),
can be called a Stoneley regime. Ferrazzini and Aki (1987) found
that their solution (which has Vg, from equation 18, as a low-fre-
quency asymptote) approaches to propagation of Stoneley waves for
a solid-fluid plane interface as the fracture thickness grows. At the
same time, the Stoneley (tube) wave character of the solution Vpis a
well-recognized fact (White, 1965). Velocities of these waves direct-
ly depend on fluid viscosity, frequency, and the shear modulus of the
walls; consequently, wall elasticity is an important parameter here.

The second regime is represented by Vgp (equation 30 for a frac-
ture) and Vi (equation 53 for a pipe) and can be called a Biotregime.
The relationship of solutions representing both the Biot propagation
regime and the Biot slow wave in poroelastic theory follows from
the similarity in asymptotic expressions for these waves at low fre-
quencies as well as from assumptions used for deriving dynamic po-
roelastic equations. When modeling an interaction force between
fluid and elastic components at pore scale, Biot (1956b) first consid-
ers the oscillatory flow of fluid between two rigid parallel walls,
which is the same problem for the low-frequency solution consid-
ered in Korneev (2008), using a somewhat different technique. In the
next section of the same paper, Biot solves the analogous problem
for a cylindrical tube (see Appendix B). Then, Biot calculates a fric-
tion force acting between fluid and elastic skeleton using “the as-
sumption that the variation of friction with frequency follows the
same laws as found in the foregoing for the tube of uniform cross
section” (Biot, 1956b, p. 182). At low frequencies, the solutions for
the Biot’s second slow wave in a poroelastic material (equation C-1),
and Biot regimes for the fracture (equation 30) and a pipe (equation
53) have the same dependence on frequency, permeability, fluid den-
sity, and fluid viscosity, in the form

V= VA /L‘;"Pf (56)

where V is some velocity, which is independent of any parameters

under the radical, « is permeability of the porous media, k = % fora
2 .

fracture, and k = % for a pipe.

The third regime described by V- (equation 27 for a fracture) and
Vyp (equation 54 for a pipe) occurs at very small scales, when chan-
nel width is much smaller than the skin depth, and can be called a
narrow channel regime. These waves propagate by squeezing in flu-
id through the narrow channels of fractures and pipes when the
wavelength of the shear wave in the fluid is larger than the channel
width. In this regime, the waves also quickly dissipate. This is gener-
ally a rather slow wave, but it can be faster than the other fluid wave
(e.g., the shear fluid wave), depending on the parameters (see Figure
9).

A Stoneley wave propagation regime is very different for the con-
sidered geometries. In a pipe with a large radius (or in absence of vis-
cosity) at low frequencies, the Stoneley wave has virtually no disper-
sion propagating as a tube wave. By contrast, in a fracture, the Stone-
ley guided wave has a strong dispersion. In a pipe, the Stoneley wave
regime converts to a Biot-wave regime quite rapidly, as soon as the
condition
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Figure 8. Real part of phase velocity of fluid waves in a pipe filled
with oil (fluid viscosity is 10 cP) as a function of frequency. Pipe ra-
diusis 10~* m. The curves marked as on Figure 7.
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Figure 9. Real part of phase velocity of fluid waves in a pipe filled
with oil (fluid viscosity is 10 cP) as a function of frequency. Pipe ra-
diusis 10~® m. The curves marked as on Figure 7.
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is valid. In a fracture, the Biot wave regime can be achieved for the
high-contrast cases only when the fluid is in a gaseous state. A quite
common derivation of the Biot regime occurs when the rigidity of
the walls is placed at infinity (e.g., Chang et al., 1988). Such an as-
sumption is hard to justify from the physical point of view. Indeed,
common densities and shear-wave velocities for known rock differ
in density and sound wave velocity in water by a factor of 2-3, which
is far from the high-contrast assumption between the channel walls
and the fluid. Such a contrast can be achieved by applying the theory
to a gas only, but this restriction is too severe for poromechanical ap-
plications.

Although having some aforementioned similarity, the narrow
channel regimes described by equations 27 and 54 differ in their de-
pendence on fluid viscosity. In a fracture, this regime starts relatively
quickly as the fracture thickness decreases, while for realistic pa-
rameters in pipes, it takes place surprisingly at a nano-scale level (the
pipe radius is 10~® m for the example on Figure 9) at seismic fre-
quencies. For liquids, wall rigidity is always a factor affecting wave
propagation.

The considered problems have just one fluid-channeling element,
taken as infinitely spreading in one or two directions. Real rock con-
tains a wide variety of pores and fractures that can intersect and are
distributed in sizes and shapes that provide conditions for different
fluid wave regimes. The fractal character of fracture and pore distri-
bution in rock suggests a rapid increase in their numbers for decreas-
ing length scales. Diffusion waves are slow and propagate short dis-
tances, but the abundance of both small-scale channels and reflec-
tion-refraction on rock heterogeneities, where diffusion waves can
directly impact boundary conditions, can possibly make significant
contributions to overall wave propagation. (Accurate consideration
of all wave propagation effects in such media is a very complex
problem, one that is beyond the scope of this study.)

The hydrogeology results provide strong evidence that fractures
play a key role in rock permeability. Permeability was measured for
awide range of scales in a number of comprehensive studies for a va-
riety of geologic environments. Typically, five-orders-of-scale in-
crease corresponds to 5—7 orders of permeability increase, suggest-
ing the dominant role of fractures in fluid flow at field scales.

CONCLUSIONS

Analytical solutions have been obtained for the phase velocities
of fluid waves within both an infinite fracture and a pipe filled with a
viscous fluid at low frequencies. Two fluid waves can coexist in such
objects: a diffusive wave propagating with shear-wave velocity in
the fluid and a general fluid wave that can propagate in different re-
gimes, depending on object parameters. These include Biot, Stone-
ley, and “narrow channel” wave regimes. Computations for realistic
rock parameters suggest that for pipes, the most common regime is
the Biot slow wave; for fractures, it is the Stoneley (guided) wave.
Stoneley guided waves have a strong energy-trapping ability; in-
cluding these effects into poroelastic theories needs to be consid-
ered.
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APPENDIX A

CYLINDRICAL VECTOR SYSTEM

The cylindrical vector system used in this paper was introduced
by Korneev and Johnson (1993). Use of those vectors makes expres-
sions for the Lamé equation especially simple since they thoroughly
imply a special symmetry of the problem. They allow formulation of
wave propagation problems in displacements, avoiding the poten-
tials.

The cylindrical vector system has the form

1
Y =v,e, Y = E(Ymel —iY,e), (A-1)
_ 1 )
Ym = E(Ymel + lYme2)9
where
Y, =Y, (p0)=expilme—hz), m=0,12,., (A-2)

and £, is the projection of the wavenumber onto the OZ-axis, i
= \——l Vectors e, e,,e; are the natural unit vectors of the cylindri-
cal coordinate system (r,¢,7).

The cylindrical vectors of the system in A-1 are orthonormal at
any point on a cylindrical surface. In the space of vector functions
f(¢),0= =21 defined on a circle r = const., z = const. the vec-
tors A-1 satisfy the following orthogonality relations

2

[0S = 8,80 =04~ (1)
0

where J), is equal to 1, when lower indexes are the same, and equal
zero otherwise.

The system A-1 is complete in the sense of convergence in the
mean for a Fourier series expansion. This means that any vector
function

i=i(r,e.z) = U(r, @)exp(—ih.z) (A-4)

can be represented in the form

i(r,,2) =2 2 fa(NYu(e.2). (A-5)

v m=0
The Lamé equation for a homogenous elastic medium is
A+ w)VV-ii — uVXVXi+po?i=0 (A-6)

where the dependence of the displacement field & on time ¢ is given
by exp(iwt), where w is the angular frequency. The parameters A and
 from A-6 are the Lamé constants, and p is the density. Substitution
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of the form A-5 into equation A-6 and use of the orthogonality prop-
erty A-3 yields the differential Bessel equations for radial functions

Fa=1r):

fgu] = dSIqu(aqr)? f}:l—q = dn-:qznl+ l(aqr)v
(A7)

fr;q:dn_zqszl(aqr)’ q =D,

where Z,(x) are the cylindrical Bessel functions of order k, and d,,

are the arbitrary constants. The parameter «, from equation A-7 has
two forms:

@, = \yklz7 — hg, a, =k — h?, (A-8)

wherek, = w/v,, k;= w/v,
vy =V(A+2u)/p, and v,=u/p (A-9)

are the propagation velocities of compressional (i,) and shear (i)
field components.

The simplicity of equation A-7 illustrates the main advantage of
employing the cylindrical vectors of the form A-1. In other systems,
the expressions for radial functions contain combinations of Bessel
functions and their derivatives.

Introduction of functions

Ir//mp = Ym(‘P’Z)Zm(apr) and (//ms = Ym((P,Z)Zm(asr)
(A-10)

allows representation of the field i from equation A-7 in the form

©

i(p.0.2) = > (aP™ + b, 8" + ¢, S') (A-11)

m=0

containing the canonical compressional p- waves

P(m) = — V ¢mp = lhzZngl + apZm+ er:lr _apZm— lYVI;

, im )
=\ - CYpZmel - TZmez + thZme3 Ym (A-12)

and two sets of shear s- waves

Sgn) = V X ¢1715e3 = ias(Zm+ er: + Zm_ lY’;)

im ,
= ( Zmel - asZmez) YW!’ (A-13)
r

1
S = —V X VX i),,e

N

a,Z,Y" +ihZ, 1Y, —ihZ, Y,

m

P mh,
—ihZ,e +—Z,e,+ aZ,e5]Y,.
ar

§
(A-14)
In expressions, the Bessel functions and their derivatives have argu-

ments a,r and a,r correspondently for compressional P and shear
S S fields, which satisfy the equations

VXPM =0, V.S =V.8=0, (S{"-S{")=0.

(A-15)

When / = 0, the field S is polarized along OZ axis, while polariza-
tion of S is always orthogonal to this axis.

For any integer index m = 0, + 1, +2,... the fields P, S, and

S\ satisfy equation of motion A-6, and represent an independently

propagating harmonic of this index.
The expressions for the traction field on a surface r = const.

>

u
t, (i) = AV -iie, + ,LL(Z; +e, X VX IZ) (A-16)
have forms:
(m)y — ~; 1 v0 A 2 271 +
t,(P") =2ipa,h,Z, Y, + Ek"Z'" +pa,Z, 1 |Y,
A 2 271 —
+ Ekpzm - Iu’ap Zm—l Ym

=[(\Z, + na (2, = Z,1))e,

—ipa, (Z), + 2, ey + 2ipa,h Z)eslY,
(A-17)
mh Z
S = 2, ¥0 v 02 2, - 2

. 2 ’ Zm —
+iaN\Z,_,— = Y,
2

. 2
= /.L|:las(Z,;q+l + Zr’nfl)el + as<asZi,n+l

m—1 mh,
- Zm—l e2 + _Zme3 Ym (A-lg)
r r

t,(S{) = w(Qa,” - k)2, Y, + ihaZ, Y,
— ihzaSZr'n, 1Y,;)
= plih.alZ, .\ —Z,_ e +hadlZ, .,
+ 7, e+ (2 = k)Z)e51Y,,  (A-19)

APPENDIX B

SLOW FLUID WAVE FOR A PIPE

Consider equation 3 in a cylindrical coordinate system and use the
rigid wall assumption. In such a model, the interaction between
walls and the fluid occurs through viscous friction forces. At low fre-
quencies, the fluid motion is mostly directed along the central axis
with a parabolic distribution across the fracture, which reaches the
maximum at the center line z = 0 and zero at the walls, so

u=~uz, =uy(R*— r’)z;, uy= const. (B-1)

Introducing the total flow
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R
F= wauzrdr (B-2)
0

across any z = const, reduces equation 3 to

3

2 2 2
O’F  8ny oF l( 41;)6_8F IF

i Rpyat py a2 ar "oz

(B-3)
Note that pipe permeability is k. = R?/8; therefore, it is embedded
in the denominator of the second term of equation B-2. (Compare to
a fracture permeabilty ;, = h?/12). In the frequency domain, equa-
tion B-3 has the solution (Korneev et al., 2004)

u = expi(kx — wt), (B-4)

with the complex wavenumber k, and the angular frequency w. The
wavenumber has the form

o 1+id (B-5)
B cp V1—ig’ )
where
4
w(é’ + —77>

7 3
d= , &= 5 . (B-6)

WK Py PCp

At low frequency, the phase velocity V; of the wave described by
equation B-4 has the asymptotic form

—iwK
Vi=cp - (B-7)
Y
APPENDIX C

BIOT SLOW WAVE AT LOW FREQUENCY

Low-frequency asymptotic for the Biot slow wave can be found in
the original papers (Biot, 1956a, b). Since then, numerous papers
dealing with Biot’s poroelastic equations were published. For exam-
ple, in more contemporary notations, this equation can be found in
Dutta and Ode (1979). Slightly changing their notations (in order to
avoid interference with those used in the main text), one can obtain a
low-frequency asymptotic for Biot’s slow wave in the form

2D(2DG*—H) [—iwkp

where 7 is a fluid shear viscosity, w is an angular frequency, p;is flu-
id density and « is a permeability of the rock. Parameters

®
Ky

~1
D= %[G + 2K, — Kf)} , (C-2)

H=A+2u, (C-3)

K,
G=1--2= C-4
K (©-4)

s

from equation C-1 depend on the bulk moduli K, K, and K, of the
discrete solid grains; the fluid, and the matrix, respectively; Lame
constants of the fluid-filled matrix A and u; and porosity ¢.
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