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ABSTRACT
An extension of a previously developed rock physics model is made that quantifies the
relationship between the ductile fraction of a brittle/ductile binary mixture and the
isotropic seismic reflection response. By making a weak scattering (Born) approxima-
tion and plane wave (eikonal) approximation, with a subsequent ordering according
to the angles of incidence, singular value decomposition analyses are performed to
understand the stack weightings, number of stacks, and the type of stacks that will
optimally estimate two fundamental rock physics parameters – the ductile fraction
and the compaction and/or diagenesis. It is concluded that the full PP stack, i.e., sum
of all PP offset traces, and the “full” PS stack, i.e., linear weighted sum of PS offset
traces, are the two optimal stacks needed to estimate the two rock physics parame-
ters. They dominate over both the second-order amplitude variation offset “gradient”
stack, which is a quadratically weighted sum of PP offset traces that is effectively the
far offset traces minus the near offset traces, and the higher order fourth order PP
stack (even at large angles of incidence). Using this result and model-based Bayesian
inversion, the seismic detectability of the ductile fraction (shown by others to be the
important rock property for the geomechanical response of unconventional reservoir
fracking) is demonstrated on a model characteristic of the Marcellus shale play.

Key words: Quantitative interpretation, Rock physics, Seismics, Multi-component,
Unconventional reservoir, Inverse problem.

INTRODUCTION

Ductile fraction is one of the two important order parameters
for the linear, isotropic, elastic response of binary mixtures of
a structurally competent member (high coordination number)
and a structurally less competent member (lower coordina-
tion number). A very important implication of this bi-critical
model is that the state is only two dimensional. The expec-
tation and practical reality (as demonstrated by analysis of
well log data) is that the isotropic properties will reduce to a
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surface in the 3D density, compressional velocity, and shear
velocity (i.e., ρ, vp, vs) space. Furthermore, this surface will
be orthogonal to the vp–vs plane. The remarkable property of
the reduction in dimension is captured by the floating grain
model (Demartini and Glinsky 2006; Gunning and Glinsky
2007), which has two state variables given by the floating
grain fraction f f and the compaction state as specified by
1 − exp(−Pe/P0), where Pe is the effective stress and P0 is a
reference value of effective stress. Two phase transitions points
at critical values in the radius ratio (at RRc = 4) and the frac-
tion of small grains (at VF c = 0.45) were demonstrated, as
well as two critical scalings of the porosity about a critical
point of about 42% by Bryant, Lerch, and Glinsky (2009).
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The floating grain theory was developed for a binary mix-
ture of brittle spheres of two different sizes. Recognizing that
the large spheres are the structurally competent member and
the small spheres are the structurally less competent member,
we generalize the floating grain theory in the Rock physics
Section. The floating grain fraction is replaced by a general ge-
ometry parameter ξ , which in the case of shales is shown to be
proportional to fd, where fd is the ductile fraction. The geom-
etry parameter captures the fabric of the mixture such as the
sorting or ductile fraction, whereas the composition parameter
captures the compaction, diagenesis, and/or mineral substitu-
tion of the mixture. An important additional implication of
the bicritical model is a fundamental self-similarity and the
associated scaling relationships (Stauffer and Aharony 1994)
of physical quantities such as coordination numbers, capture
fractions, and elastic moduli. It also implies the same critical
scaling for both vp and vs because they have the same units.
Therefore the surface in (ρ, vp, vs) space should be orthogonal
to the vp–vs plane.

The rock physics and geophysical detectability of the fra-
cability of unconventional reservoirs has been, and contin-
ues to be, a very active area of research. Hornby, Schwartz
and Hudson (1994) developed an anisotropic effective me-
dia model for the elastic properties of shales. The use of
converted wave seismic data in the exploration of unconven-
tional reservoirs was discussed by Stewart et al. (2002). The
inversion of PP and PS data for geophysical properties was
discussed by Mahmoudian and Margrave (2004) and Veire
and Landr (2006). There is a good discussion of the rock
physics of shales focusing on the anisotropy by Sayers (2005).
Goodway et al. (2010), Sayers (2013), Vernik and Kachanov
(2010) and Khadeeva and Vernik (2013) are well cited refer-
ences that present petrophysical models for shales that have
an AVO expression. Finally, a shale rock physics model
for the analysis of brittleness was developed by Guo et al.

(2013).
The developing commercial significance of unconven-

tional shale reservoirs leads to the need of remotely deter-
mining the ability to effectively fracture the reservoir. This
paper will establish the theory and practicality of optimally
estimating the ductile fraction from an isotropic analysis of
surface conventional and converted wave seismic data. Ductile
fraction is defined as the ratio of the structurally incompetent
(ductile) organic matter (total organic carbon, TOC) and clay,
to the sum of the structurally incompetent plus the structurally
competent (brittle) quartz and calcium carbonate by volume.
Structural competence comes from having a larger coordina-
tion number or, equivalently, from having more elastic mod-
uli per mass. The ductile fraction of a binary ductile/brittle

mixture has been shown to be the key property in determining
the geomechanical fracturing response of an unconventional
reservoir (Zoback et al. 2012; Kohli and Zoback 2013). The
importance of the ductile fraction is, most likely, because of
the balance between the “bumpy road” friction of the frac-
ture, due to the structurally competent brittle member, and
the viscous friction, due to the ductile member. The detailed
mechanism is not the subject of this paper but is the topic of
our ongoing research into the statistical mechanics of fracture
joint friction.

We emphasize the serendipity of the fact that the ductile
fraction is the coordinate of influence of both the linear elastic
response (geophysical) and the nonlinear inelastic response
(geomechanical). For the former, the ductile material is adding
density without much structural rigidity, i.e., elastic moduli.
For the latter, it is increasing the importance of the viscous
joint friction.

Before continuing, a few words need to be said about fo-
cusing on the isotropic response of the shale. It is well known
that there are both strong vertical transverse anisotropy,
caused by the depositional lamination, and horizontally trans-
verse anisotropy, caused by post-depositional vertical frac-
tures. We are not ignoring that the rocks are anisotropic,
but we are rather separating the problem into the diagonal
isotropic part and the off-diagonal anisotropic part. The anal-
ysis of this paper shows that there are two directionally av-
eraged coordination numbers that are characterized by two
scalars that characterize the geometry and the composition.
The geometry is characterized by the scalar ductile fraction.
It is expected that the anisotropy will characterize the verti-
cal fracture density and orientation, as well as the degree of
horizontal lamination. The additional information that comes
from the anisotropy is important information that affects the
geomechanical response, complementary to the ductile frac-
tion. However, extension of this theory to include anisotropy
is the topic of our ongoing research.

Given the ductile fraction rock physics model, this paper
examines its implication on the geophysical detectability of
ductile fraction in the Applications Section. Several questions
have been the subject of much debate within the geophysical
community (see the references of the previous paragraph). For
example, how many stacks should be used in “pre-stack” anal-
ysis? What should those stacks be? What is the relative value
of amplitude variation offset (AVO) versus converted wave
data analysis? What is the value of determining density from
large-angle PP data? What are the quantities that should be in-
verted for, relative (reflectivity) versus absolute (impedance)?
Finally, what are the “attributes” that best predict reservoir
performance?
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We present a straightforward analytic theory in the
Singular value decomposition theory Section and subsequent
analysis that answers all of these questions in the Detectabil-
ity without rock physics uncertainty Section. It is a linear
singular value decomposition analysis (Saleh and de Bruin
2000; Causse et al. 2007a, 2007b; Varela et al. 2009) of
the relationship between the two fundamental rock physics
parameters (ζ , which is the composition, and ξ , which is the
geometry, to be defined more precisely in the succeeding Rock
physics Section) and the seismic reflectivities (PP and PS) as
functions of angle of incidence θ . This analysis is done by
assuming a weak scattering (Born) approximation and plane
wave assumption (eikonal). It also orders the SVD using the
angle θ . It should be noted that the SVD analysis is facilitated
by a novel expansion and simplification of the geophysical
forward model shown in Appendix A. Distortions caused by
angle-dependent noise and by angle-dependent multiplicative
factors are examined in Appendix B.

Finally, the practical seismic detectability, on a synthetic
example based on the Marcellus shale play, is shown in the
Applications Section. There are many factors that can com-
plicate and confound this analysis, such as tuning effects of
multiple layers, low SNR in real data, and uncertainty in the
rock physics model. To address these issues on a prototypical
example, a principle components analysis and wavelet deriva-
tion on real data are done in the Appendix C. This includes
stack weight profiles, spectral SNR analysis, and wavelet pro-
files. The uncertainty of the rock physics model is estimated
using reasonably large well-log database from several uncon-
ventional shale plays. First, the SVD analysis is extended to
include the rock physics uncertainty in the Detectability with
rock physics uncertainty Section, and the detectability of the
rock physics parameters ζ and ξ is determined. Second, it is
used to construct a layer-based model of the Marcellus play
with uncertainty (in the Marcellus prototype model Section),
to forward model the synthetic and finally to do a layer-based
Bayesian inversion (Gunning and Glinsky 2004; Chen and
Glinsky 2014) of this model (in the Model based inversion
Section). Very good sensitivity to the ductile fraction is found
in the high TOC (Total Organic Carbon) shale layers. Signifi-
cant additional sensitivity is found by using the “full” PS data,
in addition to the full PP data.

THEORY

Rock physics

We first recognize that we are dealing with a binary mixture
of a ductile member and a brittle member, where the latter

is more structurally competent than the former. We take
inspiration from the floating grain model (Demartini and
Glinsky 2006). This model is based on two fundamental
parameters – the floating grain fraction parameterized
by ξ = f f / f f c and the compaction parameterized by
ζ = 1 − exp(−Pe/P0), where f f is the floating grain fraction,
f f c is the maximum or critical floating grain fraction, Pe is
the effective stress, and P0 is a reference effective stress. The
model respects fluid substitution and leads to local linear
correlations of the form

vp = Avp + Bvp ζ + Cvp ξ ± σvp, (1)

φ = Aφ + Bφ vp + Cφ ξ ± σφ, and (2)

vs = Avs + Bvs vp ± σvs . (3)

The second relationship can be rewritten in two ways, given
ρs and ρ f and the definition ρ ≡ φ ρ f + (1 − φ)ρs , as follows:

φ = φc − φc

nζ

ζ − φc

nξ

ξ, and (4)

ρ = Aρ + Bρ vp + Cρ ξ ± σρ. (5)

Equation (4) identifies the two critical exponents nζ and nξ ,
and the critical porosity φc in the linear expansion as φ/φc → 0
of the following expressions for the critical scalings of ζ and
ξ , respectively:

ζ ∼
(

φc − φ

φc

)nζ

and ξ ∼
(

φc − φ

φc

)nξ

. (6)

Equation (5) is just a convenient expression to compare with
the log data of shales.

For the rocks studied by Demartini and Glinsky (2006),
the regressed values are given by Avp = 1524 m/s, Bvp =
2050 m/s, Cvp = 490 m/s, σvp = 107 m/s, Aφ = 0.592,
Bφ = −1.03 × 10−4 s/m, Cφ = −0.0878, σφ = 0.0093, Avs =
−884 m/s, Bvs = 0.894, σvs = 69 m/s, φc = 0.435, nζ =
2.06, nξ = 3.11, P0 = 8.89 MPa, f f c = 0.09, Aρ = 1.69
g/cc, Bρ = 1.75 × 10−4 (s/m)(g/cc), Cρ = 0.149 g/cc, and σρ =
0.016 g/cc. We have assumed ρs = 2.7 g/cc and ρ f = 1.0 g/cc
in these relationships. Note that φc is the expected percolation
threshold. A very important property of this model is the form
of the vs correlation – it is only a function of vp and does not
involve either ζ or ξ . This means that the rock physics corre-
lates the ρ, vp, and vs values into a plane that is orthogonal
to the vp–vs plane. Characteristic values for the rock physics
parameters are ζ = 0.910 ± 0.012 and ξ = 0.22 ± 0.33.
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Figure 1 Well log data supporting rock physics model. Points are
blocked well-log data coloured according to the ductile fraction fd.
Also shown are the directions of increasing ζ (constant ξ ) as the red
arrow and increasing ξ (constant ζ ) as the green arrow. Values are
normalized according to the equation x̄ = (x − xmin)/(xmax − xmin),
where min vp = 2439 m/s, max vp = 5488 m/s, min vs = 1158 m/s,
max vs = 3354 m/s, min ρ = 2.1 g/cc, and max ρ = 2.8 g/cc. (a) vs -vp

trend in normalized units. Black line is the fit trend, equation (3). (b)
ρ-vp trend in normalized units. Trend lines of constant ξ , equation
(1), are colored according to the value of fd = fdcξ . The two end
members for fully compacted ductile and brittle rocks are shown as
black dots.

When we examine shales from many different wells and
plays, we get the results shown in Fig. 1. It is important to
note the strong linear correlation in the vp–vs plane of Fig. 1a
and the systematic shift in the ρ-vp correlation with the ductile
fraction fd in Fig. 1b. Inspired by the floating grain model, we
generalize ξ to fd/ fdc, where fd is the ductile fraction, and fdc

is the maximum or critical ductile fraction. Given the range of
the data, the line in Fig. 1b shows the variation in the ρ-vp as ξ

goes from 0 to 1 for ζ = 1, and we assume that the minimum
value of vp is 2896 m/s when ζ = ξ = 0. A regression to this
extended rock physics model leads to Avp = 2896 m/s, Bvp =
2591 m/s, Cvp = -1372 m/s, σvp = 107 m/s, Aφ = 0.771, Bφ =
−1.21 × 10−4 s/m, Cφ = −0.1916, σφ = 0.017, Avs = 390 m/s,
Bvs = 0.48, σvs = 66 m/s, φc = 0.421, nζ = 1.34, nξ = 16.4,
fdc = 0.52, Aρ = 1.435 g/cc, Bρ = 2.30 × 10−4 (s/m)(g/cc),
Cρ = 0.364 g/cc, and σρ = 0.032 g/cc. We have assumed ρs =
2.9 g/cc and ρ f = 1.0 g/cc in these relationships. We note that
there was a four-fold decrease in σρ by including the Cρ term in
the regression of the data sets. Note the reasonable value of φc.
The self similarity of the rock structure implied by this model
is validated by neutron scattering experiments (Clarkson et al.

2013), which shows a distinct power law behavior in the pore
size distribution. Characteristic values of the rock physics pa-
rameters are ζ = 0.75 ± 0.07 and ξ = 0.70 ± 0.20. Straight-
forward analysis shows that the capture fraction, as defined
by Demartini and Glinsky (2006), scales as nξ /(nξ − nζ ), is
approximately equal to the reciprocal of this exponent for
states away from the critical point, and is the ratio of the duc-
tile coordination number to the brittle coordination number.
This gives a capture fraction of 92% for this model and 36%
for the floating grain work of Demartini and Glinsky (2006).

We have not explicitly identified the process and
therefore the “activation energy” in the definition of
ζ ≡ 1 − exp(−E/E0). Unlike for the floating grain model,
changes in the composition are not limited to compaction
(there is probably a very large amount of diagenesis and min-
eral substitution for shales), and we did not have information
on what the controlling variables (i.e., effective stress or tem-
perature) were for each of the well-log samples. Practically,
this is not a limitation since we are not trying to estimate the
energy E and that value will be assumed a constant for a strati-
graphic layer in our analysis. With this notwithstanding, there
is a strong possibility that if the compaction and diagenesis are
constant for a stratigraphic interval, the composition variable
would be diagnostic of the organic matter (TOC) to clay ratio.

The relationship for the shift in the ρ versus vp trend,
given equation (5), or equivalently the φ versus vp trend, given
by equation (2), with clay fraction has also been noted by
Han, Nur, and Morgan (1986) and Pervukhina et al. (2013)
in laboratory core data.

Singular value decomposition (SVD) theory

We now move onto understanding the relationships between
the basic rock physics parameters that we wish to know, i.e.,
ξ and ζ , and the geophysical measurements. We do this by
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establishing a sequence of linear transformations, then exam-
ining the important singular value decompositions (SVDs) of
that compound transformation. The singular values will give
an understanding of detectability of the singular vectors (i.e.,
the required SNR). The singular vectors will tell us what views
of the measurement to use and how they are related to the rock
physics.

We start by writing the expression for the measured re-
flectivity in the following linear form

Rm = DMθ (MA(MRP�r + εr ) + εA) + εm, (7)

where Rm is the measured value of R, D is a linear distortion
of the measurement of R, Mθ is the angle matrix, MA is the
geophysical reflection matrix, MRP is the rock physics matrix,
�r is the change in the rock physics parameters, εr is the error
vector in the rock physics relationships, εA is the error vector
in the geophysical forward model, and εm is the error vector
in the measurement of R. For the detailed definitions of these
matrices, see Appendix A. By re-organizing equation (7), we
get

Rm = DMθMAMRP�r + D(MθMAεr + MθεA) + εm (8)

= R0 + εc. (9)

Here R0 are the most likely reflection coefficients, i.e.,

R0 ≡ DMθMAMRP�r, (10)

and εc is combined error in the estimate of the reflection co-
efficients, i.e.,

εc ≡ D(MθMAεr + MθεA) + εm. (11)

Assume that the expected values of the fundamental errors of
εr , εA, and εm are 0; the covariances are given by �r , �A, and
�m respectively; and that εr , εA, and εm are independent and
normally distributed. It follows that expected value εc is 0,
and the covariance is given by

�c =�m+(DMθ )�A(DMθ )T +(DMθMA)�r (DMθMA)T. (12)

In other words, the measurement of the reflection coefficients
is distributed according to a multivariant normal distribution
MVN(R0, �c), with a probability density given by

P(Rm) ∼ exp
{
−1

2
(Rm − R0)T�−1

c (Rm − R0)
}

(13)

With these definitions now in hand, we return to the form
of the distribution for Rm given in equation (13). Since �c is
positive definite, it can be written as

�−1
c = WT

d Wd. (14)

We make two singular value decompositions (SVDs) such
that

WdDMθ = U1�1VT
1 (15)

and

�1VT
1 MAMRP = U2�2VT

2 . (16)

We define �1 and �2 as the square diagnal matrices
formed by dropping the zero rows of �1 and �2, respectively.
We also define U1 and U2 by dropping the corresponding
columns of U1 and U2, respectively.

First of all, write the distribution as

P(Rm) ∼ exp
{
−1

2
(WdRm − WdR0)T(WdRm − WdR0)

}
(17)

∼ exp
{
−1

2
χTχ

}
, (18)

where

χ ≡ WdRm − WdDMθMAMRP�r. (19)

Now make the change of coordinates such that

χ∗ ≡ U
T
2 U

T
1 χ. (20)

Using these definitions, it can be shown that

χTχ = (χ∗)Tχ∗ + H (21)

where H is not a function of �r (thus, it does not affect the
likelihood function of �r) and

χ∗ = U
T
2 (U

T
1 Wd)Rm − �2VT

2 �r (22)

= (�2VT
2 )[�r0 − �r], (23)

where we define

�r0 ≡ (�2VT
2 )−1U

T
2 (U

T
1 Wd)Rm (24)

and let

�−1
�r ≡ (�2VT

2 )T(�2VT
2 ). (25)

Given that Rm is the observed forward-modelled reflection
response of rock properties r1 over r0, such that �r0 = r1 −
r0 and �r = r − r0, the probability of r can be written as
the multivariate normal distribution MVN(�r0, ��r), with a
probability of r given by

P(r) ∼ exp
{
−1

2
(r − r1)�−1

�r (r − r1)
}

. (26)

Let us now make some practical identifications. First,
recognize that U

T
1 Wd transforms Rm into m “stacks”, where
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m is the dimension of the A matrix (either 3, 5, or 6, for
equation (A28), (A29) or (A30), respectively). We will denote
these stacks as Ri so

R̃ ≡

⎛
⎜⎜⎜⎜⎝

R0

R1

...
Rm−1

⎞
⎟⎟⎟⎟⎠ , and �1 =

⎛
⎜⎜⎜⎜⎝

λ0 0 0 0
0 λ1 0 0

0 0
. . . 0

0 0 0 λm−1

⎞
⎟⎟⎟⎟⎠ . (27)

The signal-to-noise ratio (SNR) of the stack Ri is defined as
20 log10 λi , and λi ∼ θ i

m. VT
2 is a 2 × 2 matrix that rotates �r so

that they are orthogonal, i.e., �r̃ = VT
2 �r. Then the m stacks

R̃ are projected by U
T
2 (a 2 × m matrix) onto the two orthog-

onal rock physics directions. The two singular values given by
the diagonal matrix �2 give the uncertainty of the estimates
of the rock physics parameters along the two orthogonal di-
rections in the rock physics space �r̃ defined by VT

2 . One can
directly form the two optimal stacks for estimation of the two
orthogonal rock physics parameters ζ̃ and ξ̃ by U

T
2 U

T
1 Wd.

Many of the current inversion schemes invert for vari-
ous moduli and other elastic parameters such as densities and
Poisson ratios. There have been historical debates on which
of these combinations are best to estimate the fundamental
rock physics parameters that continue to this day. It is our
view that this is an irrelevant debate. The relevant question is
what are the orthogonal stacks of the data covariance matrix
with positive SNR and how are they related to the orthogonal
coordinates of the rock physics. Notwithstanding this point,
there is something to be learned from examining the linear
mapping of the rock physics to contrasts in these traditional
variables and the SVD of that transformation.

We start this analysis with the definition of a reasonably
representative set of traditional parameters that consists of the
shear modulus,

G ≡ ρ v2
s , (28a)

the bulk modulus,

K ≡ ρ v2
p − 4

3
G, (28b)

the Young’s modulus,

E ≡ 9KG
3K + G

, (28c)

the Poisson ratio,

ν ≡ 3K − 2G
2(3K + G)

, (28d)

the vp-to-vs ratio,

rps ≡ vp/vs, (28e)

and the density ρ.
Using equation (A32) and (A27), we write

�rT = MTMRP�r. (29)

Now make the SVD, so that MTMRP = UT�TVT
T. The VT =

V2 that we found before; therefore, we write

U
T
T�rT = �TVT

2 �r = �T�r̃. (30)

The interesting part of this SVD is U
T
T, which is a 2 × 6 matrix

that projects the traditional rock physics contrasts onto two
orthogonal rock physics directions.

APPLICATIONS

Detectability without rock physics uncertainty

This is still abstract at this point. Let us substitute in the rock
physics of the shales given in the latter part of the Rock physics
Section. For now we set the multiplicative distortion D to the
identity matrix and the data covariance �m to a diagonal
constant of 1. We shall return to this in Appendix B. We also
ignore errors in rock physics and in the forward model at this
stage. As a result, we can drop �r and �A in the equations. We
shall return to the implications of rock physics uncertainty on
the detectability of ductile fraction in the Detectability with
rock physics uncertainty Section. The matrix Wd will therefore
be the identity matrix. We set the rock physics composition
to ζ = 0.79 and the geometry to ξ = 0.5. This gives a density
of ρ = 2.59 g/cc, compressional velocity of vp = 4268 m/s, a
shear velocity of vs = 2439 m/s, a vp-to-vs ratio of rps = 1.75,
a Poisson ratio of ν = 0.26, and a porosity of φ = 16%.

For a small maximum angle of θm = 0.5◦, we get the stack
weights U

T
1 shown in Fig. 2. We have shown the results for

the six-term A vector, but the other two are just truncated
versions of this result. It should be noted that this result is
independent of that of the rock physics, i.e., MRP , and the
relationship between the rock physics and the A′s i.e., MA.
In the order of decreasing singular value, or SNR, we have
R0 for the full PP stack, R1 for the “full” PS stack (in quotes
because it is really linearly weighted with θ ), and R2 for the
AVO PP gradient stack (weighted by θ2 so that it is the far
offsets minus the near offsets). The series continues on with
progressively higher θ order weightings of the stacks in an
alternating order between the PP and the PS data. The next
figure (Fig. 3) shows the dependance of the singular values on

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–22
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Figure 2 Stack weights, U
T
1 , as a function of incidence angle θ . First

set is for PP data, followed by the weights for PS data. The maximum
angle θm is 0.5◦.

Figure 3 Singular values λi , as a function of θm.

θm. Note that they scale as λi ∼ θ i
m as expected. Continuing

with the analysis, we show the rotation of �r onto an orthog-
onal system �r̃ in Fig. 4. Note that ζ̃ is mainly the composition
variable ζ , and ξ̃ is mainly the geometry variable ξ . Figure 5
shows the U

T
2 transformation of the stacks R̃ onto the rock

physics variables �r̃. Note that the full PP stack is the main
contribution to the determination of the composition variable
ζ̃ , and the “full” PS stack is the main contribution to the de-
termination of the geometry variable ξ̃ . The AVO PP gradient
stack is of minor contribution to either, but it is more aligned
with ξ̃ and orthogonal to ζ̃ . The fourth-order PP stack R4 is
negligible.

We now increase the maximum angle of incidence to a
typical value of θm = 30◦. The main change is shown in Fig. 6,
which shows the U

T
2 transformation. Although the alignment

of the ζ̃ and the ξ̃ directions stay in the same general direc-
tions, they are starting to rotate in the R0–R1 plane (full PP
and “full” PS), so they are becoming a bit of an admixture of
both. Note that the AVO PP stack R2 and the fourth-order PP
stack R4 still have negligible contribution to both. The reason
for this can be seen in the �1 singular values of the R̃ stacks.

Figure 4 Orthogonal rock physics parameters �r̃ as given by VT
2 .

The second singular value λ1 (of the “full” PS stack) is 10 dB
less than the first singular value λ0 (of the full PP stack). The
singular value of the AVO PP gradient stack λ2 is an additional
12 dB less than that of the “full” PS stack, so that it is 22 dB
less than that of the full PP stack. It should be noted that the
singular value of the fourth-order PP stack λ4 is 43 dB less
than that of the full PP stack. Since the expected SNR of most
seismic data is 10 dB to 20 dB, one can reasonably expect to
reliably estimate the full PP and the “full” PS stack. It is rather
tenuous whether the AVO PP gradient stack can be estimated.
There is little probability that the three-term AVO, as deter-
mined by the fourth-order PP stack, can be estimated reliably.

Finally, we increase the maximum angle to θ = 60◦.
This is representative of very long offset AVO data. The
main change is shown in Fig. 7, which shows the U

T
2

transformation. It shows the same modest rotation in the ζ̃
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Figure 5 Transformation of the stacks onto the rock physics param-
eters U

T
2 for θm = 0.5◦.

and ξ̃ directions as the previous case. The main difference is
that the AVO PP gradient stack contributes almost equally
with the “full” PS stack to the determination of ξ̃ . The reason
for this can be seen in the singular values of �1. The singular
value of the “full” PS, AVO PP gradient stack, and the fourth-
order PP stack are 3 dB, 6 dB, and 20 dB less than the full PP
stack, respectively. It is interesting to examine the compound
transformation U

T
2 U

T
1 that defines the two optimal stacks for

estimation of the two rock physics parameters �r̃. They are
shown in Fig. 8. The optimal stack weights for the composi-
tion ζ̃ are a difference between the full PP stack and the “full”
PS stack. The optimal stack weights for the more important
property, i.e., the geometry ξ̃ , has roughly equal weights for
the “full” PS stack and the far offset PP data.

As we developed earlier, in the theoretical part of the
previous section, there is value in examining the relationship
between the rock physics and more traditional elastic param-
eters U

T
T. For the rock physics characteristic of the Marcel-

lus shale, the results are shown in Fig. 9. All of the moduli,

Figure 6 Transformation of the stacks onto the rock physics param-
eters U

T
2 for θm = 30◦.

whether the bulk, shear, or Young’s molulus (i.e., R, G, or E)
have roughly equivalent ability to discern the composition ζ̃ .
For the geometry ξ̃ however, it is clearly the density ρ, which
is the whole story. However, one will need to estimate one
of the moduli before the secondary variation (secondary sin-
gular value) associated with the density can be understood.
We are not advocating inverting for the density. First of all,
it is an absolute property and not a relative property such
as �ρ/ρ. There are grave technical concerns in inverting for
such absolute quantities because of the need to incorporate
absolute reference values. They are never truly known, and
incorporating them in the results will bring bias to the re-
sults. Second, it is an unnecessary complication to invert for a
meta-parameter and it complicates the incorporation of prior
information. Instead, one should invert directly for ξ from a
limited number of stacks of R̃, where the data covariance is
diagonal and largest. However, this analysis confims some of
the folklore that believes it is density that matters in predicting
the performance of unconventional reservoir fracturing.
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Figure 7 Transformation of the stacks onto the rock physics param-
eters U

T
2 for θm = 60◦.

Figure 8 Optimal stack weights U
T
2 U

T
1 as a function of incidence

angle θ for the determination of rock physics parameters. First set is
for PP data, followed by the weights for PS data. The maximum angle
θm is 60◦.

Detectability with rock physics uncertainty

We now turn our attention to the practical detectability of
the rock properties. To do this, we extend the analysis of
the Detectability without rock physics uncertainty Section to
include the uncertainty in the rock physics εr . We use the
expression for the five-term A vector given in equation (A29),

Figure 9 Relationship between traditional rock physics parameters
and the fundamental rock physics parameters given by U

T
T .

a maximum angle of θm = 60◦, a data error of 1% in reflection
coefficient (RFC) units, and base values for the rock physics
of r1 = (ζ1, ξ1) = (0.65, 0.79) characteristic of the Marcellus
shale to be discussed in the following Marcellus prototype
model Section. The full probability for P(r) of equation (A26)
is shown in Fig. 10. The untruncated width in the ζ̃ direction is
0.06 and is 0.35 in the ξ̃ direction. The rotation of the ellipsoid
is 23◦. The dimensions of the ellipsoid is dominated by the
rock physics uncertainty for a data error of 1% RFC. The data
error becomes as important as the rock physics uncertainty in
determining the dimensions of the ellipsoids, if it is increased
to 3% RFC.

The contribution of each of the terms in the expression
for the reflectivity to the determination of ζ̃ and ξ̃ is shown
in Fig. 11 by the matrix U

T
2 VT

1 . The value of ζ̃ is dominated
by R0(PP) with some contribution from R1(PS). The value of
the important ξ̃ is dominated by R1(PS) and R3(PS). This is
further clarified by examining the marginal and conditional
probabilities for ζ in Fig. 12 and for ξ in Fig. 13. The data that
are used (i.e., PP, PP+AVO, PP+PS, or all data) are controlled
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Figure 10 Probability of r P(ζ, ξ ) as a function of ζ and ξ . The value
of r1 that is forward modeled is shown as the black dot. The principle
directions of the distribution are shown as the black arrows.

Figure 11 Contribution of each of the stacks to the determination
of the principle directions of P(ζ, ξ ). Display of the elements of the
matrix U

T
2 VT

1 .

Figure 12 (a) Marginal and (b) conditional probabilities of ζ derived
from P(ζ, ξ ). The true values of ζ1 = 0.65 are shown as black lines.
The distribution using the PP data is shown as the magenta line, the
PP+AVO data as the yellow line, the PP+PS data as the green line,
and all the data as the blue line.

by manipulation of the data covariance �m (setting the error
to a large value for the data to be excluded). For use of the PP
data only, an angle up to θm = 6◦ is used for the PP data. The
marginal probability for ζ is well determined with a standard
deviation of about 0.11 for all data sets, but a bias of −0.15
is removed by including the PS data (the standard deviation
is also modestly reduced from 0.13 to 0.11). The conditional
probability is well determined for all data sets with a standard
deviation of 0.06. The marginal probability for ξ is determined
with a standard deviation of 0.23, only with the addition of
PS data. The conditional probability is well determined for all
data types with a modest decrease in the standard deviation
from 0.14 to 0.12 with the addition of PS data.

The optimal stack weights for estimation of ζ̃ and ξ̃ , i.e.,
U

T
2 U

T
1 Wd, are very similar to those shown in Fig. 8. The first

set of weights, that estimate ζ̃ , are roughly a full PP plus a
“full” PS stack. The second set of weights, which estimates ξ̃ ,
is a combination of the far offset PS and far offset PP data.

The detectability of the second principle direction ξ̃ is
reduced as the maximum angle is decreased to 45◦, with very
little discrimination remaining for maximum offset angles less
than 30◦. The implication is that one can not simultaneously
determine ζ and ξ , when the incident angle is under 30◦. In
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Figure 13 (a) Marginal and (b) conditional probabilities of ξ derived
from P(ζ, ξ ). The true values of ξ1 = 0.79 are shown as black lines.
The distribution using the PP data is shown as the magenta line, the
PP+AVO data as the yellow line, the PP+PS data as the green line,
and all the data as the blue line.

order to determine ξ for a small maximum offset angle, the
value of ζ must be well constrained. The value of the PS data,
in this case, is reduced because the second principle direction
is not needed. However, the value of PS data can be preserved
in a multiple layer inversion, at more modest maximum offset
angles, as will be demonstrated in the Model based inversion
Section.

Marcellus prototype model

In order to test the practicality of determining the ductile frac-
tion fd = fdc ξ and other quantities of interest for an uncon-
ventional shale petroleum reservoir, a prototype model of the
Marcellus play is constructed. A typical stratigraphic cross
section is shown in Fig. 14. Note that the lower Marcellus
shale is the primary interval of interest. Typical values of ρ,
vp, and vs are shown in Fig. 15. Reference lines of the trends
in equations (1) and (3) are displayed versus these typical val-
ues. The ρ and vp values are transformed using equations (1)
and (5) to give typical ζ and ξ for each layer with the results
shown in Fig. 16. Note that the limestones have ξ ≈ 0, and the
marls have ξ ≈ 0.2. There are two types of shales. One type

Figure 14 Typical stratigraphic cross section of Marcellus shale play.
Shown are two major stratigraphic cycles and one minor cycle.

Figure 15 Typical values of ρ, vp, and vs for the Marcellus shale
play. Values are normalized according to the equation x̄ = (x −
xmin)/(xmax − xmin), where min vp = 2439 m/s, max vp = 5489 m/s,
min vs = 1158 m/s, max vs = 3354 m/s, min ρ = 2.1 g/cc, and
max ρ = 2.8 g/cc. (a) vs -vp values in normalized units. Purple line
is the fit trend, equation (3). (b) ρ-vp values in normalized units.
Trend lines of constant ξ , equation (1), are coloured and labelled
according to the value of ξ .
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Figure 16 Typical values of ζ and ξ for the Marcellus shale play.

Figure 17 Stratigraphic cross sections with typical values of ζ (i.e.,
lithology) and ξ (i.e., compaction, diagenesis, or mineral substitution)
for the Marcellus shale play.

has ξ ≈ 0.5, and the other type, the high TOC “frackable”
target shales, has ξ ≈ 0.7. The resulting models for ζ and
ξ (where ξ indicates lithology, and ζ indicates compaction,
diagenesis, or mineral substitution) are shown in Fig. 17. This
is consistent with our earlier identification of ζ with composi-
tion and ξ with geometry. Three simplified models, two with
two layers, and one with three layers, are shown in Fig. 18.
They are constructed to build up to the full model in Fig. 17 in
a systematic way. We will first determine what can be learned
from the RFC from the bottom and the top of the target layers

Figure 18 Three simplified models of the Marcellus shale play: (a)
high TOC shale on top of a limestone, (b) low TOC shale on top of a
high TOC shale, (c) a three layer model of a high TOC shale between
a limestone and a low TOC shale.

in Figs. 18a, b. The third model (Fig. 18c) adds the additional
information of layer times and the accompanying tuning ef-
fects. This is a closer examination of the bottom three layers
of the model shown in Fig. 14.

The work of Kohli and Zoback (2013) has shown a
strong connection between the ductile fraction and the effi-
ciency of hydraulic fracturing. For this reason, the main focus
will be determining the ductile fraction from the converted
wave (i.e., cwave or joint PP and PS) surface imaging of the
models of Figs. 14 and 18.

It is helpful to understand the geology behind this stratig-
raphy (Sageman et al. 2003). The Marcellus shale and its
accompanying stratigraphy was formed in the Devonian time
during the tectonic plate collision that formed the Appalachian
mountains. The deposition was more specifically associated
with the foreland basin caused by the isostatic compensa-
tion of the thick crust associated with the collision and uplift.
When there was a reduction in the subduction, the sedimenta-
tion into the foreland basin was reduced, and the basin became
shallow enough to be favorable to carbonate formation. The
result was the limestones in the stratigraphic section. When
the orogeny recommenced, the basin deepened, but there was
a delay in the resumption of the erosion of the mountains
and an increase in the sediment load into the foreland basin.
This created a good environment for the formation of shales
high in organic content. As time progressed, the sediment load
resumed, increasing the silt in the shale and lowering its or-
ganic content and ductile fraction. This sequence is repeated
twice in a significant way in this section and once in a more
minor cycle (see the orogeny curve in Fig. 14).

Model-based inversion

It seems difficult to determine the ductile fraction using data
with modest maximum angles of incidence θm for simple
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Figure 19 Probability distribution of ξ in the overlying shale layer
of the two-layer model shown in Fig. 18a. The value of ξ1 forward
modelled is shown as the black vertical line. The distribution before
the use of any seismic data is shown as the black line, after using the
PP data is shown as the red line, after using the PP+AVO data as the
green line, after using the PP+PS data as the blue line, and after using
all the data as the cyan line.

two-layer models, as discussed in the Detectability with rock
physics uncertainty Section, and also difficult to evaluate
the angle-dependent wavelet effects with the associated an-
gle dependent tuning. The complex model described in the
previous Marcellus prototype model Section gives an oppor-
tunity to still be successful. There are advantages introduced
by the extra data associated with the multiple reflectors (times
and reflection strengths), multiple stacks, differential tuning of
the different stack bandwidths, and rich prior model assump-
tions both on the rock physics and on the structure. To demon-
strate these advantages, a Bayesian model-based inversion
(Gunning and Glinsky 2004; Chen and Glinsky 2014) is done.

To test these ideas, a realistic synthetic seismic forward
model of the two layer model of Fig. 18a, and the ten layer
model of Fig. 17 is made. The ductile fraction rock physics
model of equation (1), equation (3) and equation (5) is used.
Uncertainties are assumed to be 25 m on the thicknesses, 3 ms
on PP times for the bright reflectors, and 8 ms on PP times for
the dim reflectors. No uncertainty in ζ is used although the
results are relatively unchanged for uncertainty in ζ less than
0.15. The uncertainty in the ξ value is set to 0.20 except for the
limestone layers, which are assumed to have no uncertainty
in ξ . The noise on the data stacks is assumed to be 1% RFC
with a maximum offset angle of θm = 45◦.

The results for the two-layer model are shown in Fig.
19, which displays the probability distribution of ξ , i.e.,
P(ξ ), for the overlying shale layer. Note the significant up-
date to the distribution for each seismic data type used and

Figure 20 Probability distribution of ξ in the (a) Geneseo shale and
(b) lower Marcellus shale of the ten-layer model shown in Fig. 17.
The value of ξ1 forward modelled is shown as the black vertical line.
The distribution before the use of any seismic data is shown as the
black line, after using the PP data is shown as the red line, after using
the PP+AVO data as the green line, after using the PP+PS data as the
blue line, and after using all the data as the cyan line.

the very modest improvement with the addition of PS data.
Both are consistent with the theoretical result of Fig. 13b. The
results become interesting with the additional complexity and
information of the ten-layer model. Fig. 20 shows the es-
timated probability of ductile fraction P(ξ ) in the Geneseo
shale and the lower Marcellus shale. They represent two situ-
ations, one having priors consistent with data (Fig. 20a) and
the other having biased priors (Fig. 20b). For the Geneseo
layer, without using PS data, the estimated distributions (red
and green curves) are bimodal. However, the inclusion of PS
data (blue and cyan curves) significantly improves the esti-
mate of ductile fraction, and the unique modes of the posterior
distributions correspond to the true value. For the lower Mar-
cellus layer, where the prior is biased to a high value (i.e., ξ =
1.0), the use of seismic data generally shifts the distributions
towards to the true value, and the inclusion of PS data shifts
them much more. The result for the probability distribution
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Figure 21 Probability distribution of ζ in the lower Marcellus shale
of the ten-layer model shown in Fig. 17. The value of ζ1 forward
modelled is shown as the black vertical line. The distribution before
the use of any seismic data is shown as the black line, after using the
PP data is shown as the red line, after using the PP+AVO data as the
green line, after using the PP+PS data as the blue line, and after using
all the data as the cyan line.

of ζ P(ζ ) is shown in Fig. 21. For the lower Marcellus shale,
the distribution has a single mode that is moved closer to the
true value with the inclusion of the seismic data. There is no
improvement by including the AVO or PS data, as expected.

CONCLUSIONS

The purpose of this paper was to establish the underlying fun-
damentals of quantitative interpretation for unconventional
shale reservoirs. This started with the understanding that it is
the ductile fraction that controls the geomechancial balance
between the rocky road joint friction of the fractures and the
viscous joint friction. While this geomechanics was not the
subject of this paper, others Zoback et al. (2012); Kohli and
Zoback (2013) have found sensitive dependence of the dy-
namic friction on the ductile fraction, resulting to a dramatic
change in the fracturing efficiency.

Inspired by this geomechanical observation, we devel-
oped and verified, at the mesoscopic level, a rock physics
model where the three isotropic elastic properties are only a
function of two parameters, i.e., the scaled ductile fraction
ξ = fd/ fdc, and a composition variable ζ = 1 − exp (−E/E0),
which captures compaction, diagenesis, and mineral sub-
stitution effects. The first variable captures changes in the
geometric microstructure, i.e., how efficient the rock matrix is
in supporting stress – modulus per mass or coordination num-
ber. The second variable captures the compositional proper-
ties of the matrix. It is practically useful that there are only

two parameters and that one of them is directly related to the
ductile fraction – the critical parameter for the geomechanics.

The next important question that we answered is
how this geometry parameter ξ manifests itself in surface
reflection seismic data. The equations relating the rock physics
to the reflectivity were all linearized, and an SVD analysis was
done to answer this question. The SVD analysis relates the or-
thogonal components of the seismic reflection data, directly
to the fundamental rock properties. The leading order singu-
lar value was primarily related to the full PP stack and the
composition ζ . The next order singular value was primar-
ily related to the “full” PS stack and the geometry variable
ξ = fd/ fdc. For reasonable angles of reflection, the higher or-
der stacks, which include the AVO PP gradient stack, all have
small SNRs, which would make them hard, if not impossible,
to detect. If the angles of incidence could be extended to 60◦

or more, the AVO PP gradient stack could be substituted for
the “full” PS stack because its singular value becomes roughly
equal. We wish to emphasize that this is not a three-term AVO
analysis to detemine ρ, vp, and vs . It is only a two-term anal-
ysis for the two rock physics parameters. Because the rock
physics only has two parameters, using three stacks creates an
over determined system. While using the three stacks would
improve the estimates of those two parameters, the third stack
is not necessary.

The conclusion is that the PP full stack and the PS “full”
(linear weighted with θ or offset) stacks are optimal in the es-
timation of ζ and ξ , respectively. They are of zeroth and first
order in θ , respectively. Conventional AVO “gradient” stacks
and large-angle PP response conventionally used to estimate
density are of higher order in θ (second and fourth order,
respectively). It should be noted that these stacks are aver-
age reflectivities or relative quantities. Linear combinations of
these two important stacks (normally just the full PP stack for
ζ and the “full” PS stack for ξ ) are the best “attributes”.

A further analysis was done to relate the two fun-
damental rock physics parameters to traditional elastic
parameters. It was found that the composition ζ is primarily
related to the moduli (bulk, shear, or Young’s), and the
geometry ξ = fd/ fdc is primarily related to the density. This
is consistent with the common wisdom of the density being
needed to predict fracability.

There are two other practical findings of this analysis (as
shown in Appendix A). The first is that effective wavelets (for
each stack) can be used for the first three stacks (i.e., full PP,
“full” PS, and AVO PP gradients). This is because corrections
to these wavelets would be of higher order (fourth order in θm,
compared with the second order accuracy of the reflectivity
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calculation). Second, the effect of scale can be captured in
renormalization constants that are absorbed into the wavelet
normalizations and the effective angle of incidence. These
practical findings enable a wavelet derivation process that
finds a separate wavelet for each stack and a constant that
relates the effective angle of incidence to the true angle of
incidence.

The conclusion is that the geophysical forward model is
a good approximation for θ → 1, does not change in form as
a function of scale, and allows separation of the wavelet from
the reflectivity analysis.

The effect of noise that is a function of the angle of inci-
dence and distortions to the data that are functions of angle of
incidence were shown to be corrected by modification of the
stack weights (as shown in Appendix B). These weights can be
conveniently derived from real data by principle component
analysis on the real data. The result is the taper at small and
large offsets, and an offset-dependent scalar being applied to
the data. This analysis gives theoretical justification to com-
mon practices that have been done for more practical reasons.

The final portion of this work focused on the practical
application of the theory to both synthetic and to real data.
First, the result of determining the stack weights via a princi-
pal components analysis on real data was shown. The results
support the analytic work and the conclusions of that work.
The preliminary SVD analysis was then extended to include
rock physics uncertainty and to understand the detectability of
ductile fraction. The results support a detectability of ductile
fraction using PS data or large offset PP data.

Finally, a set of synthetic models were constructed
that are a realistic reproduction of the stratigraphy and
rock physics of the Marcellus shale play. These models
included uncertainty in the rock physics, angle-dependent
wavelet effects, seismic noise, and complex model reflection
interference. Both problems induced by these complexities
were studied as well as the advantages introduced by multiple
extra data associated with the multiple reflectors (times and
reflection strength), multiple stacks, differential tuning of the
different stack bandwidths, and prior model assumptions. The
results confirmed the significant value of multi-component
Bayesian inversion (including PS data) and the feasibility of
the detection of ductile fraction of the objective shales.
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APPENDIX A

GEOPHYSICAL FOR WA R D MODEL

This appendix develops an understanding of both the P-
to-P, (RP P ), and the P-to-S, (RPS), reflection responses for an
isotropic medium. This novel expansion and simplification of
the geophysical model facilitates the SVD analysis. The form
of the geophysical model enables clear identification of the
eigenvalues according to their θ order and a clear interpreta-
tion of the eigenvectors of the seismic data as the well-known
full PP, “full” PS, and AVO PP “gradient” stacks. The map-
ping of the eigenvectors of the data to the fundamental rock
physics parameters is also clear and simple. Although it may
seem that the truncation of the expansion limits the forward
model to θ 
 1, it is not the case. First of all, the more well-
known starting expressions that are the result of the eikonal
and weak scattering approximations, i.e., equations (A1)
and (A2), break down as θ → 1. Another manifestation of
the pathology of the starting expressions for the geophysical
forward model is the inability to renormalize them (averaging
the equations at different scale while keeping the form of the

equations the same). Physics can not change depending on the
scale that it is measured. To correct the pathology, the theory
is formally truncated at second order, and renormalization
coefficients are introduced that are essentially changes in
PP wavelet amplitude, PS wavelet amplitude, and effective
incident angle as a function of scale. This theory is well
known to be renormalizable. A practical implication and a
manifestation of the healthy behavior of this truncated theory
is that it can be shown to closely match the full-wave solution
at all scales with a suitable choice of the renormalization
coefficients as a function of scale. Second, the health of the
theory is manifested in the fact that, before the truncation to
second order, the constants in front of the θ expansion terms
are asymptotically convergent. So although θ → 1, the terms
in the Taylor expansion still converge asymptotically. Third,
the truncated geophysical model allows us to conveniently
derive the separate wavelets and renormalization constants
by a conventional wavelet derivation process Gunning
and Glinsky (2006) using the well logs and corresponding
measured seismic data – it allows us to separate the wavelet
from the reflectivity analysis to second order in θ .

We start by assuming weak scattering and make
both the further assumptions of small contrast (that is,
�ρ/ρ,�vp/vp, and �vs/vs 
 1) and plane waves (eikonal
approximation). The latter is a rather complicated assump-
tion on both the frequency and angle of incidence θ . We shall
return to this later in this Appendix. The expressions (Shaw
and Sen 2004) for the reflection response will be linear in the
contrasts due to the first approximation, with coefficients that
are functions of the angle of incidence θ and the ratio of the
velocities rsp ≡ vs/vp:

RP P = 1
2

(
�ρ

ρ
+ �vp

vp

)

+
(

−2 r2
sp

�ρ

ρ
+ 1

2

�vp

vp
− 4 r2

sp
�vs

vs

)
sin2 θ

+1
2

�vp

vp
sin2 θ tan2 θ, (A1)

RPS = − sin θ

cos θPS

[
1
2

�ρ

ρ
+

(
�ρ

ρ
+ 2

�vs

vs

)
(
rsp cos θ cos θPS − r2

sp sin2 θ
)]

, (A2)

where θPS is the reflected angle of the S wave. Making use of
Snell’s law:

sin θPS

vs
= sin θ

vp
, (A3)
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some basic trigonometric identities and combining terms of
common order in sin θ , we can write the reflectivities as:

RP P = 1
2

(
�ρ

ρ
+ �vp

vp

)

+
(

−2 r2
sp

�ρ

ρ
+ 1

2

�vp

vp
− 4 r2

sp
�vs

vs

)
sin2 θ

+1
2

�vp

vp

sin4 θ

cos2 θ
, (A4)

RPS =
[(

−1
2

− rsp

)
�ρ

ρ
− 2 rsp

�vs

vs

]
sin θ√

1 − (rsp sin θ )2

+
[

rsp

2
(1 + rsp)2 �ρ

ρ
+rsp(1+rsp)2 �vs

vs

]
sin3 θ√

1 − (rsp sin θ )2

+
(

rsp
�ρ

ρ
+ 2rsp

�vs

vs

)⎡
⎣1 − cos θ

√
1 − (rsp sin θ )2

sin2 θ

−1
2

(1 + r2
sp)

]
sin3 θ√

1 − (rsp sin θ )2
.

(A5)

Expanding to the fourth order in θ leads to the expressions

RP P = 1
2

(
�ρ

ρ
+ �vp

vp

)

+
(

−2 r2
sp

�ρ

ρ
+ 1

2

�vp

vp
− 4 r2

sp
�vs

vs

)
θ2

+
(

2
3

r2
sp

�ρ

ρ
+ 1

3

�vp

vp
+ 4

3
r2

sp
�vs

vs

)
θ4 + O(θ6), (A6)

RPS =
[(

−1
2

− rsp

)
�ρ

ρ
− 2 rsp

�vs

vs

]
θ

+
[(

1
12

+ 2
3

rsp + 3
4

r2
sp

)
�ρ

ρ

+
(

4
3

rsp + 2 r2
sp

)
�vs

vs

]
θ3 + O(θ5). (A7)

We have been careful to write these expressions in
a bilinear form in terms of the small contrast (i.e.,
�ρ/ρ, �vp/vp, �vs/vs) and the angle of incidence (i.e., sinn θ

or θ ). This will facilitate the SVD analysis. Note that the co-
efficients of this bilinear transformation are only functions of
the dimensionless parameter, rsp.

Before we continue our analysis, we take a closer look at
the plane wave (or eikonal) portion of the weak scattering (or
Born) approximation. This is a quite non-trivial assumption

that puts an upper limit on the validity of the θ , given by the
condition that the dimensionless scale of the perturbation

λ

T cos θ
≡ s 
 1, (A8)

where λ is the wavelength of the wave and T is the scale of the
gradient or the thickness of the layer. The problem is that this
can never be satisfied because there is no well defined scale
for the medium. The question now becomes: how does the
expression for RP P and RPS (which we now call

R ≡ (RP P ; RPS) (A9)

collectively), given in the expansions of equation (A6) and
equation (A8), average as a function of dimensionless scale,
s? We now evoke well-known theoretical physics concepts of
renormalization (Maggiore 2010), to recognize that we need
to expand in scale about the “ground state” harmonic oscil-
lator. We introduce three running coupling constants a0(s),
a1(s), and a2(s) and define the coefficients of the reflectivity,
ordered by θn as

A0(�c) = 1
2

(
�ρ

ρ
+ �vp

vp

)
, (A10)

A1(�c) = −
(

1
2

+ rsp

)
�ρ

ρ
− 2 rsp

�vs

vs
, (A11)

A2(�c) = −2 r2
sp

�ρ

ρ
+ 1

2

�vp

vp
− 4 r2

sp
�vs

vs
, (A12)

where the small contrasts �c ≡ (�ρ/ρ,�vp/vp,�vs/vs) are
taken at the same reference scale s. The reflectivity at a scale
s, can now be written as

R = [a0 A0 + a2 A2θ
2; a1 A1θ ]. (A13)

Another way of looking at this is a redefinition of in-
cidence angle θ ≡ θ

√
a2/a0 and reflection coefficient R ≡

[RP P/a0; RPS/(a1

√
a0/a2)] so that

R = [A0 + A2θ
2
; A1θ ]. (A14)

The relationship between these expressions is just that
of dressed to undressed fields. In the case that there is a
well-defined scale and θ is small enough, a0 = a1 = a2 = 1.
Otherwise, one must calculate the running coupling constants
for the scale of interest using a characteristic well log of the
isotropic elastic properties and a forward wave solution with
a wavelet of scale λ.
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Recognizing that we will be truncating the expansion at
the second order in θ , we now develop a convenient approx-
imation to the forward model of a spike convolution, i.e.,

R(θ ; t) =
∑

k

R(θ ; �ck) W(θ ; t − tk), (A15)

where W(θ ; t) is a given angle-dependent wavelet and the
summation is over the {k} contrasts or interfaces. The problem
with this expression is the θ dependence of the wavelet. We
would like to eliminate it and replace it by average wavelets.
To this end, we now decompose R(θ ; �c) according to its θ de-
pendence. Given the simple form of equations (A6) and (A8), it
would have three singular values λi and singular vectors ξi (θ ).
For a more general expansion as given in equations, (A4) and
(A5), it would have more singular values, λi ∼ O(θ i

m), where
θm is the maximum angle of incidence. This structure was an-
alyzed in more detail in the Detectability without rock physics
uncertainty Section. For now, we just project R(θ ; t) onto this
basis

Ri (t) ≡
∫

ξi (θ ) R(θ ; t) dθ, (A16)

and define

Wi (t) ≡
∫

ξi (θ ) W(θ ; t) dθ, (A17)

�Wi (θ ; t) ≡ W(θ ; t) − Wi (t), (A18)

Ri (�c) ≡
∫

ξi (θ ) R(θ ; �c) dθ, (A19)

�Ri (θ ; �c) ≡ R(θ ; �c) − Ri (�c). (A20)

Remember that to second order

R(θ ; �c)= [a0 A0(�c)+a2 A2(�c)θ2; a1 A1(�c)θ ]+O(θ3).(A21)

Recognizing that∫
ξi (θ ) �Wi (θ ; t) dθ =

∫
ξi (θ ) �Ri (θ ; t) dθ = 0 (A22)

and that �Wi and �Ri are of second order in θ2, we find that

Ri (t) =
∑

k

∫
dθ ξi (θ ) [Ri (�ck) + �Ri (θ ; �ck)]

[Wi (t − tk) + �Wi (θ ; t − tk)]
(A23)

=
∑

k

[
Ri (�ck) Wi (t − tk)

+
∫

dθ ξi (θ ) �Ri (θ ; �ck) �Wi (θ ; t − tk)
] (A24)

=
∑

k

Ri (�ck) Wi (t − tk) + O(θ4
m). (A25)

This is an extremely convenient result. What it allows us to
do is to calculate an effective wavelet Wi (t) for each weighted
stack Ri (t). We can then form a simple spike convolution
forward model using the singular vectors of the reflectivity
Ri (�c) for each stack. The order of Ri (�c) will be θ i

m. We will
therefore be able to use this separation of R and W up to the
third order in Ri (�c).

For the analysis of of the probability distributions, it is
convenient to write the expression for the reflection coeffi-
cients R0 as a compound linear transformation, as shown in
equation (10), and explicitly calculate the rock physics covari-
ance matrix �r . First of all the expression for R0 contains the
product of matrices where

�r ≡
(

dζ

dξ

)
, �c ≡

⎛
⎜⎜⎜⎝

�ρ

ρ

�vp
vp

�vs
vs

⎞
⎟⎟⎟⎠ , A ≡

⎛
⎜⎜⎜⎜⎝

A0

A1

A2

...

⎞
⎟⎟⎟⎟⎠ ,

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

RP P (θ = 0)
...

RP P (θm)
RPS(θ = 0)

...
RPS(θm)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A26)

R = Mθ A, A = MA �c, �c = MRP �r, and

MRP =

⎛
⎜⎜⎜⎝

Bρ Bvp
ρ

BρCvp+Cρ

ρ

Bvp
vp

Cvp
vp(

Bvs
rsp

)
Bvp
vp

(
Bvs
rsp

)
Cvp
vp

⎞
⎟⎟⎟⎠ . (A27)

All of the important physics is contained in the renormal-
ized, second order in θm, three-term expressions. For this
case,
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Mθ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 (�θ )2

1 0 (2�θ )2

...
...

...
1 0 [(N − 2)�θ ]2

1 0 θ2
m

0 0 0
0 �θ 0
0 2�θ 0
...

...
...

0 (N − 2)�θ 0
0 θm 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

MA =

⎛
⎜⎜⎝

1
2

1
2 0

− 1
2 − rsp 0 −2rsp

−2r2
sp

1
2 −4r2

sp

⎞
⎟⎟⎠ , (A28)

here �θ ≡ θm/(N − 1). It can be extended to the fourth-order
(5 term) in θm to give

Mθ =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 0 (�θ )2 0 (�θ )4

1 0 (2�θ )2 0 (2�θ )4

...
...

...
...

...
1 0 [(N − 2)�θ ]2 0 [(N − 2)�θ ]4

1 0 θ2
m 0 θ4

m

0 0 0 0 0
0 �θ 0 (�θ )3 0
0 2�θ 0 (2�θ )3 0
...

...
...

...
...

0 (N − 2)�θ 0 [(N − 2)�θ ]3 0
0 θm 0 θ3

m 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

MA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0

− 1
2 − rsp 0 −2rsp

−2r2
sp

1
2 −4r2

sp

1
12 + 2

3 rsp + 3
4 r2

sp 0 4
3 rsp + 2r2

sp

2
3 r2

sp
1
3

4
3 r2

sp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A29)

We can also give a large θm version extended to the fifth order
(six term) in sin θm

MT
θ =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 sin θ√

1−(rsp sin θ)2

sin2 θ 0

0 sin3 θ√
1−(rsp sin θ)2

sin4 θ

cos2 θ
0

0
[

1−cos θ
√

1−(rsp sin θ)2

sin2 θ
− 1

2 (1 + r2
sp)

]
sin3 θ√

1−(rsp sin θ)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

MA =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0

− 1
2 − rsp 0 −2rsp

−2r2
sp

1
2 −4r2

sp
rsp
2 (1 + rsp)2 0 rsp(1 + rsp)2

0 1
2 0

rsp 0 2rsp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A30)

Each block of the MT
θ matrix is an 1 × N matrix with an

element for each discrete θ between 0 and θm.
We do note the degeneracy in the MA matrix for rsp = 0

and 1/2. This only reduces the rank of MA to 2 at rsp = 1/2.
Since �r is only of dimension 2, there is no loss of sensitivity
of R to �r.

Using equations (1), (3) and (5), the form of the rock
physics covariance can be shown to be

�r

2
=

⎛
⎜⎜⎜⎜⎝

σ2
ρ +B2

ρ σ2
vp

ρ2

Bρ

ρvρ
σ 2

vp
Bρ Bvs
ρvs

σ 2
vp

Bρ

ρvp
σ 2

vp
σ2
vp

v2
p

Bvs
vpvs

σ 2
vp

Bρ Bvs
ρvs

σ 2
vp

Bvs
vpvs

σ 2
vp

σ2
vs+B2

vsσ
2
vp

v2
s

⎞
⎟⎟⎟⎟⎠ . (A31)

Finally we move on to writing the matrix equations for
the geophysical rock properties. The relationship between the
geophysical rock properties and �c is linearized so that

�rT = MT�c, (A32)

where

�rT ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�K
K

�G
G

�E
E

�rps
rps

r2
ps �ν

�ρ

ρ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and (A33)
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MT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 6
4r2

sp−3

8r2
sp

4r2
sp−3

1 0 2

1
2r2

sp

(rsp−1)(rsp+1)
(
4r2

sp−3
) 2

(
2r2

sp−3
)(

2r2
sp−1

)
(rsp−1)(rsp+1)

(
4r2

sp−3
)

0 1 −1
0 1

(rsp−1)2(rsp+1)2
− 1

(rsp−1)2(rsp+1)2

1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A34)

This linear relationship is singular for rsp = 1 and
√

3/4. It is
constructed to have a well defined limit at rsp = 0 of

MT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0
1 0 2
1 −2 4
0 1 −1
0 1 −1
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A35)

which shows that the moduli (bulk, shear, and Youngs) are
mixtures of the density and the velocities, the Poisson ratio
and the vp to vs ratio are both similar quantities showing cor-
relation in vp to vs , and the density is modestly perpendicular
to the moduli. These facts are useful in understanding the re-
sults shown in Fig. 9 in the Detectability without rock physics
uncertainty Section.

APPENDIX B

NOISE AND D AT A DI ST OR T I ON E FFECT
O N S T A C K W E I G H T S

This appendix examines how noise and systematic data
distortions will modify what the optimal stack weights will
be. In practice, these weights are determined by a principal
components analysis of the seismic data. The renormaliza-
tion constants ai (s), the averaged wavelets Wi (t), and the data
covariance matrix �m, are also determined by the wavelet
derivation process (Gunning and Glinsky 2006) at a well loca-
tion. All of these parameters are estimated by a minimization
of synthetic seismic mismatch with an additional estimate of
the uncertainty in this minimalization. What we wish to show
by this study are reasons for the deviation of the optimal
stack weights from the theoretical ones shown earlier in the
Detectability without rock physics uncertainty Section.

We start by showing the effect of having more noise on
both the near and far offsets. The nominal SNR is chosen
to be 25 dB. For simplicity, we have used the three-term
expression for Mθ and MA given in equation (A28). A
diagonal form of Wd is chosen with the diagonal elements
shown in Fig. B1a. The effect on the stack weights U

T
1 Wd

Figure B1 Effect of angle-dependent noise on stack weights. (a) More
noise is assumed on the near and far offsets as shown by the SNR
Wd as a function of angle. (b) Stack weights U

T
1 Wd as a function of

incident angle θ for the PP and PS data.

Figure B2 Effect of angle-dependent distortion on stack weights, with
a constant SNR. (a) “Hot nears” such that the near offset traces are
artificially enhanced is shown by the offset dependent distortion Dii as

a function of angle. (b) Stack weights U
T
1 Wd as a function of incident

angle θ for the PP and PS data.

are shown in Fig. B1b. They display a common taper that
is traditionally applied to weighted stacks at small and large
offsets. This analysis gives a possible physical origin for such a
taper. Such tapers are also found by the principal components
analysis discussed in the previous paragraph and the analysis
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Figure B3 Effect of angle-dependent distortion on stack weights,
which is applied after the noise. Angle-dependent distortion is the
same as that in Fig. B2. (a) SNR as a function of angle. (b) Stack
weights U

T
1 Wd as a function of incident angle θ for the PP and PS

data.

to be shown in Appendix C. The singular values of the stacks
�1 are 23 dB, 12 dB, and -2 dB for the the full PP, “full” PS,
and the AVO PP gradient stacks, respectively. The same SNR
was assumed for both the PP and PS stacks. If the SNR was
smaller for the PS. it would only change the relative weight
of the PS reflectivity, not the shape of the weights.

We now simulate another common data non-ideality –
“hot nears”, which is an offset-dependent distortion diagonal
D, such that the near offset traces are artificially enhanced
(see Fig. B2a). If the SNR after this distortion is a constant
25 dB, the stack weights U

T
1 Wd are shown in Figure B2b.

The effect is counterintuitive. Since the far offsets have been
multiplied by a smaller number, one might expect them to
have a larger weight in the stack to compensate. Instead, they
have a smaller weight. This is because they have a decreased
amount of signal with the same noise. Hence, the effective
SNR is less, and hence the weight is less. The SNR for the
three stacks are 25 dB, 9 dB, and -3 dB, respectively.

Next we assume the same “hot nears” of the previous
case, but now we assume that the offset-dependent scalar
is applied after the noise so that the noise level is decreased
along with signal. We limit the SNR to 40 dB. The same
offset-dependent weights shown in Fig. B2a are used. The
SNR is modified from a constant 25 dB to that shown in Fig.

B3a. The stack weights U
T
1 Wd for this case are shown in Fig.

B3b. This result is much more intuitive. The larger offsets are
weighted more to compensate for the smaller multiplicative
constant. This results in the SNR of the second and third
stacks to be increased. The resulting SNRs are 24 dB, 13 dB,
and 1 dB, respectively.

APPENDIX C

PRINCIPAL C OMPONENT ANALYSIS OF
S T A C K W E I G H T S OF R E A L D A T A

The results of the Detectability without rock physics
uncertainty Section demonstrated what the theoretical stack
weights should be and Appendix B demonstrated how

Figure C1 Results of principal components analysis on real data. (a)
Eigenvalues displayed in power. Shown as the dotted line is the noise
level as estimated from the form of the eigenvectors. (b) three leading
eigenvectors.
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angle-dependent noise and angle-dependent distortions would
affect those weights. Practically, this can be determined from
the data. For some real data characteristic of an unconven-
tional shale petroleum reservoir, such an analysis was done
on PP data.

A standard principle components analysis was done on
the covariance matrix constructed from 12 separate samples
of an angle gather. Each sample has a basis of 40 angles (0 to
40◦). The covariance matrix is 40 × 40, and it characterizes at
the variance structure of the amplitudes for the 40 angles esti-
mated from our 12 samples. The eigenvalues and eigenvectors
of the covariance matrix are calculated numerically for this
square symmetric matrix. The eigenvalues, or principle com-
ponents, are proportional to the variance of data associated
with the respective eigenvectors.

The results of this analysis are shown in Fig. C1. The
first eigenvector (labelled as R0 in Fig. C1b) is smaller than
expected for small angles (it should be a constant). As we
have shown in the previous section, this could be because
the data have more noise at small angles or because of “hot
nears” as displayed in Figs. B1 and B3, respectively. We do

not know which of these two is the true cause, but we do not
need to know. We just need to form the stacks with these de-
rived weights and proceed with the wavelet derivation process
and the rest of the analysis. The second eigenvector R2 shows
rough characteristics of an AVO PP gradient stack, which is
far offsets minus the near offsets. It does show a large amount
of oscillations that have the properties of noise. This demon-
strates that the signal is roughly the same size as the noise. The
third eigenvector R4 looks like only noise. This is highlighted
in Fig. C1a, which shows the eigenvalues in reference the the
noise level implied by these eigenvectors.

The analysis was continued, and a Bayesian wavelet
derivation (Gunning and Glinsky 2006) was done using a
method that estimated the noise using the well log. The re-
sults showed a good match of the synthetic to the seismic
and a reasonable wavelet (close to zero phase with a main
lobe and two smaller side lobes). More importantly, when
the noise level was compared with the size of the dominate
reflections, we determined that the SNR was about 20 dB.
This compares to the 28 dB estimated from the principle com-
ponents analysis.
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