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Summary 

 
Stochastic approaches for inverting geophysical data have 
many advantages over deterministic inversion methods in 
terms of finding global solutions and quantifying their 
associated uncertainty. Since stochastic methods often need 
to run forward models more times than deterministic 
algorithms, their applications currently are limited to 1D 
inverse problems, where forward models can be run very fast. 
However, due to the rapid growth in computing power, 
especially parallel computing techniques, and the recent 
development of new numerical simulation methods, 
stochastic inversion of 2D geophysical data has become 
feasible. In this study, we explore the use of Markov chain 
Monte Carlo based Bayesian models for inverting 2D 
magnetotelluric (MT) data. To minimize the number of 
parameters, we adopt sharp boundary parameterization, in 
which we consider the locations and the resistivity of regions 
formed by the interfaces as unknowns. We use a parallel, 
adaptive finite-element algorithm to forward simulate 
frequency-domain MT responses of 2D conductivity 
structure. Synthetic case studies show the developed 
stochastic model is effective for estimating the interface 
locations and resistivity; most importantly, it provides 
detailed uncertainty information on each unknown parameter. 
 

Introduction 

Current approaches for geophysical inverse problems are 
mainly deterministic methods (e.g., Gauss-Newton, conjugate 
gradient, and steepest decent techniques). The solutions 
obtained using these methods often depend on the choice of 
initial values and thus are local rather than global. 
Additionally, deterministic methods provide very limited 
uncertainty information about solutions. Stochastic inversion 
methods have been recognized as a powerful approach for 
solving geophysical inverse problems; many successful 
applications can be found in the literature (e.g., Mosegaard 
and Tarantola, 1995; Miguel, 1999; Eide et al., 2002; 
Tarantola, 2005). Stochastic methods have many advantages 
over deterministic inversion methods. As demonstrated by 
Chen et al. (2008), stochastic inversion methods can provide 
extensive information about unknown parameters; inversion 

results are almost independent of initial values and therefore 
global and robust. 
 
Because stochastic methods often need to run forward models 
tens of thousands of times, current applications are limited to 
problems where fast forward models are available, such as 
inversion of 1D seismic data (Gunning and Glinsky, 2004) 
and joint inversion of 1D seismic and EM data (Chen et al., 
2007). However, with the rapid growth in computing power, 
especially parallel computing techniques and recent 
development of forward simulation methods, many fast 
forward algorithms are becoming available. For example, 
Key and Ovall (manuscript in preparation) recently 
developed a parallel algorithm for 2D EM that computes 2D 
MT and CSEM responses in a few seconds to tens of seconds 
when run on large cluster computers. New capabilities such 
as this now make it feasible to implement stochastic 
inversion methods for 2D MT and CSEM data sets. 
 
In this study, we explore the use of stochastic inversion 
methods for inverting 2D MT data. We develop a Bayesian 
model based on sharp boundary parameterization and use the 
newly developed parallel, adaptive finite-element algorithm 
to forward simulate MT responses. We estimate the locations 
of sharp boundaries and resistivity of regions formed by the 
boundaries. The spatial dependence of unknown parameters 
is accounted by geostatistics model through prior distribution. 
We solve the inverse problem using Markov chain Monet 
Carlo (MCMC) sampling methods. We use a synthetic study 
to test the developed Bayesian model. This is an ongoing 
study and the model will be applied to a geothermal field in 
Indonesia later. 
 
Method 
 

We develop a Bayesian model using sharp boundary methods 
as used by Hoversten et al. (1998) and Smith et al. (1999). 
Figure 1 shows a schematic of the parameterization, where 
we assume that the domain size and the location of ground 
surface are predetermined. For a given inverse problem, this 
parameterization gives us a minimal number of unknown 
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parameters. Let n be the total number of sharp boundaries (or 
interfaces) and m be the total number of inner estimation 
nodes. The number of inner nodes can vary from one 
interface to another interface. The unknown parameters 
associated with each estimation node are logarithmic 
thickness ijs  and resistivity ijr , where 1i = , 2 , , n , and 

1j = , 2 , , m . The data used for our inversion are apparent 
resistivity and phase defined by Vozoff (1991) for complex 
impedance xyZ  and yxZ . For ease of description, we 

introduce four index numbers to show data types, among 
which 1 and 2 are referred to as apparent resistivity and phase 
of impedance xyZ  and 3 and 4 are referred to as apparent 

resistivity and phase of impedance yxZ . We let ijkd  be the k-

th type of MT data for the i-th frequency at the j-th site, 
where 1k = , 2 , 3 , 4 , 1i = , 2 , , fn , and 1j = , 2 , , sn . 

Variables fn  and sn  represent the total number of 

frequencies and sites, respectively. 
 
Let vector d  represent all the MT data arranged by 
frequencies, sites, and data types. Let vector s  represent all 
the unknown thickness arranged by estimation nodes and 
interfaces. Let vector r  represent all the unknown resistivity 
arranged first by nodes and then by interfaces. Thus, we have 
the following Bayesian model: 

( , | )  ( | , ) ( , )f f f∝s r d d s r s r .                 (1) 

Equation 1 defines a joint posterior probability distribution 
function of all unknown parameters, which is known up to a 
normalizing constant. The first term on the right side of the 
equation is the likelihood function of 2D MT data. The 
second term is the prior probability distribution of thickness 
and resistivity as random fields. 
 

We used a new, adaptive finite-element algorithm developed 
by Key and Ovall (manuscript in preparation) to simulate 
frequency-domain MT responses of 2D electrical resistivity 
structure. The model domain is discretized using unstructured 
triangular element grids that can easily accommodate 
arbitrarily complex structures. An automated, adaptive grid 
refinement algorithm is implemented in which the finite-
element solution is computed iteratively on successively 
refined grids. Grid refinement is guided by an a-posteriori 
error estimator based on a recently developed dual-weighted 
residual operator. This algorithm builds off of earlier adaptive 
finite element works by Key and Weiss (2006) and Li and 
Key (2007), but uses a residual based error estimator that is 
computed using a hierarchical basis, rather than the gradient 
recovery error estimator used in the early works. For the 

heterogeneous conductivity models typically found by 
inversions, the residual based error estimator has been found 
to be more robust than the gradient recovery method. 
Furthermore, the new algorithm has been parallelized so that 
it can computes accurate, adaptively refined solutions very 
quickly. For small clusters, it can compute MT responses for 
models of the size described here in only a few tens of 
seconds, while on larger clusters (>50 nodes) it can compute 
responses in a few seconds. This makes stochastic inversion 
of 2D MT data feasible. 

Numerical Forward Model and Likelihood Function 

 
The 2D MT data used for the inversion are apparent 
resistivity and phase recorded for each frequency at a number 
of sites along a profile. In this stage, we assume that errors in 
data are independent and have Gaussian distribution with 
zero mean and given standard deviation. Thus, we can obtain 
the following likelihood model: 
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where ijkσ  is the standard error, and obs
ijkd  and calc

ijkd  are 

observed and calculated MT responses of the k-th type for the 
i-th frequency at the j-th site. The independency and 
normality assumptions are not critical and can be modified by 
assuming those errors are correlated and have other types of 
probability distributions. 
 

The Bayesian framework allows us to explicitly incorporate 
information from other sources into the inversion through the 
use of prior models. In this study, we assume that thickness 
and resistivity vectors are independent of each other. For the 
sharp boundary parameterization, we also assume that 
thickness and resistivity on different interfaces are 
independent. This assumption permits sharp changes in 
thickness and resistivity across interfaces. However, on each 
interface, we assume that both thickness and resistivity are 
spatially correlated and the spatial structure can be 
characterized using a geostatistical model with the 
exponential variogram. Thus, we have the following prior 
model for thickness: 

Spatial Correlation and Geostatistical Prior Model 
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where js  and jm  are thickness and prior mean thickness 

vectors on interface j, and 1
j
−C  is the inverse covariance 

matrix of the thickness vector on interface j. The prior mean 
vector is calculated from prior ranges of each parameter and 
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the covariance matrix is calculated from both prior ranges 
and variogram model with given correlation length by using 
the methods given by Chen et al. (2009). We use the same 
method to define the prior model of resistivity vector. 
 
Case Study 
 

We first apply the Bayesian model to a synthetic model that 
closely simulates field conditions. Figure 2 shows the true 2D 
resistivity cross-section. There are four interfaces, which 
form four layers with the last layer being bedrock. The 
thickness of the first layer increases from 200 m at the left 
edge to 800 m at the right edge, and its resistivity varies 
between 10 Ωm (left edge) and 200 Ωm (middle) . The 
thickness of the second layer is constant and equal to 200 m, 
but its resistivity linearly increases from 1 Ωm at the left edge 
to 3 Ωm at the right edge. The thickness of the third layer 
increases from 2600 m at the edge to 3300 m in the middle, 
and its resistivity also increases from 20 Ωm at the edges to 
500 Ωm in the middle. The resistivity of bedrock is assumed 
to be constant and equal to 50 Ωm. The lateral range (or x -
coordinate) is from -10 km to 10 km. We pick up 21 nodes 
for each interface, starting from -10 km and increasing with 
increment of 1 km. To avoid boundary effects, we choose 
very large domain sizes for forward simulation, which are 
from -350 km to 350 km along both the X-coordinate and Z-
coordinate. 

Synthetic True Model 

 
Synthetic Data and Prior Bounds 
We generated noisy synthetic data using the adaptive finite-
element numerical forward model by following the processes 
below: (1) Calculate the true complex impedances for the 
given true 2D resistivity structure as shown on Figure 2; (2) 
Add zero-mean Gaussian random noise whose standard 
deviation is equal to 5-percent of their corresponding 
amplitude; (3) Convert the noisy complex impedances to 
apparent resistivity and phases. We choose prior bounds for 
all unknown parameters as part of model definition based on 
our experience for typical geothermal fields. The prior lower 
and upper bounds of thickness are the values that are 40-
percent smaller and larger than their corresponding true 
values. The prior lower and upper bounds of resistivity from 
the first to the last layer are (1, 250) Ωm, (0.5, 100) Ωm, (10, 
800) Ωm, and (10, 100) Ωm, respectively. 
 

Figures 3 shows the estimated 2D resistivity structure using 
the medians of each unknown parameter. Compared to the 
true resistivity cross-section given in Figure 2, we can see 
that the estimated results are very close to the true model, but 

the quality of estimation varies. For the first layer, both 
estimated resistivity and thickness are very close to the true 
values. For the second layer, the estimated results are also 
consistent with the corresponding true values. For the third 
layer, however, both estimated resistivity and thickness 
fluctuate around the true values. Table 1 summarizes 
quantitative comparison between the estimated and true 
values and their associated uncertainty information. Based on 
the relative root-mean-squares (RMS) of the estimated and 
true values and the relative half-width (RHW) of 95% 
predictive intervals. We can see again that the inversion 
provides the most reliable estimates of resistivity and 
thickness at the first layer and the worst estimates at the third 
layer, especially for resistivity, which is worse than that at the 
last layer (bedrock). 

Inversion of 2D Synthetic MT Data 

 
Conclusions 
 
The results of the synthetic study show the developed 
Bayesian model is effective for inverting MT data for 2D 
resistivity cross-section, given proper information on large 
structure and prior ranges of unknown parameters. The 
stochastic method can provide not only the estimates of each 
unknown parameter but also sufficient information on 
uncertainty. 
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Figure 1: Schematic of sharp boundary parameterization 

 
 

Figure 3: Estimated synthetic 2D resistivity structure 

 
 

Figure 2: True synthetic 2D resistivity structure 

Table 1: Comparison between the true and estimated medians 
and uncertainty information 
 

Parameters RMS RHW(%) 
 

Thickness 
Layer-1 0.1253 1.59 
Layer-2 0.2122 0.39 
Layer-3 0.2487 17.33 

 
Resistivity 

Layer-1 0.1549 7.18 
Layer-2 0.3452 7.83 
Layer-3 1.3479 33.29 
Layer-4 0.5326 14.40 
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