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Summary 

Joint inversion of seismic AVA and CSEM data needs rock-

physics models to link seismic attributes to electrical 

properties. Ideally, we can develop physical-based models 

(e.g., Gassmann’s equation and Archie’s law) from nearby 

borehole logs to connect them through reservoir parameters 

(e.g., porosity and water saturation). However, in the 

exploration stage, this could be very difficult because 

information available are typically insufficient for choosing 

suitable rock-physics models and for obtaining reliable 

estimates of their associated parameters. The unsuitable 

rock-physics models and the inaccuracy of their subsequent 

estimates of model parameters may result in very misleading 

inversion results. However, it is fairly easy to derive 

statistical-based relationship (e.g., covariance matrix and 

regression equations) among seismic and electrical attributes 

from distant borehole logs. The statistical-based relations 

may improve estimates of both seismic and electrical 

properties even with uncertainty. We test such a hypothesis in 

this study by developing a Bayesian model for joint inversion 

of seismic AVA and CSEM data. We estimate seismic P- and 

S-wave velocity, density, electrical resistivity, and lithotypes 

(shale, brine sand, or oil sand) as functions of depth by 

conditioning to seismic AVA and CSEM data. The spatial 

dependences of those quantities are carried out by lithotypes 

through Markov random fields. We demonstrate the 

effectiveness of the developed model using a 2D synthetic 

model and derived datasets that has been developed to 

closely mimic field conditions. We use borehole logs at two 

different locations (one with and the other without reservoir) 

to obtain statistical rock-physics relations; we invert seismic 

AVA and CSEM data at a third location with reservoir using 

the derived rock-physics models. Comparison of the inversion 

results shows the developed Bayesian model is effective and 

combination of seismic AVA and CSEM data improves 

estimates of geophysical attributes. The developed model can 

be extended to incorporate estimates of reservoir parameters 

(e.g., porosity and fluid saturation). 

 

Introduction 

Joint inversion of seismic AVA and CSEM data has been 

demonstrated to be beneficial for reservoir parameter 

estimation (Hoversten et al., 2006; Chen et al., 2007) because 

they provide complementary information on reservoir 

parameters. This estimation requires rock-physics models to 

connect seismic attributes to electrical conductivity, which 

are often derived from suitable nearby borehole logs in 

practice. First, an appropriate family of rock-physics models 

is chosen and then those parameters associated with the rock-

physics models are estimated by fitting them to the selected 

borehole logs. However, in the exploration stage, the 

derivation of detailed rock-physics models could be very 

difficult due to the lack of nearby wells. However, we can 

often find logging data at more distant locations where 

parameter covariance- or regression-based relations can be 

derived sufficiently. The statistical-based relationship, with 

associated uncertainty, may improve estimates of seismic and 

electrical properties (thus reservoir parameters) even though 

they are less precise than physical-based rock-physics 

models. 

In this study, we develop a Bayesian method based on 

statistical rock-physics models derived from borehole logs to 

jointly invert seismic AVA and CSEM data. We apply the 

developed stochastic model to a synthetic dataset generated 

from a 2D synthetic model that closely mimics field 

conditions. We use borehole logs at two different locations, 

one with and the other without reservoir, to obtain statistical 

rock-physics relations. We invert seismic AVA and CSEM 

data at a third location with reservoir using the derived 

statistical rock-physics models and compare the inversion 

results to demonstrate the effectiveness of the developed 

method. This is an ongoing research and the developed model 

will be extended to incorporate estimates of reservoir 

parameters later. Section 2 describes the Bayesian model and 

Markov chain Monte Carlo (MCMC) sampling strategies and 

Section 3 shows some results of the synthetic study. 

Method 

Bayesian Model  

We develop a Bayesian model for a layered reservoir as done 

by Hoversten et al. (2006) and Chen et al. (2007) to estimate 

seismic P-wave velocity ( pV ), S-wave velocity ( sV ), density 

(
�

), electrical resistivity ( r ), and lithotypes ( L ) as 

functions of depth. The main difference of this study from the 

one given by Chen et al. (2007) lies in the use of statistical 

rock-physics models and Markov random fields for 

lithotypes. Similar to the model given by Chen et al. (2007), 

we add several layers above and below the reservoir to 

account for uncertainty in selecting the time window for 
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seismic AVA data inversion. For those layers, we invert for 

elastic bulk modulus K , shear modulus � , and density 0

�
. 

Seismic P- and S-wave velocity and density in the layers can 

be calculated directly from their corresponding bulk and 

shear moduli and density. Because resistivity in the seawater 

and in the overburden and bedrock affects estimates of 

reservoir parameters, we also consider these as unknown 

parameters in this model and denoted by the vector 0r .  

Let matrix R  represent seismic AVA data, which are the 

explicit functions of seismic P- and S-wave velocity and 

density within the reservoir and the implicit functions of 

elastic properties (i.e., K ,� , and 
�

) in the zones outside the 

reservoir. Let matrix E  represent CSEM data, which are the 

functions of reservoir resistivity r  and resistivity 
0r  in the 

seawater, overburden, and bedrock. Since seismic AVA and 

CSEM data are two different types of geophysical 

measurements, it is reasonable to assume that their 

measurement errors are independent of each other. 

Consequently, we obtain the following Bayesian model: 
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Equation 1 defines a joint posterior probability distribution 

function of all unknown parameters, which is known up to a 

normalizing constant. The first and second terms on the right 

side of the equation are the likelihood functions of seismic 

AVA and CSEM data, respectively; they are the same as 

those used by Chen et al. (2007) and Chen and Dickens 

(2009). The third term on the right side of the equation is the 

statistical rock-physics model derived from borehole logs for 

given lithotypes. The fourth term is the prior probability 

distribution of lithotypes given as a Markov random field. 

The last term on the right side of the equation is the prior 

distribution of the unknown variables outside the reservoir. 

We use the same prior distribution as done by Chen et al. 

(2007). Because the current study is built on our previous 

work, we only show the differences in the following. Please 

refer to Chen et al. (2007) and Chen and Dickens (2009) for 

more detail. 

Statistical Rock-physics Model 

We derive rock-physics models from remote borehole logs. 

Let i  and j  be indices at two different reservoir layers. We 

assume that the joint conditional probability distribution 

given lithotypes at layer i  is independent of that given 

lithotypes at layer j . This is justified from analysis of real 

logs. As a result, we can write the statistical rock-physical 

model as: 

, , , ,

1

( , | ) ( , | ),

m

p s pi si i i i

i

f f V V r Lρ
=

= ∏V V � r L            (2) 

where piV , siV , iρ , ir , and iL  are seismic P-wave velocity, 

S-wave velocity, density, electrical resistivity, and lithotype 

at layer i . The statistical model is problem-specific. 

Markov Random Fields 

We use the first-order Markov random field to simulate the 

spatial dependence of lithotypes as done by Eidsvik et al. 

(2004). Although in this study, we only estimate seismic and 

electrical parameters along a 1D profile, the developed model 

can be extended to 2D cross-sections. The Markov random 

model is Ising and Potts model. As shown by Higdon (1998), 

we can write the joint lithotypes distribution as: 

~

( ) exp Ind[ ] ,
i j

i j

f L Lβ
  ∝ = 
  
∑L                    (3) 

where Ind[ ]⋅  is an indicator function, which takes the value 

of 1 if 
i j

L L= and the value of 0 otherwise. Parameter β  is a 

measure of the spatial dependence and will be jointly 

estimated in the inversion. Sampling from such a joint 

distribution typically suffers from low convergence using 

traditional Gibbs or Metropolis-Hasting methods. In this 

study, we use the Swendsen-Wang algorithm (Swendsen and 

Wang, 1987), which was designed specially to treat such 

slow convergence for the model. 

Synthetic Study 

We apply the developed Bayesian model to a synthetic 

dataset extracted from an elaborately designed 2D model that 

closely simulates real field conditions. Both seismic AVA 

and CSEM synthetic data were generated using 2D finite 

difference and finite element forward models respectively. 

For the purpose of this study, we assume that we have logs at 

two different locations (CDP-1135 and CDP-1520), one with 

oil reservoirs (CDP-1520) but the other without (CDP-1135). 

We use information at the two locations to derive statistical 

rock-physics models and invert seismic AVA and EM data at 

the third location (CDP-766) with presence of oil reservoirs. 

Borehole Logs and Statistical Rock-physics Models 

We develop rock-physics models from borehole logs at CDP-

1135 and CDP-1520. Figure 1 shows seismic velocity, 

density, shale content, and electrical resistivity as functions 

of depth from borehole logs at CDP-1520. An oil reservoir 
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Figure 1: Borehole logs at CDP-1520 as functions of depth 

presents at the depth interval between 1800m and 1900m. 

Based on the borehole data, we define the following three 

lithotypes: (1) shale (shale content is greater than 0.6), (2) 

brine sand (shale content is less than 0.6 and water saturation 

is greater than 0.9), and (3) oil sand (shale content is less than 

0.6 and water saturation is less than 0.9). The choice of the 

cutoff values for the definitions of lithotypes will be problem 

specific. Figure 2(a-c) shows seismic P-wave and S-wave 

velocity and resistivity as functions of density and lithotypes; 

Figure 2(d) shows density as a function of depth and 

lithotypes. According to the cross-correlation, we can 

develop the following statistical models: 

( , , , | ) ( | , ) ( | , )

( | , ) ( | , ).

pi si i i i pi i i si i i

i i i i i

f V V r L f V L f V L

f r L f z L

ρ ρ ρ
ρ ρ

=
×

     (4) 

From Equation (4), we can see that depth dependence of 

seismic velocity and resistivity is carried out by density and 

the spatial correlation of those quantities is carried out by 

lithotypes. 

Effects of Statistical Rock-physics Prior Models 

We first investigate the effects of statistical rock-physics 

models on the estimated geophysical attributes by inverting 

synthetic 1D seismic data. Figure 3 compares the inversion 

results with their corresponding true values (black curves 

with circles) without using statistical prior models. Figure 4 

shows similar results but with the use of statistical rock-

physics prior models. Table 1 shows the RMS of differences 

between the true values and the medians and averaged width 

of 95% predictive intervals for above two cases. From those 

figures and table, we can see that the use of statistical rock-

physical models improves the estimates of seismic attributes 

significantly, especially for density estimation. Another 

benefit of using statistical rock-physical models is that we 

can also directly estimate the probability of being oil sand. 

Estimation of oil sand 

Since the primary goal of exploration is to identify the 

presence of oil sand, we compare the estimated oil sand with 

the true values at CDP-766 using synthetic 1D convolution 

seismic data and 2D EM data. Figure 5(a) shows the true 

lithotypes as a function of depth, where values 0, 1, and 2 

represent shale, brine sand, and oil sand, respectively. Figure 

5(b) shows 6000 realizations of lithotypes, where red color 

represents oil sand. We can see that the inversion correctly 

identifies the presence and location of the major oil reservoir. 

Figure 6 shows similar results but using the synthetic 2D 

elastic seismic data and 2D EM data. We can see that given 

the difference between the 2D models for generating seismic 

and EM data and 1D convolution seismic and 1D layered EM 

models for inversion and given various sources of 

uncertainty, we can still correctly estimate the presence of oil 

sand. 

Conclusions 

We developed a Bayesian method based on statistical rock-

physics models and Markov random fields. Synthetic case 

studies show that the developed model is effective for joint 

inversion of seismic and EM data and the use of statistical 

rock-physics models improve the inversion results. However, 

improvements are needed for addressing unpleasant features 

showing in the estimates of the shallow part between depth 

2100-2200m in Figures 5 and 6. 
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Figure 2: Cross-correlation among various seismic and 

electrical attributes, derived from borehole logs at CDP-

1135 and CDP-1520. 
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Table-1: Comparison between estimates of seismic attributes 

with and without statistical rock-physics models 

Case Attributes Compared to 

true values 

(Errors: RMS) 

Predictive 

intervals 

(Uncertainty: 

width) 

Vp 0.1054 0.2987 

Vs 0.0741 0.2482 

No 

prior 

models Density 0.0777 0.2128 

Vp 0.0794 0.1625 

Vs 0.0900 0.2054 

Prior 

models 

Density 0.0346 0.0896 
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Figure 3: Estimated seismic attributes using synthetic 

data without using statistical rock-physics prior models. 

 

 
Figure 6: Comparison between the estimated seismic 

attributes and the true values at CDP-766 using synthetic 2D 

elastic seismic data and 2D EM data. 

 

 
Figure 5: Comparison between the estimated lithotypes and 

the true lithotypes at CDP-766 using synthetic 1D convolution 

seismic data and 2D EM data.  
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Figure 4: Estimated seismic attributes using synthetic 

data using statistical rock-physics prior models. 
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