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the rock-physics model parameters (Type 2), but thet

mmary uncertainty in the rock-physics model outputs (T¢pe

This study investigates the effects of uncertaiimtyrock-
physics models on estimates of reservoir paramdtera
joint inversion of seismic AVA and CSEM data. Treser-
voir parameters are related to electrical reststivising
Archie’s law, and to seismic velocity and densiging the
Xu-White model. To account for errors in the rodkypics
models, we use two methods to handle uncertaidfyihe
model outputs are random functions with modes oarse
given by the model predictions, and (2) the paransetf the
models are themselves random variables. Using chastic
framework and Markov Chain Monte Carlo methods, we o
obtain estimates of reservoir parameters as welbfathe example Of.SUCh an approach is given by' Bachamﬁﬁq),
uncertainty in the estimates. Synthetic case stustiew that wher_e sediment bulk and shear_modull and de_nsuy ar
uncertainties in both rock-physics models and their cOnsidered to be random functions of reservoir wate
associated parameters can have significant effests saturation and porosity, _and the ”F".‘“O.W“ reservorr
estimates of reservoir parameters. Our method gpesvia parameters are estlmated_ Jomtl_y by conditioningseismic
means of quantifying how the uncertainty in thenested AVA d_ata._ Bacharach Investigates only the effect of
reservoir parameters increases with increasingrtaioty in uncertainty in the_rock_—physms mod_els (Type 1) bot the
the rock-physics model and in the model parametgesfind effect of uncertaynty in the associated .m(.)del patars
that in the example we present, the estimation afew (Type 2). In practlge, both types ofgncertamt;sta)ar]d they
saturation is relatively less affected than is ésémation of ~ May affect the estimates of reservoir parametéfereintly.

clay content and porosity.

An alternative for studying the effects of uncertgiin rock-
physics models is to utilize a Bayesian framewodk t
represent geophysical properties as random furstioh
reservoir parameters. In this method, the rock-jgBymodels
derived from borehole logs provide only referencdugs
(e.g., means or modes) for the reservoir parameteisg
estimated. The actual values are realizations rifasm the
estimated a posteriori probability density functpn
conditioned on the uncertainty in the rock-physitsdel as
well as on the input seismic AVA and CSEM data. An

In this study, we investigate the effects of uraety in
rock-physics models on reservoir parameter estomati
caused by uncertainty in the rock-physics modelypér1)

. . .and uncertainty in the model parameters (Type 2 W
Rock-physics models are needed to estimate resr;ervmdevelop a stochastic method based on a layeredvease

pargn?eters frotm seismicﬂAV,z ar_ld E?EM data.blnigxrzct model, similar to the one studied by Chen et @07, with
model parameters are often derived Irom nearby 1ogs. the addition of stochastic rock-physics modelsdcoant for
First, an appropriate family of rock-physics mod_elshosen, their contribution to the uncertainty. We use Markahain
such as the sand-clay models of Xu and White (1396) Monte Carlo (MCMC) methods to explore the joint a

seismic velocities and density, and Archie’s lawrgifie, - . . ; .
1942) for resistivity. Second, the parameters aassat with ngé%leotgrsprobablllty density functions of the erted

the rock-physics models are estimated by fittingnthto the
selected well log data. Since the relationshipswéen
X ) . . Method

reservoir parameters and geophysical attributemanénear

and non-unique, the derived rock-physics models thed Stochastic rock-physics models
parameters are uncertain to some extent. Such tamdgr
may significantly affect estimates of reservoir graeters
from geophysical data.

Introduction

We relate reservoir water saturati® and porosityg to
electrical resistivity using Archie’s law (Archi&942):

- -m _£-n
Traditional methods for analyzing uncertainty ickghysics r=rS,"¢". @)
models entail varying a small subset of the rocksps Here,r denotes the electrical resistivity of a given rese
model parameters while keeping others unchangedh Su layer and the model parametags m, andn denote brine
methods are valid only when the parameters beingresistivity and model exponents of water saturataomd

investigated are uncorrelated with those being Keqd. porosity, respectivelyTwo types of uncertainty may exist in
Since rock-physics parameters often depend updn ether, this equation. The first is the uncertainty assedawith the

the methods have limited validity. Additionally, otte model parametens, m, andn (Type 2). To account for such
methods typically analyze only the effects of utaiety in uncertainty, we consider those parameters to beoran
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Effects of uncertainty in

variables with given distributions. The second typE
uncertainty is that associated with the model fitsBype 1),

such as the discrepancy between the measuredvigsiahd

the predicted resistivity; i.e., Archie's Law magtrbe an
appropriate model for some situations. Similarty account
for the effect of this type of uncertainty, we cioles

predicted resistivity to be a random function of teva
saturation, porosity, and the model parameters|ewising
Archie's Law to calculate the mode of the distriitnoit

We use a Gamma distribution function with shapapater

o and scale parameteff to describe the uncertainty
associated with the model given in Equation 1.thetvector

0, =(r,,m,n)", whereT denotes transpose. Let the mode of
the Gamma distribution be equal to the resistipitgdicted
by Equation 1. Consequently, we obtain the conutitio
distribution function of resistivity given reservgarameters
Sy andg and unknown model parametés as follows:

_ ra—l _L .
f(r'%"”"’l"mex{ /3)

)

We relate seismic P- and S-wave velocity and dernsit
reservoir parameters using a clay-sand mixture mode
developed by Xu and White (1995). The main pararsete
associated with the Xu-White model are the bulk ahdar
moduli and density of sand grains, clay, and fliadd the
pore aspect ratios of sand and clay. The resepavameters
that affect seismic P- and S-wave velocity and ifgree
water saturation, clay content, and porosity. We tise
vector@, to represent the entire set of model parametars, a
consider the parameters to be random variablesdardo
model parameter uncertainty (Type 2). In practibe, model
parameters are typically estimated from logs froearby
wells and have unknown uncertainties.

To consider overall uncertainty in the Xu-White rabébr a
fixed set of model parameters, we assume thatdtiemaed
seismic velocity and density calculated from res&rv
parameters using the Xu-White model are not exaf.
model them as a truncated multivariate Gaussianilglision
with means determined from the Xu-White model and a
covariance matrix determined from an assumed adioel
structure and coefficients of variation. Let theiablesVp,

rock-physics models

Bayesian model

The Bayesian model was developed for a layeredvaise
In the reservoir layer, we estimate water satunat®,
porosity ¢, and shale contert As in the model given by
Chen et al. (2007), we add several layers abovéaluv the
reservoir to account for uncertainty in selectitg ttime
window for seismic AVA inversion. For those layemsge
invert for elastic bulk and shear modw{i Andp) and density
po, from which we calculateVp and Vs Because the
resistivityr, of the seawater and the sedimentary overburden
also affects the estimates of reservoir parameteesalso
consider it as an unknown vector in this model.

Unlike the analysis presented in Chen et al. (206/8) use
stochastic rock-physics models in this study. Foremy
reservoir parameters, the calculated reservoir nmseis
velocitiesVp andVs, densityp, and electrical resistivity are
all considered to be random variables. Let the imd®
denote seismic AVA data, which are explicit funogoof
seismic velocity and density within the reservaind implicit
functions of elastic properties<( n, andp,) in the zones
outside the reservoir. Let the matiix denote CSEM data,
which are functions of reservoir resistivityand overburden
resistivity r,. Since CSEM and seismic AVA data are two
different types of geophysical measurements, ieésonable
to assume that they are statistically uncorrelaléxbrefore,
we obtain the following Bayesian model:

f(Sw:Co,Vp Vs p Kinpo 1o 8,9, RE )
fFRN, VspKinpy FERT)
FEBun0 YV, Vsp Buoch,)
FEeEMKmpylp0.0,)

Equation 4 defines a joint a posteriori probabititgtribution
function of all unknown parameters, which is knowmto a
normalizing constant. The first and second termshenright
side of the equation are the likelihood functiorisseismic
AVA data and CSEM data, respectively, and are ¢ated
from forward modeling. The third and fourth terms the
right side of the equation are the conditional pdfgen
reservoir parameters and parameters associatedhgittock
physics models; for, this is given by Equation 2. The final
term on the right side of the equation is the aorpri

4

Vs, andp denote seismic P- and S-wave velocity and density, distribution of the unknown variables, which wedédhk have

respectively. Letp, €5, ande, represent additive errors in the
rock-physics model results. Then the conditionalbpbility
density function is given by

@)

1 _
fV, Ve, 0S8 .8,)= == exp(—stlg)
NeZ g
whereZ is the covariance matrig, is the vectofep, €s, sp)T,
andc represents shale content.
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constant pdfs within reasonable bounds.
Synthetic Study

The synthetic model includes an oil-bearing reservo
embedded in a shale section, lying 1200 m undese¢héioor,
with shale content, porosity, and water saturatibd.1, 0.32,
and 0.1, respectively. Outside the reservoir, treescontent
and water saturation in the shale section are anh§t00%),
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Effects of uncertainty in rock-physics models

whereas the porosity decreases and the backgresigtivity
increases with increasing depth from the seafloor.

The seismic AVA data are NMO-corrected angle gather
generated by convolving a 25 Hz Ricker wavelet vitib
angle-dependent reflectivity, which is calculatesing the
Zoeppritz equations (Aki and Richards, 1980) fochekayer
interface. The traces are sampled at 2 ms for sien@hence
angles (i.e., 5, 10, 15, 20, 25, 30, and 35 depr@és assume
that the synthetic seismic data include spatiatiyrelated
Gaussian random noise and that the spatial cdoelas
determined by an exponential variogram with an grae
length of 12 ms. The variance of the Gaussian risisagle
dependent; the signal-to-noise ratios (SNRs) ard 1210, 9,
8, 7, and 5 from the near to the far offsets. We the Xu-
White model (Xu and White, 1995) with parametergegiin
Table 1 to link reservoir parameters to P- and Sewa
velocity and density. (The brine resistivity varigih depth;

it is shown for the reservoir level.)

Table 1. Parameters for the Xu-White model and i&’sh
law

Types Parameters Values
Bulk modulus (GPa) 42.584

Sand Shear modulus (GPa) 40.470
Density (g/cm) 2.650
Aspect ratio 0.09
Bulk modulus (GPa) 34.260

Clay Shear modulus (GPa) 18.504
Density (g/cm) 2.680
Aspect ratio 0.06

Brine Bulk modulus (GPa) 3.22
Density (g/cr) 1.09

Qil Bulk modulus (GPa) 0.7%
Density (g/cr) 0.7091
Porosity exponent 2.00

Archie’s law Saturation exponent 2.00
Reservoir brine resistivity 0.11
(Q-m)

The marine CSEM data consist of the electric fields
measured at six receivers deployed on the seaflith, an
electric dipole source at five different frequersc{é.10, 0.25,
0.50, 0.75, and 1.00 Hz). Six source-receiver tgf$é, 5, 6,

7, 8, and 10 km) are used. The relationship betweésairical
resistivity and water saturation and porosity isegi by
Archie's law using the parameters listed in Tablé/& added
2% to 4% relative noise to the synthetic data, wiihher
noise levels at the farther offsets.

Inversion using rock-physics models with model otitp
uncertainty

We first focus on studying the effect of inherentertainty
(i.e., on computed ¥ Vs, etc.) in the rock-physics model
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(Type 1) on estimates of reservoir parameters. Wert the
synthetic AVA and CSEM data (containing noise) gsin
rock-physics models with uncertainty equivalent to
coefficients of variation (CV) of 1%, 3%, 5%, an@P4.

Figure 1 shows the estimated probability densitycfions

(pdfs) of water saturation, shale content, and giraising

the stochastic rock-physics models. It is evidehatt
uncertainty in the rock-physics models has sigaiftceffects
on the estimates of reservoir parameters. Withrasenainty
of 5% or more in the rock-physics models, even vathr

low-noise CSEM data, we cannot estimate shale oarfer

porosity, the estimates also become poorer witheasing
uncertainty in the rock-physics models. Comparedttale
content and porosity, the water saturation estinigtéess
sensitive to uncertainty in the rock-physics models

Water Saturation
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Figure 1. The estimated pdfs of water saturation, shale
content, and porosity when the rock-physics moHaise
the specified levels of overall uncertainty.

Inversion using rock-physics models with both modet

parameter uncertainty

Parameter uncertainty (Type 2) in rock-physics neé¢eg.,
in the Archie's Law exponent® and n) is often ignored
because of the difficulty of incorporating it inetlestimation.
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Effects of uncertainty in rock-physics models

The Bayesian model developed in this study provides
flexible, integrated approach for investigating sdlurces of
uncertainty simultaneously. To investigate the cffeof
parameter uncertainty, we assume that each modainpter
lies in a given range and that the probability iofling any
value within that range is constant. In the follogyi we
consider four levels of uncertainty: 1%, 3%, 5%d dr0%
around the corresponding true values of the model
parameters, while we keep the overall uncertaimthé rock-
physics model outputs constant (at 1%).

Figure 2 shows the estimated pdfs of water saamaghale
content, and porosity for this case. For our lousadCSEM
data (i.e., relative errors between 2% and 4%) small
inherent errors in the rock-physics models (1%)e th
estimated reservoir parameters still have unsatisfidy
large errors when the uncertainty in the rock-pts/snodel
parameters is 5% or more. Note that water saturaiagain
the most robustly estimated quantity.

Conclusions

The Bayesian model that we have developed provales
unified and conceptually consistent approach faalyaing
various uncertainties in reservoir parameter estimasuch
as measurement errors, model uncertainties, arahneaer
uncertainties. The synthetic study shows that dairgy in
both rock-physics models and in their associatedrpaters
can, as expected, have significant effects on veser
parameter estimation, especially when those madalstheir
associated parameters are subject to errors ofadeuercent
or more. Without considering uncertainty in rockypies
models, we may be overly optimistic about the iea of
our estimates of reservoir parameters. The framewor
presented here also provides a method for estighdtie
impact of other sources of uncertainty on inversesults.
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Figure 2. The estimated pdfs of water saturation, shale
content, and porosity when the parameters assdciait

the stochastic rock-physics models have the spéciévels

of uncertainty; the overall model uncertainty is teel% for
each case. Comparison with Figure 1 shows thatvengi
level of uncertainty in the model parameters hasnaller
effect than the same level of uncertainty in thelet@esult.
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