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ABSTRACT

Joint inversion of seismic AVA and CSEM data requires
rock-physics relationships to link seismic attributes to electric
properties. Ideally, we can connect them through reservoir
parameters (e.g., porosity and water saturation) by developing
physical-based models, such as Gassmann’s equations and
Archie’s law, using nearby borehole logs. This could be difficult
in the exploration stage because information available is typi-
cally insufficient for choosing suitable rock-physics models and
for subsequently obtaining reliable estimates of the associated
parameters. The use of improper rock-physics models and the
inaccuracy of the estimates of model parameters may cause mis-
leading inversion results. Conversely, it is easy to derive statis-
tical relationships among seismic and electric attributes and
reservoir parameters from distant borehole logs. In this study,

we developed a Bayesian model to jointly invert seismic
AVA and CSEM data for reservoir parameters using statistical
rock-physics models; the spatial dependence of geophysical and
reservoir parameters were carried out by lithotypes through
Markov random fields. We applied the developed model to a
synthetic case that simulates a CO2 monitoring application.
We derived statistical rock-physics relations from borehole logs
at one location and estimated seismic P- and S-wave velocity
ratio, acoustic impedance, density, electric resistivity, lithotypes,
porosity, and water saturation at three different locations by con-
ditioning to seismic AVA and CSEM data. Comparison of the
inversion results with their corresponding true values showed
that the correlation-based statistical rock-physics models pro-
vide significant information for improving the joint inversion
results.

INTRODUCTION

Joint inversion of seismic AVA and CSEM data has been demon-
strated to be beneficial for reservoir parameter estimation (Hoversten
et al., 2006; Chen et al., 2007; Chen andDickens, 2009) because they
provide complementary information on reservoir parameters. This
estimation requires rock-physics relationships to connect geophysi-
cal attributes to reservoir parameters, which are often derived from
suitable nearby borehole logs in practice. An appropriate family of
rock-physics relationships is first chosen and the parameters asso-
ciated with the rock-physics relationships are then estimated by
fitting them to the selected borehole logs.
However, the derivation of detailed rock-physics relationships in

the exploration stage could be very difficult due to the lack of near-
by wells. On the other hand, we can often find logging data at more
distant locations where regression-based relations can be derived

sufficiently. The statistical-based relationships, with associated
uncertainty, may improve the estimates of geophysical attributes
and thus reservoir parameters even though they are less precise than
the physical-based rock-physics models.
Conventional methods for reservoir exploration typically follow

a three-step approach. First, seismic AVA data are inverted for seis-
mic attributes (e.g., seismic P-wave and S-wave velocity and den-
sity), and CSEM data are inverted for electric resistivity. Secondly,
physical-based rock-physics models are derived from borehole logs,
in which CO2, oil or gas reservoirs are classified as clusters or litho-
types. Finally, the estimated geophysical attributes are transferred
into the lithotype images based on the rock-physics models. The
main limitation of the approach is that the joint use of seismic
AVA and CSEM data does not allow for information sharing across
the two different types of data sets. Joint inversion approaches have
been developed by many researchers, for example, cross-gradient
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methods as used by Gallardo and Meju (2004), and Fregoso and
Gallardo (2009). One limitation of the cross-gradient-based
methods is that it does not make use of information from nearby
boreholes.
In this study, we develop a Bayesian method to jointly invert seis-

mic AVA and CSEM data by using correlation-based rock-physics
relationships, referred to as “statistical rock-physics models”. Un-
like conventional methods, where seismic and electric properties
are linked through physical-based rock-physics models such as
Gassmann’s equations (Gassmann, 1951), statistical rock-physics
models are regression-based models derived from borehole logs.
We assume that such rock-physics models are dependent on litho-
types or clusters obtained from borehole logs and use Markov ran-
dom fields (Swendsen and Wang, 1987) to describe the spatial
correlation of the lithotypes. We use Markov chain Monte Carlo
(MCMC) (Gilks et al., 1996) methods to draw many samples from
the joint posterior distribution for the estimation.
We apply the developed Bayesian model to a synthetic data set

generated from a CO2 monitoring application. We use borehole logs
at one location to derive statistical rock-physics relations and
invert seismic AVA and CSEM data at three different locations:
one is close to the training borehole and others are far away from
the borehole. We compare the inversion results with the correspond-
ing true values to demonstrate the effectiveness of the developed
Bayesian models and the usefulness of the derived statistical rock-
physics models.
The remaining sections are arranged as follows. The following

section describes the inverse problem and Bayesian model for joint
inversion of seismic AVA and CSEM data. The next provides basic
information on the case study, including the 2D estimation cross
section, statistical rock-physics models, and synthetic data. Then
comes inversion results and discussion, followed by conclusions.

METHODOLOGY

In this section, we describe a Bayesian model to invert seismic
AVA and CSEM data for reservoir parameter estimation based on
typical situations in geophysical exploration, where the derivation
of physical-based rock-physics models for linking seismic and elec-
tric properties to reservoir parameters is difficult. Instead, statistical
relationships among geophysical attributes and reservoir parameters
can be obtained rapidly from borehole data.

Parameterization and Bayesian model

Although we develop a Bayesian model for estimating geophy-
sical attributes, reservoir parameters, and lithotypes along depth (or
1D) using seismic AVA and CSEM data in the current study, the
model can be extended to a 2D cross section later. The 1D model
is similar to the layered reservoir as used by Hoversten et al. (2006)
and Chen et al. (2007). The main differences between this and the
previous studies are (1) that we use statistical rock-physics models
derived from borehole logs, (2) that we consider lithotypes as un-
known variables, and (3) that for seismic attributes, we estimate the
ratio of P-wave to S-wave velocity, acoustic impedance, and den-
sity, rather than seismic P-wave and S-wave velocity, and density.
Let vectors α, Z, ρ, r, and L represent the ratio of seismic P-wave

to S-wave velocity, acoustic impedance, density, logarithmic resis-
tivity, and lithotypes in the target layers. The lithotypes are catego-
rical variables and can be two (e.g., CO2 sand, and non-CO2 sand

and shale) or three (e.g., CO2 sand, shale, and brine sand). Let vec-
tors φ and S be the logarithmic porosity and water saturation in
those layers. Similar to the model given by Chen et al. (2007),
we add several layers above and below the target layers to account
for uncertainty in selecting the time window for seismic AVA data
inversion. For those layers, we directly invert for the P- and S-wave
velocity ratio (α0), acoustic impedance (Z0), and density (ρ0).
Because the resistivity in the seawater and in the overburden and
bedrock affects the estimates of reservoir parameters, we also con-
sider them as unknown parameters in this model and denote them
using the vector r0.
Because seismic and EM data are often subject to unknown

random errors, we consider them as unknown parameters. Let
θs ¼ ðθs1; θs2ÞT , where θs1 and θs2 are the signal-to-noise ratios
(S/N) of seismic data at the nearest and furthest offsets. Let
θe ¼ ðθe1; θe2ÞT , where θe1 and θe2 are the relative errors of EM
data at the nearest and furthest offsets. For those offsets between
the nearest and farthest offsets, the S/N of seismic data and the re-
lative errors of EM data are linear interpolation of the values at the
two ends.
Let matrixA represent seismic AVA data, which are some explicit

functions of seismic P- and S-wave velocity and density within and
outside the target zone. Let matrix E represent CSEM data, which
are some functions of resistivity in the reservoir, seawater, overbur-
den, and bedrock. Because seismic AVA and CSEM data are two
different types of geophysical measurements, we assume their ran-
dom errors are independent of each other. Consequently, we obtain
the following Bayesian model:

fðα;Z; ρ;α0;Z0; ρ0; r; r0;φ; S;L; θs; θejA;EÞ
∝ fðAjα;Z; ρ;α0;Z0; ρ0; θsÞ × fðEjr; r0; θeÞ
× fðα;Z; ρ;α0;Z0; ρ0; r; r0;φ; S;L; θs; θeÞ: (1)

Equation 1 defines a joint posterior probability distribution function
of all unknown parameters and it is known up to a normalizing con-
stant. The first and second terms on the right side of the equation are
the likelihood functions of seismic AVA and CSEM data, respec-
tively. The third term on the right side of the equation is the prior
distribution of unknown parameters.

Likelihood model of seismic AVA and CSEM data

Seismic AVA data are poststacked and NMO-removed full wave-
forms for different incident angles (Yilmaz, 1987). Let A ¼ ða11;
a21; ...; am1; a12; a22; ...; am2; ...; a1n; a2n; ...; amnÞT , wherem denotes
the total number of time samples, n denotes the total number of in-
cident angles, and T denotes the transpose of vectors or matrices. Let
Ma

ij be the forward model of seismic data at the ith time and the jth
incident angle and εaij be the corresponding random error. We have

aij ¼ Ma
ijðα; z; ρ;α0; z0; ρ0Þ þ εaij. (2)

Let ε ¼ ðεa11; εa21; ...; εam1; ε
a
12; ε

a
22...; ε

a
m2; ...; ε

a
mnÞT be a vector repre-

senting all the random errors. To consider correlation of those errors
in time and across incident angles, we assume that they have themul-
tivariate Gaussian distribution with zero mean and covariance matrix
Σ, as used by Buland and Omre (2003). Thus, we obtain the follow-
ing likelihood function for the seismic data:
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fðAjα; z; ρ;α0; z0; ρ0; θsÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞmnjΣjp exp

�
−
1

2
εTΣ−1ε

�
;

(3)

where jΣj andΣ−1 denote the determinant and the inverse of the cov-
ariance matrix, respectively, which are functions of θs. If the error
structure is non-Gaussian and can bemodeled, then other appropriate
likelihood functions should be used.
We can model the joint likelihood function of random errors in

the CSEM data using the approach in Chen et al. (2007). Let matrix
E ¼ feijkg, where i ¼ 1; 2; · · · ; nf, representing different frequen-
cies of CSEM sources, j ¼ 1; 2; · · · ; n0, representing different off-
sets, and k ¼ 1; 2, representing the real and quadrature components
of the recorded electric fields. Unlike seismic AVA data, we use
relative errors for CSEM data because the amplitudes of EM data
differ by several orders of magnitude for different frequencies and
offsets. We assume that the relative ratio εrijk has the Gaussian dis-
tribution with zero mean and the standard deviation γj that depends
on offsets and is linearly interpolated from the values at the nearest
(θe1) and the furthest (θe2) offsets. As a result, we obtain the fol-
lowing likelihood function:

fðEjr; r0; θeÞ ¼
Ynf
i¼1

Yno
j¼1

Y2
k¼1

1ffiffiffiffiffiffiffiffiffiffi
2πγ2j

q exp

�
−

1

2γ2j

�
eijk −Me

ijkðr; r0Þ
eijk

�
2
�
;

(4)

where Me
ijk represents the real and quadrature components of the

simulated electric fields using a forward numerical model. Like
the seismic AVA data, we should use other appropriate likelihood
functions if the error structure of CSEM data is non-Gaussian.

Prior models, statistical rock-physics models,
and Markov random fields

The prior probability distribution in equation 1 should be deter-
mined from information that is not included in seismic and EM data,
for example, borehole logs. It is reasonable to assume that the
unknown parameters outside the target zone are independent of
the parameters within the zone. Therefore, we can write the prior
distribution as follows:

fðα;Z; ρ;α0;Z0; ρ0; r; r0;φ; S;L; θs; θeÞ
¼ fðθsÞ × fðθeÞ × fðα0;Z0; ρ0; r0Þ
× fðα;Z; ρ; r;φ; SjLÞ × fðLÞ: (5)

We assume that the first three terms on the right side of equation 5
have uniform distribution on given ranges because they are not our
focuses. We can derive the fourth term from borehole logs and
describe lithotypes using Markov random fields.
We simplify fðα;Z; ρ; r;φ; SjLÞ by assuming seismic and elec-

tric properties and reservoir parameters at each layer are condition-
ally independent given lithotypes. This means that given lithotypes
at two adjacent layers, we can assume the unknown parameters in
the two layers are independent of each other because both geophy-
sical attributes and reservoir parameters depend on lithotypes. Let
αi, Zi, ρi, ri, φi, Si, and Li be the P- and S-wave velocity ratio,
acoustic impedance, density, resistivity, porosity, water saturation,
and lithotype at the ith layer, we have

fðα;Z; ρ; r;φ; SjLÞ ¼
Yn
i¼1

fðαi; Zi; ρi; ri;φi; SijLiÞ: (6)

We assume that the conditional distribution on the right side
of equation 6 has a multivariate Gaussian distribution, i.e.,
fðαi; Zi; ρi; ri;φi; SijLiÞ ∼ NðμðLiÞ;ΣðLiÞÞ, where both mean vec-
tor μðLiÞ and covariance matrix ΣðLiÞ are functions of lithotypes
and are derived from borehole logs.
We use the first-order Markov random field to simulate the spatial

dependence of lithotypes as done by Eidsvik et al. (2004). Although
in this study, we only estimate seismic and electric parameters along
a 1D profile, the developed model can be extended to 2D cross-
sections. The Markov random field is the Ising and Potts
model. Let i and j be the indices at two different reservoir layers.
As shown by Higdon (1998), we can write the joint conditional dis-
tribution of lithotypes given the spatial correlation parameter as

fðLÞ ∝ exp

�X
i∼j

βInd½Li ¼ Lj�
�
: (7)

In equation 7, Ind[] denotes the indicator function, taking the value
of one if Li ¼ Lj and the value of 0, otherwise. Parameter β is a
coefficient that determines the spatial dependence of lithotypes.
Because we only use data along a 1D profile, we cannot get a good
estimate of the spatial dependence parameter. Therefore, we consid-
er it as a fixed number and set β ¼ 1.0, which is reasonable for the
current synthetic study after several tries.

Markov chain Monte Carlo sampling methods

We use Markov chain Monte Carlo methods to obtain many
samples of the unknown parameters. We adapt different sampling
strategies for geophysical attributes (α, Z, ρ, r, α0, Z0, ρ0, and r0),
reservoir parameters (φ and S), lithotypes (L), and other parameters
(θs and θe) to achieve good convergence (Tierney, 1994).

Sampling of geophysical attributes and error-related parameters

We first need to derive the conditional distributions of the un-
known geophysical attributes before sampling. Because both seis-
mic AVA and EM data are nonlinear functions of the geophysical
parameters, we cannot obtain analytical forms of their full condi-
tional distributions. We primarily use block-sampling strategies.
For completeness, we list them as follows:

fðα0;Z0;ρ0j ·Þ ∝ fðAjα;Z; ρ;α0;Z0;ρ0; θsÞ × fðα0;Z0; ρ0Þ;
fðα;Z; ρj ·Þ ∝ fðAjα;Z; ρ;α0;Z0;ρ0; θsÞ × fðα;Z;ρ; r;φ; SjLÞ;

fðα;Z; ρ;α0;Z0;ρ0j ·Þ ∝ fðAjα;Z; ρ;α0;Z0;ρ0; θsÞ
× fðα;Z; ρ; r;φ; SjLÞ × fðα0;Z0;ρ0Þ;

fðr0j ·Þ ∝ fðEjr; r0; θeÞ × fðr0Þ;
fðrj ·Þ ∝ fðEjr; r0; θeÞ × fðα;Z; ρ; r;φ; SjLÞ;

fðr; r0j ·Þ ∝ fðEjr; r0; θeÞ × fðα;Z; ρ; r;φ; SjLÞ × fðr0Þ: (8)

We can similarly obtain the conditional probability distributions of
the error-related parameters below:
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fðθsj ·Þ ∝ fðAjα;Z; ρ;α0;Z0; ρ0; θsÞ × fðθsÞ;
fðθej ·Þ ∝ fðEjr; r0; θeÞ × fðθeÞ: (9)

We use a hybrid sampling strategy as used by Chen et al. (2007).
The sampling methods include: (1) single variable Metropolis-
Hastings methods (SMH) (Metropolis et al., 1953; Hastings,
1970), (2) multivariate Metropolis-Hastings methods (MMH), (3)
single variable slice sampling methods (SSS) (Neal, 2003), (4) mul-
tivariate slice sampling methods (MSS), and (5) adaptive Metropo-
lis sampling methods (AMH) (Haario et al., 2001).

Sampling of lithotypes

Because lithotypes play a key role in the Bayesian model, we
need to develop an efficient method to sample them. From
equations 1, 5, and 7, we can obtain the conditional probability
distribution of lithotypes given all other information as follows:

fðLj ·Þ ∝ exp

�X
i∼j

βInd½Li ¼ Lj�
�Yn

i¼1

fðαi; Zi; ρi; ri;φi; SijLiÞ: (10)

Drawing samples from the joint distribution given in equation 10
typically suffers from low convergence using Gibbs or traditional
Metropolis-Hastings methods only (Swendsen andWang, 1987). To
treat such slow convergence, in this study we use a hybrid sampling
strategy, which includes the Swendsen-Wang algorithm (Swendsen
and Wang, 1987) and the Wolf algorithm (Wolf, 1989). Both
Swendsen-Wang and Wolf algorithms are cluster-based methods
for the sampling, which have been generalized to become an effi-
cient sampling strategy for complex posterior distributions (Smith
and Smith, 2006; Barbu and Zhu, 2007).

Sampling of reservoir parameters

We use a Gibbs sampler (Geman and Geman, 1984) to draw
many samples of porosity and water saturation from the joint poster-
ior distribution. This is because we can derive analytically the full
conditional distributions of porosity and water saturation at each
layer given other parameters; the full conditionals are Gaussian
distributions and can be directly sampled without any rejection.
We assume that porosity (φi) and water saturation (Si) are condi-
tionally independent given lithotype (Li), i.e., fðφi; SijLiÞ ¼
fðφijLiÞ × fðSijLiÞ. Thus, we have

fðαi; Zi; ρi; ri;φi; SijLiÞ ¼ fðαi; Zi; ρi; rijφi; Si; LiÞ
× fðφijLiÞ × fðSijLiÞ: (11)

Because the conditional distribution fðαi; Zi; ρi; ri;φi; SijLiÞ has
a multivariate Gaussian distribution, the conditional distribu-
tion fðαi; Zi; ρi; rijφi; Si; LiÞ also has a multivariate Gaussian dis-
tribution (Stone, 1995). Let μcðLiÞ and ΣcðLiÞ be the conditional
mean vector and covariance matrix of fðαi; Zi; ρi; rijφi; Si; LiÞ,
both of which can be derived directly from the mean vector
μðLiÞ and ΣðLiÞ. Let μkðLiÞ, where k ¼ 1; 2; · · · ; 6, be the mean
of P- and S-wave velocity ratio, acoustic impedance, density,
resistivity, porosity, and water saturation of the ith lithotype,
respectively. Let gðLiÞ ¼ ðμ1ðLiÞ; μ2ðLiÞ; μ3ðLiÞ; μ4ðLiÞÞT and let

xi ¼ ðαi; Zi; ρi; riÞT . Let vectors b1ðLiÞ and b2ðLiÞ represent two
coefficient vectors with the length of four (see Appendix A). Thus,
we have

fðαi; Zi; ρi; rijφi; Si; LiÞ
∝ jΣcðLiÞj−1∕2 expf−0.5ðxi − μcðLiÞÞTΣcðLiÞ−1ðxi − μcðLiÞÞg;

μcðLiÞ ¼ gðLiÞ þ b1ðLiÞðφi − μ5ðLiÞÞ
þ b2ðLiÞðSi − μ6ðLiÞÞ: (12)

To obtain the full conditional distribution of porosity (φi) and
water saturation (Si), we need their conditional prior distribution
given the lithotype (Li). Based on borehole logs, we assume that
fðφijLiÞ ∼ Nðμ0φðLiÞ; τ0φðLiÞÞ, where μ0φðLiÞ is the mean porosity
and τ0φðLiÞ is the corresponding inverse variance. Similarly, if
the lithotype is not shale, we have fðSijLiÞ ∼ Nðμ0sðLiÞ; τ0sðLiÞ,
where μ0sðLiÞ denotes the mean water saturation and τ0sðLiÞ denotes
the corresponding inverse variance. However, for shale, because
water saturation typically is very close to one, i.e., the logarithmic
water saturation (Si) is close zero. Therefore, we assume that the
negation of Si has the exponential distribution, i.e., fðSijLiÞ ¼
eSi∕βs∕βs for Si ≤ 0 and zero, otherwise.
From equation 11, we have (see Appendix B)

fðφij ·Þ ∝ fðαi; Zi; ρi; rijφi; Si; LiÞ
× fðφijLiÞ ∼ Nðμφi

; τφi
Þ; (13)

where

�
τφi

¼ τ0φðLiÞ þ τφðLiÞ;
μφi

¼ ðμ0φðLiÞτ0φðLiÞ þ μφðLiÞτφðLiÞÞ∕τφi
;

(14)

and

8<
:

τφðLiÞ ¼ bT1 ðLiÞΣcðLiÞ−1b1ðLiÞ;
μφðLiÞ ¼ dT1 ðLiÞΣcðLiÞ−1b1ðLiÞ;
d1ðLiÞ ¼ xi − gðLiÞ þ b1ðLiÞμ5ðLiÞ − b2ðLiÞðSi − μ6ðLiÞÞ:

(15)

We can similarly obtain the full conditional distribution of water
saturation as follows:

fðSij ·Þ ∝ fðαi; Zi; ρi; rijφi; Si; LiÞ × fðSijLiÞ ∼ NðμSi ; τSiÞ:
(16)

If the lithotype is not shale, we have

�
τSi ¼ τ0SðLiÞ þ τSðLiÞ;
μSi ¼ ðμ0SðLiÞτ0SðLiÞ þ μSðLiÞτSðLiÞÞ∕τSi :

(17)

If the lithotype is shale, we have

�
τSi ¼ τSðLiÞ;
μSi ¼ ðμSðLiÞτSðLiÞ − 0.5∕βsÞ∕τSi ;

(18)

where
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8<
:
τSðLiÞ ¼ bT2 ðLiÞΣcðLiÞ−1b2ðLiÞ;
μSðLiÞ ¼ dT2 ðLiÞΣcðLiÞ−1b2ðLiÞ;
d2ðLiÞ ¼ xi − gðLiÞ − b1ðLiÞðφi − μ5ðLiÞÞ þ b2ðLiÞμ6ðLiÞ:

(19)

MCMC sampling procedures

We use a hybrid strategy to draw many samples from the con-
ditional probability distributions given in equations 1–19. The main
procedures are summarized as follows:

1) Assign initial values to all the unknowns and referred to them as
αð0Þ, Zð0Þ, ρð0Þ, αð0Þ

0 , Zð0Þ
0 , ρð0Þ0 , rð0Þ, rð0Þ0 , φð0Þ, Sð0Þ, θð0Þs , θð0Þe , and

Lð0Þ, respectively. Set k ¼ 0.
2) Update geophysical attributes by first randomly picking one of

the five sampling methods (i.e., SMH, MMH, SSS, MSS, and
AMH) with a preset probability and then randomly picking a
subset of unknowns given in equation 8 for updating. Refer to
those samples as αðkÞ, ZðkÞ, ρðkÞ, αðkÞ

0 , ZðkÞ
0 , ρðkÞ0 , rðkÞ, and rðkÞ0 .

3) Update error-related parameters by first picking one of the five
sampling methods and then drawing samples from the condi-
tional probability distributions from equation 9. We refer to
those samples as θðkÞs , and θðkÞe .

4) Update reservoir parameters using Gibbs samplers and the full
conditional distributions given in equations 13 and 16. We refer
to those samples as φðkÞ, and SðkÞ.

5) Update lithotypes by randomly picking the Swendsen-Wang or
Wolf algorithms with a preset probability and refer to those
samples as LðkÞ.

6) If the preset total number of iterations has been reached, stop;
otherwise, let k ¼ kþ 1 and go to Step 2.

The preset probabilities for choosing sampling methods and sub-
sets of unknowns are tuning parameters, and they affect the speed of
convergence but not the results. We set them being uniform in the
preliminary stage and change them after gaining some experience
through the preliminary runs. For example, we can update the seis-
mic attributes more frequently than the electric properties because
the convolution-based seismic forward calculation is much faster
than the EM forward simulation.

CASE STUDIES

We demonstrate the effectiveness of the developed Bayesian
model for parameter estimation by applying it to a synthetic data
set extracted from an elaborately designed 2D model by Chevron
Energy Technology Company for inversion algorithm benchmark-
ing. The generated model mimics real scenarios in the Kuito area of
Angola with built-in nonstationarity. The model includes several
reservoirs embedded in a background shale/sand mixture model.
The reservoir properties were taken mostly from particular reservoir
distributions of porosity, water saturation, etc. The geophysical
attributes (such as seismic and electric properties) were calculated
using suitable rock-physics relationships by taking account of
deterministic porosity compaction trend. The final model has prop-
erties whose horizontal and vertical trends agree with wellbore data
in the Kuito area and whose specific fluctuations away from the
mean trend approximately agree with the variance observed in the
well logs. Figure 1 shows the 2D cross section of logarithmic
resistivity with borehole locations, and the thickness of seawater

is 500 m and that of the overburden is approximately 1650 m.
A target zone with injected CO2 is located at x ¼ 5500 m.
For the purpose of this study, we assume that there is a bore-

hole at x ¼ 5770 m that passes through the target zone. We use
the borehole logs collected at this location to derive statistical
rock-physics relationships, which are used later for estimating
reservoir parameters at other locations. Specifically, we will es-
timates reservoir parameters at three locations: (1) x ¼ 5784 m,
which is very close to the training borehole, (2) x ¼ 6684 m,
which is away from the target zone and near the right edge of
the target zone, and (3) x ¼ 4584 m, which is at the left edge of
the target zone.

Borehole logs and statistical rock-physics models

Figure 2 shows numerous borehole logs from the training well,
including porosity, water saturation, seismic P- and S-wave velocity
ratio, seismic P-wave impedance, density, and logarithmic electric
resistivity, between depths 2100 and 2800 m. There is a reservoir
with relatively high porosity, low water saturation and high resis-
tivity at depths between 2300 and 2600 m. To have a rock-physics
relationship for estimating reservoir parameters, we derive site-
specific statistical relationships among those geophysical attributes
and reservoir parameters. We classify the borehole data into three
lithotypes based on shale content and water saturation. We refer to a
lithotype as “shale” if shale content is greater than 0.5, “brine sand”
if shale content is less than or equal to 0.5 and water saturation is
greater than 0.7, and “CO2 sand” if shale content is less than or
equal to 0.5 and water saturation is less than or equal to 0.7. We
also performed cluster analysis on the data set using the k-mean
algorithm (Venables and Ripley, 2002) and found that the
results are almost identical to those obtained from our empirical
classification.
Figure 3 shows pairwise crossplots among various geophysical

attributes with the circles showing CO2 sand, the crosses showing
brine sand, and the triangles showing shale. We can see that CO2
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sand is well separate from shale and brine sand with low P- and
S-wave velocity ratio, low density and high resistivity. However,
the separation between shale and brine sand is less significant.
We can only distinguish them from the crossplots of seismic P-wave
and S-wave velocity ratio versus impedance and versus density.
Because shale and brine sand are close to each other, we may alter-
natively group them together and have only two lithotypes, i.e., CO2

sand, and non-CO2 sand and shale. The effects of using two versus
three lithotypes on inversion will be investigated in the next section.
As given in the “Methodology” section, we assume that the geophy-
sical attributes have a multivariate Gaussian distribution and there-
fore they can be described by the mean and covariance matrix
among those quantities.

Synthetic seismic and CSEM data

We first generated synthetic seismic data using the convolution
models based on Zoeppritz equations (Aki and Richards, 1980) and
seismic P- and S-wave velocity and density along the profiles at
x ¼ 5784, 4584, and 6684 m between depths 2100 and 2800 m.
We use a time interval of 4 ms and Ricker waveforms with two
different central frequencies, representing low- and high- frequency

seismic data. The seismic profile consists of a thirty-layer target
zone with a layer thickness of 20 m and one layer above and
one layer below the target zone with a thickness of 50 m.
We added temporally correlated Gaussian random noise to the

synthetic data. We use the S/N of 5 to 1 from the smallest (i.e., 0°)
to the largest (i.e., 55°) incident angles with the signal amplitude
defined by the maximum amplitude in the chosen time windows.
We use the exponential variogram and a temporal correlation length
of three times of the time intervals (i.e., 12 ms) to calculate the tem-
poral covariance. Figure 4 shows the synthetic seismic data with
noise included using 5 and 20 Hz central frequencies, respectively.
We can see that the seismic data generated using the 20 Hz Ricker
waveform have more details compared to those generated using the
5 Hz Ricker waveform. For the 5 Hz seismic data, the signals are
weak at the near offsets. In the synthetic study, we first use the seis-
mic data at all the 56 incident angles, which represents an ideal
situation; we then use the data at only five widely separate angles
(i.e., 0, 10, 20, 30, and 40 degrees), which represent common situa-
tions in practice.
We generated 1D EM data according to the resistivity logs along

the same location using the layered EM model. Although it is more
suitable to use a 2D forward model for generat-
ing EM data based on the profile given in
Figure 1, we choose to use a 1D model because
it is fast and our primary focus is on the use of
statistical rock-physics models. The profile for
EM forward simulation includes the seawater
with a thickness of 500 m, the overburden with
a thickness of 1650 m, the target zone with thirty
20-m-thick layers, and infinitely thick bedrock.
We use a typical CSEM survey configuration
and assume that a receiver is deployed on the sea-
floor and a transmitter is towed 50 m above the
seafloor. We collect data using ten offsets (i.e., 1,
2, 3, 4, 5, 6, 7, 8, 10, 12 km) and five frequencies
(i.e., 0.125, 0.25, 0.5, 0.875, and 1 Hz). We also
added 3% to 5% independent random noise to
the synthetic data relative to the amplitudes of
the data from the near to the far offsets. Figure 5
shows the amplitudes and phases of the noised
synthetic EM data.

INVERSION RESULTS AND
DISCUSSION

We apply the developed Bayesian model to
estimate geophysical attributes and reservoir
parameters under various situations. Because
the forward models for calculating seismic
and EM data and for inversion are the same,
our focus is on the role of statistical rock-
physics models. First, we estimate seismic attri-
butes without using any rock-physics model.
The results serve as benchmarks for other ana-
lysis. We will also investigate some features of
the current Bayesian model. Some may be gen-
eral and others may be specific to the current
algorithms.
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Figure 2. Various logs along the training borehole at x ¼ 5770 m.
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Inversion without using statistical rock-physics models

We first invert the 5-Hz synthetic seismic data along the profile at
x ¼ 5784 mwithout using the rock-physics models. This represents
a naive condition at the early stage of exploration when we do not
have any borehole logs. Because we do not have a relationship to
link seismic attributes to reservoir properties such as porosity and
water saturation, we only estimate seismic attributes, including
P-wave and S-wave velocity ratio, impedance, and density, at each
target layer and the layers outside the target zone. The priors for the
parameters in the target zone are assumed uniform within the
bounds determined by our prior knowledge. We choose the bounds
as the extreme values derived at the well location by fluid substitu-
tion of 100% brine and 100% CO2 into the reservoir sand. We use
the obtained high and low values of seismic P- and S-wave velocity,
density, and electric resistivity to calculate the extreme values of
seismic velocity ratios, impedance, density, and resistivity. The low-
er prior bounds are then set as the 80% of the extreme low values
and the prior upper bounds are set as the 120% of the extreme high
values.
We ran four Markov chains using the same initial values with

different random seeds for 240,000 iterations but only keep samples
at every 10 iterations (i.e., a thinning of 10) to save memory. The
use of different random seeds makes chains
move in different paths, which is equivalent to
start from different initial values. We use the po-
tential scale reduction factor (PSRF) to monitor
the convergence of the four chains, which is a
measure of the between-chain variability relative
to the within-chain variability (Gelman and
Rubin, 1992; Brooks and Gelman, 1998). A large
value of the PSRF suggests that either the be-
tween-chain variability can be further decreased
by more simulations or further simulations will
increase the within-variability because the simu-
lated sequences have not yet made a full tour of
the target distribution (Brooks and Gelman,
1998). With that approach, if the scale reduction
score is less than 1.2, the Markov chain is con-
sidered converged; otherwise, more runs are
needed.
Figure 6a shows the root-mean-squares (rms)

of the differences between the data and simulated
results for the four chains. Even though three of
them (excluding the black curve) are visually
converged after a few hundred iterations, indivi-
dual variables are far away from convergence
because of the nonuniqueness of the inverse
problem. Figure 6b shows the medians and the
lower, and upper bounds of 95% intervals of
the PSRF values for unknown geophysical attri-
butes as a function of iterations. The median (i.e.,
the red curve) of the PSRF values are larger than
1.2 until iteration 10,000. This example tells us
that monitoring data misfits only is not reliable
for geophysical inverse problems; it could lead
us to wrong (or local) solutions, as done in many
deterministic inversion approaches.
Figure 7 shows the estimated medians (solid

lines), the 95% lower and upper bounds (dashed

lines), and the corresponding true values (lines with triangles). The
dotted lines are the prior bounds, which are very wide and provide
limited information on the parameters. Overall, the estimated med-
ians follow the true values well and most of the measurements are
within the 95% predictive intervals. We can also see that the uncer-
tainty in the estimation is large, especially for the P-wave and
S-wave velocity ratio and density.

Inversion using seismic data and statistical
rock-physics models

We invert the same 5-Hz seismic data along the profile at
x ¼ 5784 m with the use of the statistical rock-physics models. Be-
cause the rock-physics models provide correlation between reser-
voir porosity and seismic attributes as well as information about
clustering (see Figure 3), we can jointly estimate seismic attributes,
porosity, and lithotypes. We started from the same initial values,
prior bounds, and random seeds as used for the inversion without
using rock-physics models. We similarly ran four chains and pooled
the samples in the second half of the two chains that are deemed as
converged; the results are shown in Figure 8.
Compared to Figure 7, we can see that the use of rock-physics

models improves the estimates significantly: (1) reducing the

1.6 1.8 2 2.2

4

5

6

7

8

VP/VS

VP/VS

VP/VS

Z
p 

(M
P

a.
s/

m
)

1.6 1.8 2 2.2

2

2.1

2.2

2.3

2.4

2.5

D
en

si
ty

 (
g/

cm
3 )

1.6 1.8 2 2.2

1

2

3

4

5

Lo
g(

re
s)

 (
oh

m
−

m
)

4 5 6 7 8

2

2.1

2.2

2.3

2.4

2.5

Zp (MPa.s/m)

D
en

si
ty

 (
g/

cm
3 )

4 5 6 7 8

1

2

3

4

5

Zp (MPa.s/m)

Lo
g(

re
s)

 (
oh

m
−

m
)

2 2.1 2.2 2.3 2.4 2.5

1

2

3

4

5

Density (g/cm3)

Lo
g(

re
s)

 (
oh

m
−

m
)

a) b)

c) d)

e) f)

Figure 3. Statistical rock-physics model with three lithotypes based on the borehole
logs at x ¼ 5770 m, where the circles are CO2 sand, the crosses are brine sand, and
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differences between the true and estimated values, (2) reducing the
uncertainty in the estimation, and (3) smoothing the estimates spa-
tially. The improvement is particularly remarkable for P-wave and
S-wave velocity ratio and density. To quantify the benefits of using

rock-physics models, we calculate the rms of the differences
between the true values and the estimated medians as a
measure of prediction errors and the averaged width of the 95%
predictive intervals as a measure of uncertainty. As shown in the

Figure 5. Synthetic CSEM data with 3% to 5% relative errors from
the near to the far offsets.
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columns 2-3 and 5-6 of Table 1, the use of statistical rock-physics
models helps to reduce the rms of the differences and the associated
uncertainty for all the unknown parameters.
Another significant benefit is that the incorporation of rock-

physics models allows us to estimate reservoir porosity directly.
As shown in Figure 8a, inversion of the seismic data provides very
accurate estimates of porosity; all the estimated medians follow the
true values closely with tight bounds. When not using the statistical
rock-physics models and jointly estimating porosity, porosity has to
be estimated using relationships between seismic attributes and por-
osity by deterministic or stochastic methods. In either case, uncer-
tainty in the alternative porosity estimates will be large because the
two-step approach sums up the uncertainty in the estimated seismic
attributes as shown in Figure 7 and the uncertainty in rock-physics
models as demonstrated by Chen and Hoverstein (2005).
An additional byproduct of using the statistical rock-physics

models is the estimates of lithotypes. Figure 9 shows the estimated
lithotypes as a function of iterations when we use the rock-physics
models with two lithotypes, where we use a thin of 10 for iterations.
Compared to the true lithotypes shown on Figure 9a, we can see that
after 10,000 iterations, the sampling algorithms find the two major
reservoir layers but miss the thin layer because of the limited reso-
lution of the lower frequency seismic data.

Inversion using seismic and CSEM data
and rock-physics models

To estimate water saturation, we need to jointly invert seismic and
CSEM data because seismic data are insensitive to water saturation
as shown by Hoversten et al. (2006) and Chen et al. (2007). To have
a better resolution, we use the 20-Hz seismic data. We can follow
two procedures: (1) jointly inverting the CSEM and 20-Hz seismic
data directly; (2) first inverting the 5-Hz seismic data to provide
narrow bounds for porosity and seismic attributes and then inverting
the CSEM data and 20-Hz seismic data jointly. The main difference
between the two procedures is that the second approach uses

information from low-frequency seismic data. The first approach
produces high fluctuation in parameters and converges slowly be-
cause seismic attributes get no information from the EM data and
porosity is primarily constrained by the seismic attributes. The sec-
ond procedure, however, converges much faster as the porosity is
better constrained, and we only need to modify water saturation and
resistivity to fit the EM data.
Figure 10 shows the comparison between the true values and the

estimated results obtained using the second approach with two

1.6 1.9 2.2

2200

2300

2400

2500

2600

2700

VP/VS

D
ep

th
 (

m
)

4 6 8 10

2200

2300

2400

2500

2600

2700

Zp (MPa.s/m)
D

ep
th

 (
m

)
2.0 2.2 2.4

2200

2300

2400

2500

2600

2700

Density (g/cm3)

D
ep

th
 (

m
)

a) b) c)

Figure 7. Inversion results of the 5 Hz seismic data at x ¼ 5784 m
without using rock-physics models, where the dotted lines are the
prior ranges, the dashed lines are the 95% lower and upper bounds,
the solid lines are the estimated medians, and the lines with triangles
are the true values.

0.0 0.2 0.4

2200

2300

2400

2500

2600

2700

Porosity

D
ep

th
 (

m
)

1.6 1.9 2.2

2200

2300

2400

2500

2600

2700

VP/VS

D
ep

th
 (

m
)

4 6 8 10

2200

2300

2400

2500

2600

2700

Zp (MPa.s/m)

D
ep

th
 (

m
)

2.0 2.2 2.4

2200

2300

2400

2500

2600

2700

Density (g/cm3)

D
ep

th
 (

m
)

a) b) c) d) Figure 8. Inversion results of the 5 Hz seismic
data at x ¼ 5784 m using the statistical rock-phy-
sics models with two lithotypes, where the dotted
lines are the prior ranges, the dashed lines are the
95% lower and upper bounds, the solid lines are
the estimated medians, and the lines with triangles
are the true values.

Stochastic inversion of AVA and CSEM data R73



lithotypes for joint inversion. Due to the use of rock-physics mod-
els, we are able to estimate porosity and water saturation as well as
seismic and electric attributes. In the figure, the dotted lines show
the bounds obtained from the inversion of the 5-Hz seismic data and
the lines with triangles are the true values along the profile at
x ¼ 5784 m. The true values closely follow the estimated medians
and the uncertainty bounds are tight except for resistivity. This is
reasonable because CSEM data have much lower resolution than
seismic data. Comparing the estimated 95% lower and upper
bounds with the prior bounds, we found that all the parameters
are updated because the 20-Hz seismic data provide higher resolu-
tion than the 5-Hz seismic data as shown by the columns 3, 4, 6, and
7 of Table 1.

Inversion using two versus three lithotypes

Physically we may need to classify the lithotypes into three rather
than two lithotypes. To see its effects on the estimation, we invert
the same sets of geophysical data using three lithotypes and com-
pare their results with those obtained using two lithotypes. Similar
to the inversion of the 5 Hz seismic data (see Figure 9), with the use
of two lithotype rock-physics models, we miss the detection of the

thin CO2 sand layer even if we use the high-frequency (i.e., 20-Hz)
seismic data together with the EM data. However, if we use three
lithotype rock-physics models, as shown in Figure 11, we can cor-
rectly predict each lithotype. The use of three lithotype rock-
physics models also improves the estimates of water saturation
and electric resistivity as shown in Figure 12b and 12c. Figure 13
compares the estimated posterior probabilities of being shale, brine
sand, and CO2 sand (solid lines) with their corresponding true
values (dashed lines with circles). We can see that the uncertainty
in predicting each lithotype is very small. Similar results were also
found by Ulvmoen and Omre (2010) when they use Markov ran-
dom fields as prior models.

Estimation of total CO2 volumes with uncertainty

To show the advantage of using the stochastic method over de-
terministic approaches, we estimate the CO2 volume and associated
uncertainty in each layer by the product of porosity and CO2

saturation (i.e., 1 − S) in the layer. Figure 14 shows the estimated
CO2 volumes and their corresponding true values. We can see that
the estimated medians (solid lines) closely follow the true values
(lines with triangles) except in the second reservoir layer. The

Table 1. The rms of the differences between the measured and estimated parameter values and the averaged width of 95%
predictive domains along the profile at x � 5784 m using the seismic data at 56 incident angles.

Root-mean-square of differences Averaged width of predictive intervals

Inversion of seismic data Joint
Inversion

Inversion of seismic data Joint
inversionParameters Without rock-physics With rock-physics Without rock-physics With rock-physics

VP∕VS 0.0980 0.0561 0.0294 0.2732 0.2017 0.0814

Zp (MPa.s∕m) 0.1454 0.1344 0.1123 0.6380 0.3895 0.2001

Density (g∕cm3) 0.0594 0.0235 0.0161 0.3243 0.0774 0.0421

Porosity 0.0166 0.0109 0.0513 0.0247

Sw 0.1404 0.1614

Resistivity (ohm-m) 24.3506 27.9352
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inversion results of using three lithotypes are better for estimating
the CO2 volume in the second CO2 layer; the rms of the differences
between the true and estimated values using two and three litho-
types are 0.0430 and 0.0344, respectively. Most importantly, they

provide the lower and upper bounds of 95% predictive intervals
(dashed lines). Such uncertainty information about the values for
the given estimation may be important for risk assessments and
other purposes.
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Figure 10. Joint inversion results of the 20-Hz seismic and CSEM
data at x ¼ 5784 m using the statistical rock-physics models with
two lithotypes, where the dotted lines are the prior ranges, the
dashed lines are the 95% lower and upper bounds, the solid lines
are the estimated medians, and the lines with triangles are the true
values.
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Figure 12. Joint inversion results of the 20-Hz seismic and CSEM
data at x ¼ 5784 m using the statistical rock-physics models with
three lithotypes, where the dotted lines are the prior ranges, the
dashed lines are the 95% lower and upper bounds, the solid lines
are the estimated medians, and the lines with triangles are the true
values.
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Application of the statistical rock-physics models
to other locations

The borehole that we used for developing the statistical rock-
physics models is located at x ¼ 5770 m and it is 14 m away
from x ¼ 5784 m. To evaluate the applicability of the regression-
based rock-physics models to other locations, we invert seismic
and EM data at two other locations far away from x ¼ 5770 m.

The first one is located at x ¼ 4584 m, 1186 m left of the train-
ing borehole; the second one is located at x ¼ 6684 m, 914 m
right of the training borehole. We follow the same two-step pro-
cedure to first invert lower frequency seismic data and then
jointly invert CSEM and high frequency seismic data, and the
results at x ¼ 4584 and 6684 m are given in Figures 15 and 16,
respectively. Similar to the case at x ¼ 5784 m, the joint inver-
sion of CSEM and seismic data provide good estimates of
reservoir properties and geophysical attributes. These results de-
monstrate that even if the training borehole is about 1 km away,
the derived statistical rock-physical models are applicable to other
locations for the synthetic case.

Inversion using seismic data at five widely separate
incident angles

To show how the information content of seismic data affects
the joint inversion results, we follow the same two-step procedure
using the seismic data at only five incident angles (i.e., 0, 10, 20, 30
and 40 degrees) to estimate geophysical and reservoir parameters.
Figures 17, 18, and 19 show the results without using the rock-
physics models, using the rock-physics models, and the joint
inversion; Table 2 summarizes the data misfits and averaged widths
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Figure 13. Comparison between the estimated posterior probabil-
ities being shale, brine sand, and CO2 sand (solid lines) and their
corresponding true values (dashed lines with circles) at x ¼ 5784 m
using the 20-Hz seismic and CSEM data.
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Figure 15. Joint inversion results at x ¼ 4584 m using 20-Hz seis-
mic and CSEM data and the statistical rock-physics models with
three lithotypes, where the dotted lines are the prior ranges, the
dashed lines are the 95% lower and upper bounds, the solid lines
are the estimated medians, and the lines with triangles are the true
values.
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Figure 18. Inversion results of the 5-Hz seismic data at the incident
angles of 0, 10, 20, 30, 40 degrees at x ¼ 5784 m using the statis-
tical rock-physics models with two lithotypes. The dotted lines are
the prior ranges, the dashed lines are the 95% lower and upper
bounds, the solid lines are the estimated medians, and the lines with
triangles are the true values.
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Figure 19. Joint inversion results of the CSEM data and the 20-Hz
seismic data at the incident angles of 0, 10, 20, 30, 40 degrees at
x ¼ 5784 m using the statistical rock-physics models with three
lithotypes. The dotted lines are the prior ranges, the dashed lines
are the 95% lower and upper bounds, the solid lines are the esti-
mated medians, and the lines with triangles are the true values.
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Figure 16. Joint inversion results at x ¼ 6684 m using 20-Hz seis-
mic and CSEM data and the statistical rock-physics models with
three lithotypes, where the dotted lines are the prior ranges, the
dashed lines are the 95% lower and upper bounds, the solid lines
are the estimated medians, and the lines with triangles are the true
values.
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Figure 17. Inversion results of the 5-Hz seismic data at the incident
angles of 0, 10, 20, 30, 40 degrees at x ¼ 5784 mwithout using rock-
physicsmodels. The dotted lines are the prior ranges, the dashed lines
are the 95% lower and upper bounds, the solid lines are the estimated
medians, and the lines with triangles are the true values.
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of predictive intervals. Although the uncertainties in each of those
inversions are significantly larger than those obtained using all the
seismic data (i.e., Figures 7, 8, and 12 and Table 1), the main con-
clusions remain unchanged. The use of statistical rock-physics
models and Markov random fields provides significant information
for improved estimation of geophysical attributes and reservoir
parameters. Figure 20 shows the estimated posterior probabilities
of being shale, brine sand, and CO2 sand. Even if the accuracy
of predicting shale and brine sand is much lower than that when
all the seismic data are used (see Figure 13), the prediction of CO2

sand is still very accurate, only missing a thin layer around the depth
of 2350 m.

CONCLUSIONS

We have developed a Bayesian model to invert CSEM and seis-
mic data for reservoir parameter estimation based on statistical rock-

physics models and Markov random fields and have shown the
advantages of incorporating statistical rock-physics models through
synthetic studies. The use of statistical rock-physics models to-
gether with Markov random fields significantly improves the esti-
mates of geophysical attributes and allows for direct estimation of
reservoir parameters with associated uncertainty. Although the
statistical rock-physics models are obtained from just one borehole,
we have shown that they are applicable to other locations. This pro-
vides a convenient and cost-effective way to invert geophysical data
for estimating reservoir parameters at the early stage of exploration,
in which collecting borehole samples and performing laboratory or
field rock-physics experiments to obtain detailed physical-based
rock-physics models is difficult.
One main assumption of this method is that the statistical-based

rock-physics models derived from the borehole logs are represen-
tative of the sites of interest. This is a common limitation of learning
based rock-physics models due to the lack of information on the
underlying physics, geology, and mechanics. To have confidence
in the developed rock-physics models, suitable analysis should
be carried out before applying them in estimation, for example,
whether the geology at this site is relatively similar. It is desirable
that if possible we collect data from more than one borehole because
it allows for cross-validation. However, because the main goal of
geophysical exploration at the early stage is to determine whether
it is worthy of further investigation, the use of statistical-based rock-
physics models is useful.
The current Bayesian model is developed for estimating geophy-

sical attributes and reservoir parameters along a 1D profile. It can be
extended to estimate parameters on 2D cross sections or in 3D
spaces. If the spatial variability of geophysical and reservoir proper-
ties along lateral directions is small, we can first estimate reservoir
parameters on each profile and then spatially interpolate the esti-
mates to 2D or 3D domains using geostatistics methods (e.g., kri-
ging, or indicator kriging). However, if the spatial variability is
large, we need to consider the unknown geophysical attributes
and reservoir properties as 2D or 3D random fields and jointly es-
timate them by conditioning to multiple seismic CDP data and 2D
or 3D CSEM data. This is an ongoing but challenging task because
the total number of unknowns is much larger and the forward
modeling of 2D or 3D problems is computationally more
demanding. A major breakthrough in the direction needs effective

Table 2. The rms of the differences between the measured and estimated parameter values and the averaged width of 95%
predictive domains along the profile at x � 5784 m using the seismic data at five incident angles (i.e., 0, 10, 20, 30, and 40
degrees).

Root-mean-square of differences Averaged width of predictive intervals

Inversion of seismic data
Joint

Inversion

Inversion of seismic data
Joint

inversionParameters
Without

rock-physics
With

rock-physics
Without

rock-physics
With

rock-physics

VP∕VS 0.1379 0.1226 0.1417 0.6134 0.3000 0.1741

Zp (MPa.s∕m) 0.4052 0.4200 0.2513 2.2347 1.0683 0.5959

Density (g∕cm3) 0.0715 0.0410 0.0468 0.5284 0.1228 0.0683

Porosity 0.0164 0.0202 0.0726 0.0341

Sw 0.1604 0.2261

Resistivity (ohm-m) 26.5325 27.3670
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Figure 20. Comparison between the estimated posterior probabil-
ities being shale, brine sand, and CO2 sand (solid lines) and their
corresponding true values (dashed lines with circles) at x ¼ 5784 m
using the CSEM data and the 20-Hz seismic data at the incident
angles of 0, 10, 20, 30, 40 degrees.
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parameterization to reduce the total number of unknowns, fast
forward modeling to reduce computational time, and efficient
MCMC sampling algorithms to speed the mixing and convergence
of multiple chains.
We applied a two-step (or sequential) procedure to combine seis-

mic and CSEM data: first inverting lower frequency seismic data to
narrow the ranges of unknown parameters and then jointly inverting
high-frequency seismic data and CSEM data under the constraints
of the previous inversion results. We demonstrated that the two-step
approach is more efficient than the one-step approach for joint sto-
chastic inversion of seismic and EM data in terms of the mixing and
convergence of MCMC sampling methods. This is because lower-
frequency seismic data are the responses of large-scale structures
and their likelihood surface is relatively smooth. The smoothing
likelihood surface allows MCMC chains to move freely and thus
speeds up the convergence of samples to the stationary distribution.
The two-step approach is practical because we can always obtain
low-frequency seismic data by using a low-pass filter. We can also
incorporate other types of low-frequency information, such as the
depth dependent trends of geophysical and reservoir parameters,
into the current Bayesian model through prior distributions. This
certainly will provide valuable information to reduce ambiguity
in the joint estimation. The two-step strategy can be used in many
ways for seismic and EM inversion. For example, because porosity
is primarily determined by seismic data, we can first estimate it
using multiple-frequency seismic data through a sequential
approach, and then estimate water saturation using EM data by
keeping it fixed.
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APPENDIX A

CONDITIONAL DISTRIBUTION OF GEOPHYSICAL
ATTRIBUTES GIVEN RESERVOIR PARAMETERS

AND LITHOTYPES

Because the conditional distribution of geophysical attri-
butes given lithotypes, i.e., fðαi; Zi; ρi; ri;φi; SijLiÞ, has a multi-
variate Gaussian distribution, the conditional distribution of
geophysical attributes given reservoir parameters and lithotypes,
fðαi; Zi; ρi; rijφi; Si; LiÞ, also has a multivariate Gaussian distribu-
tion (Stone, 1995). Let μkðLiÞ, where k ¼ 1; 2; · · · ; 6, be the mean
of P- and S-wave velocity ratio, acoustic impedance, density, resis-
tivity, porosity, and water saturation of the ith lithotype, respec-
tively. Let μðLiÞ and ΣðLiÞ be the mean vector and covariance
matrix of conditional distribution fðαi; Zi; ρi; ri;φi; SijLiÞ. We par-
tition them as follows:

μðLiÞ ¼
�
gðLiÞ
hðLiÞ

�
; and ΣðLiÞ ¼

�
C11 C12

C21 C22

�
;

(A-1)

where gðLiÞ ¼ ðμ1ðLiÞ; μ2ðLiÞ; μ3ðLiÞ; μ4ðLiÞÞT and hðLiÞ ¼
ðμ5ðLiÞ; μ6ðLiÞÞT , representing the mean vectors of geophysical

attributes and reservoir parameters. The matrices C11, C12,
C21, and C22 have dimensions of 4 × 4, 4 × 2, 2 × 4, and 2 × 2,
respectively.
Let μcðLiÞ and ΣcðLiÞ be the conditional mean vector and cov-

ariance matrix of fðαi; Zi; ρi; rijφi; Si; LiÞ. We thus have (Gelman
et al, 2004)

μcðLiÞ ¼ gðLiÞ þ C12C−1
22 ððφi; SiÞT − hðLiÞÞ (A-2)

and

ΣcðLiÞ ¼ C11 − C12C−1
22C21: (A-3)

Let b1ðLiÞ and b2ðLiÞ be the first and second column of the product
of C12 and C−1

22 . We thus have

μcðLiÞ ¼ gðLiÞ þ b1ðLiÞðφi − μ5ðLiÞÞ
þ b2ðLiÞðSi − μ6ðLiÞÞ: (A-4)

APPENDIX B

FULL CONDITIONAL DISTRIBUTIONS OF
POROSITY AND WATER SATURATION

Because the derivation of full conditional distributions of poros-
ity and water saturation is similar, we only give details on the
derivation of porosity. From equation 13, we have

fðφij ·Þ ∝ fðαi; Zi; ρi; rijφi; Si; LiÞ × fðφijLiÞ
∝ jΣcðLiÞj−1∕2 expf−0.5ðxi − μcðLiÞÞTΣ−1

c ðLiÞðxi − μcðLiÞÞg
× τ0φðLiÞ1∕2 expf−0.5τ0φðLiÞðφi − μ0φðLiÞÞ2g
∝ expf−0.5ðφib1ðLiÞ − d1ðLiÞÞTΣ−1

c ðLiÞðφib1ðLiÞ − d1ðLiÞÞg
× τ0φðLiÞ1∕2 exp f−0.5 τ0φðLiÞðφi − μ0φðLiÞÞ2g
∝ expf−0.5τφi

ðφi − μφi
Þ2g ∝ Nðμφi

; τφi
Þ; (B-1)

where d1ðLiÞ is given in equation 15.
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