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Abstract

A numerical modeling algorithm has been developed to simulate the electromagnetic re-
sponse of a three dimensional earth to a dipole source for frequencies ranging from 100Hz to
100MHz. The numerical problem is formulated in terms of a frequency domain - modified vector
Helmholtz equation for the scattered electric fields. The resulting differential equation is ap-
proximated using a staggered finite difference grid which results in a linear system of equations
for which the matrix is sparse and complex symmetric. The system of equations is solved using
a preconditioned quasi- minimum-residual method.

Dirichlet boundary conditions are employed at the edges of the mesh by setting the tangential
electric fields equal to zero. At frequencies less than 1MHz, normal grid stretching is employed
to mitigate unwanted reflections off the grid boundaries. For frequencies greater than this,
absorbing boundary conditions must be employed by making the stretching parameters of the
modified vector Helmholtz equation complex which introduces loss at the boundaries.

An iterative solution to the non linear 3-D electromagnetic inverse problem is obtained by
successive linearized model updates using the method of conjugate gradients. Full wave equation
modeling is employed to compute model sensitivities and predicted data in the frequency domain
with the 3-D finite difference algorithm.

Necessity dictates that both the forward and inverse solutions be implemented on a massively
parallel computing platform for reasonable execution times because realistic reconstructions
require the solution of tens of thousands of parameters. In addition large scale 3-D forward
modeling is needed for computing upwards to several million electric-field unknowns.

1 Introduction

The solution of the three-dimensional (3-D) electromagnetic (EM) inverse problem has been a goal
of geophysicists for many years. The search for this solution has been motivated by its potential
applications in mapping electrical conductivity, dielectric permittivity and magnetic permeability.
Knowledge of these electrical properties are extremely important since they are needed in hydrolog-
ical modeling, chemical and nuclear waste site evaluations, mineral and oil and gas exploration and
more recently reservoir characterization.

Unfortunately, the solution of the 3-D inverse problem is non trivial. One obstacle to constructing
a solution to this problem have been the scarcity of efficient forward modeling solutions needed for
computing model sensitivities and predicted data at fine parameterization levels. Tens of thousands
of cells are needed to allow for smooth reconstructions, which stabilizes the inversion process, but
can require the solution of up to several million field unknowns in the forward problem.

Nevertheless, great strides have been made over the last decade in forward modeling using
staggered 3-D finite differences. Druskin and Knizherman (1988 and 1994), Smith (1992), Wang
and Hohmann (1993), and Newman (1995) all employ some type of staggered finite difference grid
(Yee,1966) to solve for the EM fields in both the time and/or frequency domain. Yet even with
these computationally efficient solutions, the complexity, and thus the realism of the models that
can be simulated on traditional serial computers is limited by memory and flop rate of the processor.
Moreover, implementation of a 3-D inversion capability that uses these solutions is still not practical.
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However, with the rapid advancements in massively parallel computers the limitations posed by
serial computers is disappearing. This is due to the fact that the rate at which the simulations
can proceed is dramatically increased because thousands of processors can operate on the problem
simultaneously. Because of this computational efficiency it is even possible to propose a realistic
attack on the 3-D inverse problem.

Outlined below is our approach to solving the 3-D forward and inverse problems on an MP
platform. For the forward problem we will examine the implementation of a frequency-domain-
finite difference (FD-FD) scheme based on a staggered grid. Building on this we will implement the
corresponding inverse. We will next briefly describe how to implement these schemes on a massively
parallel computer. Finally we will demonstrate the forward code’s usefulness over a wide frequency
range for different types of geophysical scenarios and provide some initial test results for the inversion
scheme.

2 Theoretical Development of the Forward Problem

2.1 Finite Difference Formulation

In order to simulate the EM response of a 3-D earth, we numerically solve the frequency domain
version of the vector Helmholtz equation for the scattered electric fields using a finite difference
approximation on a staggered grid(Yee ,1966). The FD solution we shall outline has been designed
to compute the 3-D EM response for a wide variety of earth properties for frequencies ranging
from approximately 100 hz up to 100 Mhz. This scheme is similar to those outlined in Alumbaugh
and Newman (1994) and Newman and Alumbaugh (1995), but has been extended as described in
Alumbaugh et al.(1996) to include both variable magnetic permeability as well as absorbing boundary
conditions (ABCs). The ABCs are required to simulate the response for frequencies greater that
10 Mhz as without them erroneous results are produced. We have chosen to employ the ”perfectly
matched layer” (PML) absorbing boundary conditions originally developed by Berenger(1993) for 2-
D time-domain calculations and later modified for 3-D by Katz et al. (1994) and Chew and Weedon
(1994). This method uses a modified form of the Helmholtz equation in which the absorption is
incorporated through the use of complex grid stretching.

Because the responses we are interested in simulating, for example airborne EM simulations,
often employ a dipole source located far away from zones of anomalous electrical properties, we have
chosen to work with the scattered field versions of the governing equations. Often this allows us
to employ a coarser discretization about the source location than would be employed with a total
field solution and helps to limit storage overhead. In addition, because the scattered field versions of
Maxwell’s equations numerically decouple in the air at low frequencies (< 10MHz) we have chosen
to work with the scattered electric field version of the modified Helmholtz equation instead of the
coupled Maxwell system, which has the form
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Figure 1: Finite difference stencil for solving the scattered electric field Helmholtz equation. The
arrows represent the position of the electric fields, with the open arrows representing those unknowns
needed to form the equation for Ex.

SPRIANE AN N (3)
he 0z " hy Oy h, 0z

In these equations the electrical conductivity, magnetic permeability and dielectric permittivity are
denoted by o, i, and ¢, respectively, with the ’p’ designating a whole-space background value, Eq
and Ep, are the scattered and primary electric field whose sum is equal to the total electric field,
Hy, is the primary magnetic field and e; and h; for i=x,y,z are coordinate stretching variables which
stretch the x,y, and z coordinates. As shown in Chew and Weedon (1994), when e; and h; are
complex then the medium is perfectly absorbing. Note that the terms at the end of equation (1) are
"equivalent source” terms which are calculated wherever the properties of the medium are different
from that of the assumed background. The boundary conditions employed are Dirichlet conditions,
l.e., the tangential component of Es is set to zero on the grid boundary.

The scattered electric fields are assigned to each cell following the staggered grid scheme given
in Figure 1. For node (i,j,k), the x, y and z components of electric field are sampled at (i +
1/2,3,k), (i,5+1/2,k) and (i, j, k+1/2), respectively. For modeling the coupled Maxwell’s equations
this corresponds to assigning the electric fields to the edges of the cell and the magnetic field to
its faces. In addition this formulation requires that the conductivity and dielectric permittivity be
computed halfway along a given cell edge in Figure 1, and the magnetic permeability to be computed
in the center of the cell face. This is accomplished through the simple averaging schemes described
in Alumbaugh et al. (1995).

After numerically discretizing equation (1) to form the finite difference equations a linear system
is assembled,

KEs =s (4)

where K is the stiffness matrix containing the numerical approximations to the derivatives as well as
the electrical properties of the medium, E is the unknown vector for the scattered electric field and
s is the equivalent source vector. Alumbaugh et al.(1996) show that K is complex symmetric, even
when complex grid stretching is employed. The solution vector can be obtained using the quasi-
minimum residual (QMR) (Freund ,1992) technique with preconditioning to iteratively determine

3



the solution within a predetermined error level, which is defined here to be

_ 2
er = 1KEs —sl”. (5)
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Tests with different types of incomplete decomposition and polynomial preconditioners has found
that simple Jacobi scaling provides a simple, time efficient method of preconditioning.

After the scattered fields at the grid points have been determined, the fields at the receivers must
be calculated. The electric field is simply calculated using bi-linear interpolation while the magnetic
field is calculated by first taking a numerical approximation of Faraday’s law for the scattered electric
fields on the grid surrounding the receiver,

Ve X Eg = —iwpHg + (1 — pp)Hp (6)

and then interpolating the result to the point of interest. In this expression Hs is the scattered
magnetic field. Note, for each new source position and/or frequency a new system must be solved,
although some time savings can be implemented by using the previous solution vector as an initial
guess.

2.2 Properties of the PML Absorbing Boundary Condition

Although their calculations employ the coupled modified Maxwell’s equations in the time domain,
Chew and Weedon (1994) develop theory in the frequency domain to demonstrate how lossy, non-
reflecting conditions are created along the mesh boundaries. The complex stretching parameters are
assigned a value of the form 1+a — ib. On the internal portion of the mesh, a = b =0 such that the
modified Helmholtz equation reduces to the normal form. Near the edges of the mesh e; and h; are
allowed to vary over several cells, but only in the direction that is perpendicular to the boundary.
For example along the +z boundary e, = ey, = h; = hy =1 and only e, and h; are allowed values
of a and b that are not equal to zero.

Because we are solving an implicit rather than explicit system, we have found that in order to
incorporate a given amount of loss, or attenuation, across a number of cells serving as the absorbing
boundary, it is better to set a and b constant rather than gradually increasing their value toward
the mesh boundaries as suggested by Berenger (1993); gradually increasing their value results in
a greater number of iterations needed to achieve convergence. Simple MATLAB experiments have
shown that this is due to the fact that the condition number of K increases as the ratio between
the complex amplitudes of the largest and smallest cell dimensions in the mesh increases. Thus
gradually increasing the stretching parameters outward will produce a cell along the edge of the
mesh which is effectively much larger than any of the cells employing constant stretching. Because
the smallest cell size is the same in either case, the solution of the model that employs the gradual
stretching will take longer to converge.

Currently, we are investigating methods for choosing optimal stretching parameters for a given
frequency and background wave number, defined as

kp = \/—iwpp(ap + iwep) = a — 1. (7)

where a and 3 are both real. This analysis is based on the assumption that the loss that is incor-
porated through complex grid stretching is caused by ’pseudo’ electrical parameters within cells of

constant size. Through this assumption we can develop a pseudo-skin depth in each cell which is
defined by

p 2L — 1
= @ ?
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and a pseudo-wavelength defined as
1
AP = 9)
(aa — fb)

To this point we have found that for frequencies greater than 1MHz, accurate results and quick
solution convergence are achieved when a and b are chosen such that five pseudo-skin depth’s of
attenuation are provided for across the stretching region without out significantly changing the
pseudo wavelength from that of the natural background wavelength. At frequencies below 100
kHz the analysis seems to become more difficult as the manner in which the grid is stretched can
significantly alter the convergence of the system. In general at these frequencies we have obtained
good results using only real grid stretching; i.e. setting b=0 and varying only a.

3 Theoretical Development of the Inverse Problem
3.1 Regularized Least Squares

The parameterization used in the 3-D inverse solution will be kept sufficiently fine because we are
interested in reconstructions that do not under parameterize the earth. This forces the 3-D inverse
problem to be underdetermined, which makes it unstable and ill posed. Reliable estimates of the
model parameters m may be possible if a least squares inversion is stabilized with regularization
(Tikhonov and Arsenin, 1977). Regularization removes solutions that are too rough by imposing an
additional constraint on the data fit. Reconstructions are required to be smoothed versions of the
earth’s electrical properties at the expense of an increase in the fitting error.

Linearizing about a given earth model, m(¥), the following functional can provide smooth recon-
structions if it is minimized with respect to the model parameters, m, which can include electrical
conductivity, dielectric permittivity and magnetic permeability:

S = [(D(d—dP® — AP® (m — m®))H(D(d — dP® — AP (m —m®)) - x]+ A(Wm)(Wm)*. (10)

Here we are going to minimize model roughness (Wm)(Wm)* subject to a specified square error,
x2. The superscripts H and t denote the Hermitian and transpose operators. The matrix W is the
roughness matrix consisting of a finite difference approximation to the Laplacian V? operator and is
sparse. In equation (10) the observed data are represented by the vector d and the predicted data
arising from the model m(" are denoted by dP(). The data weighting matrix D is diagonal consisting
of the reciprocal of the data standard deviations, the reciprocal of the data amplitude or in some
instances an identity matrix if data weighting is unwarranted. The Jacobian or model sensitivities
matrix, AP() is determined from the frequency-domain forward solver algorithm described above.
Note we assume the estimated model parameters to be always real. Determining and manipulating
the elements of the Jacobian matrix in the most efficient manner is critical for a robust 3-D inverse
solution, since calculation and use of these elements can be a bottleneck in the inversion. Derivation
and efficient use of AP(®) in the inversion is given below.

The parameter A is the tradeoff parameter between model smoothness and data fit. Its selection
requires special care if the inverse solution is to provide acceptable results. There is no universal or
unique strategy for selecting A in equation (10). Selecting tradeoff parameters that are too small can
produce models that are physically unreasonable; the models are spatially too rough, but produce
superior data fits. Selecting tradeoff parameters that are too large produce highly smoothed models,
but these models show poor dependence on the data. We shall defer further discussion of this
parameter until we discuss the iterative nature of equation (10).

Minimization of equation (10) yields the model step, where

m = [(DAPO)H(DAPD) + A(W)H(W)] " (DAPD)* (DY) (11)
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with 5d® = (d — dP() 4 APO gy (D). (12)

Because negative parameter estimates are an admissible solution arising from equation (11), it
is advisable that before minimizing equation (10), it should be reformulated so one can invert for
the logarithm of the parameters, instead of the parameters themselves. This causes the imaged
properties to be always positive which is a physical requirement. Using the log parameterization it
is also possible to incorporate a lower bound positivity constraint in the inverse solution, where

§(m®) = (m® — €)sIn(m® —¢), (13)
with 6m® = (m — m®) along with §ln(m® —€) = In((m — €)/(m) —¢)), and m>e and € > 0.

3.2 Model Update via Conjugate Gradients

Using equation (11) to compute the updated model, m, directly is not feasible for the full 3-D
problem since direct matrix inversion is prohibitive, even on an MP platform, when the number of
unknowns exceed several thousand. Instead we opt for an iterative solution. Since equation (10)
satisfies the normal equations, the linear system is symmetric semidefinite even when regularized.
Thus the conjugate gradient (CG) method of Hestenes and Stiefel (1952) can be used to get the
solution. More importantly, following Mackie and Madden (1993) and Zhang et al. (1995), it is
possible to avoid explicitly forming the Jacobian Matrix, AP®) and its Hermitian form altogether
with this approach, thus saving considerable computer storage. In the conjugate gradient methods
all one needs is one matrix-vector multiply per relaxation step. Because the matrix in question is
given by the product of DAPOH with DAP®) we really require two matrix vector multiplies instead
of one; in addition two matrix-vector multiplies arise in the CG routine from the regularization
matrix W and its transpose. However, these multiplies are easy to compute and need no further
elaboration until the MP implementation. Explicitly we have

y = DAP()y (14)

and .
zZ = DAP(‘)Hy, (15)
where u is an arbitrary real vector, y, is a complex vector and z is a real vector.
For the CG algorithm to be effective it is necessary to compute the matrix-vector products with
utmost efficiency, which requires efficient manipulation of the Jacobian matrix elements. To show
how this can be accomplished, consider a single data measurement defined for a given transmitter

In this equation d? is the background field at location j and is either specified by E,, or Hp and Eg
is the scattered electric field vector with dimension of NT x 1 and is determined from our forward
solver at the node points from equation (4), NT represents the number of field unknowns, and the
vector g; is an interpolator vector for the jth measurement point and is of dimension 1 x NT'. This
vector will interpolate the field values on the staggered grid to the measurement point of interest and
can also numerically approximate the curl of the electric field so that magnetic field measurements
are allowed for in equation (16). With this definition an element of the Jacobian matrix is written

as 8d; /6my, = gtOE, /omy. (17)
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From the forward problem we know that the scattered electric fields are related to the source vector
of a given transmitter, s, by the linear system

KEg = s, (18)
where K is the sparse finite-difference stiffness matrix. Thus,
OEs/0my, = K~ (0s/0m; — 0K /0m;Es) (19)
and an element of the Jacobian matrix can be written as
dd; /8my, = gtK ' (9s/dmy, — K /dmiEs). (20)
We now determine the jth element of the first matrix vector multiply in equation (14) to be
M
y; = Cmplz(Re(gfK 'Y u(9s/0my — 0K /OmyEq))Re(Dy;), (21)
k=1

M
Im(gfK ™ > up(8s/0my — 0K/0miEq))Im(Dj;))
k=1
where M is the total number of parameters to be estimated and D;; is the jth diagonal entry of the
matrix D. Using the same approach one can also show that for the second matrix- vector multiply

N
2k = Re(Y_ Cmplz(Re(d:)Re(y:), Im(di) Im(y:)) gt K~ (8s/0my — 0K /0miEs)),  (22)
i=1
where N is the amount of data used in the inversion and the symbol "*’ stands for complex conju-
gation. Note that in equations (21) and (22) the term (8s/dmy — 0K /0mEs) is rapid to compute,
where the vector 0s/0my has 12 non-zero entries and the matrix 0K/0m; can have 12 non-zero
entries if my represents the conductivity or permittivity or 77 non-zero entries if my represents the
magnetic permeability. It is important to mention here that when magnetic permeability properties
are being estimated we restrict the measurement point to be in uniform background medium, such
as air. In that way the interpolator vector g} will not depend on changes in the magnetic perme-
ability and equation (20) remains valid. Recall this vector operator approximates Faraday’s law and
because of this requires the magnetic permeability to be determined at the measurement point in
order to compute the magnetic field.
In addition to the forward solves needed for the different transmitters, we can carry out the
matrix-vector multiplies in equations (21) and (22) efficiently by solving a series of forward problems
corresponding to the total number of unique data measurements locations, where

-1
vi =giK (23)

or
Kv; = gj, (24)

since K* = K (recall that the matrix K is complex symmetric). A unique measurement location
comprises a specific field component measurement made at a site using different transmitters posi-
tions at a single frequency. Thus to get the total number of forward solves needed for each model
update we have N, + Ni;, where N;, and N, are the total number of transmitters and unique
receiver positions used in the inversion; note that use of multiple frequency data will require addi-
tional forward solves for the sources and unique receiver positions. Handling the Jacobian matrix
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elements in this manner is much more efficient then attempting to compute them directly using
equation (20) and then using the results to form the matrix-vector multiplies. For example if we are
estimating over 30,000 parameters this would then requires 30,000 separate forward solves, which
is impractical. On the other hand because the amount of data used in the inversion is limited, we
anticipate no more than several hundred to several thousand forward solves per model update with
our approach. This approach has also been recommended by McGillivray and Oldenburg (1990) and
Oldenburg (1990) because of its efficiency. It has been used by Park (1983), Mackie and Madden
(1993) and Zhang et al. (1995) in their constructions of the inverse solution.

3.3 An Iterative Solution

Because of the computational cost of using an exact forward solution in the inversion we do not have
the luxury of slowly reducing the tradeoff parameter or determining an optimal A at a given iteration
to insure against arbitrarily rough models. However, experience indicates that smooth models can
be produced with the strategy we are now going to discuss.

We initiate an inversion assuming an initial background model, where we compute the predicted
data for all transmitter locations. At the first iteration we use our scheme to efficiently determine
the matrix-vector multiplies in the CG algorithm and determine the model update via equation (11).
This model is determined once the tradeoff parameter, A, is selected. To assure a smoothed solution
at the first iteration, we select the tradeoff parameter as

A= Ma:cRowSum(DAp{i))H(DAp“)/21'&1, (25)

where i=1 for the first iteration. We have selected this method of choosing A because it is an estimate
of the largest eignevalue of the non-regularized least squares system matrix. Thus weighting W*W
by this amount allows only the largest eigenvalues to influence the solution. The maximum row sum
is easy to compute and follows from equations (14) and (15) with u selected to be the unit vector.

We proceed to the next iteration if the data error (sum of square errors) is above x2. If this is
true, the model is linearized again about the new model m, the predicted data and electric fields are
computed from the updated background model, and then the new model update determined once
the tradeoff parameter is specified with equation (25). In general we have found that for the first
few iterations this method of selecting the tradeoff parameter reduces the error by about a factor of
2. The iterative procedure, just outlined, is continued until the data error is below x?, convergence
occurs or a pre specified number of iterations has taken place.

Even with this procedure, it is possible to drive the tradeoff parameter down too quickly with
equation (25), especially when one attempts to fit the data to an unrealistic noise level or uses an
excessive number of iterations. However, it has been our experience that if the tradeoff parameter
is not relaxed sufficiently the inversion can stall out far above the estimated noise level in the data.
Our solution to this difficulty is to have a good estimate of the data noise and monitor the tradeoff
parameter and squared error in the inversion. If excessive model structure is being incorporated into
the image, or if the inversion is over fitting the data, we stop the inversion and relaunch it using an
acceptable reconstruction and tradeoff parameter at some previous iteration. After this restart, the
tradeoff parameter is kept fixed for the rest of the inversion. In addition, we may change the data
weighting scheme if it is decided that bad data are weighted too large or good data too little. While
this strategy is somewhat subjective, it has yielded acceptable results.

At each iteration we restrict the number of relaxation steps in the CG routine, since only a
modest number of steps are sufficient to produce an accurate model update, especially during the
early stages of scheme (Zhang et al., 1995). For the first and second iterations, 20 and 40 relaxation
steps are used, respectively. Subsequent iterations use 60 steps.
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4 Implementation on Massively Parallel Computers

In order to simulate larger, more realistic models and more importantly, image more complex struc-
tures than has previously been possible, the original serial versions of the forward and inverse codes
have been modified to run on massively parallel MIMD (multiple instruction multiple data) ma-
chines. Such machines can have thousands of processors and are employed by assigning a given
number of processors in each direction of the forward and inverse modeling domain (nx in x, ny
in y and nz in z) and then breaking up the model across the processor bank such that each indi-
vidual processor is in charge of a 3-D subset, with all processors sharing the same data. Because
each processor needs only to make the necessary calculations for this subset, and because all of the
processors are making their appropriate calculations simultaneously, the solution time is reduced by
a factor which is approximately equal to the total number of processors employed (nx*ny*nz).

The first step in converting the serial version of the code to a parallel version is to divide the
problem up among the processors such that it is optimally load balanced. This preprocessing step
is necessary to ensure that large banks of processors are not standing idle for long periods of time
while a single or small number of processors complete their calculations. As one would imagine, this
type of scenario is an extremely inefficient use of resources. Rather the problem is broken up such
that each processor has as close to an equal number of calculations as possible.

The second issue that needs to be addressed is the manner in which the model is input; for the
inverse this could constitute a starting model needed to launch the inverse or a restart model in
the event that the inversion needs to be restarted midway through the process. To accomplish the
input, we have decomposed the input data into two different sets: a global data set and a local
data set. Global data are those variables that each processor needs to know such as the source and
receiver positions, the frequencies, what type of solver is being employed, the location of the mesh
nodes, etc. These form a fairly small data set which can easily be read in by a ”lead” processor and
then ”broadcast” to all other processors. The second type of input is the local data, or local model
parameters (conductivity, dielectric permittivity and magnetic permeability) that are assigned to
each cell within the model. Because each processor needs only a small subset of this data and
contains only a small amount of local memory, the local data is broken up into multiple files, one for
each processor, which are then read in individually from a parallel disk system which allows several
files to be read in simultaneously.

Even with the increased performance of an MP platform, memory considerations will dictate the
largest model that can be simulated, particularly for the inverse. EM inversion in 3-D can easily
require the solution of at least several hundred forward solves per iteration. We also anticipate that
each solve could constitute over a million field unknowns. Nevertheless, it is still possible on large
scale platforms, such as the 1840 node Intel Paragon, to execute all solves without writing to disk.
A significant portion of the storage required to preform the inversion is taken up by the electric field
solution vectors that are obtained from the forward solver. These vectors are needed to complete
matrix-vector multiplies in the CG routine, previously discussed.

4.1 Message Passing Required in the Forward Problem

In order to complete the calculations required in the forward problem, information will need to be
exchanged between processors. This exchange of information is called message passing. To show
how it arises, consider the forward problem after the data have been accessed and each processor
has constructed its own portion of the stiffness matrix K and the source vector s.

Each processor proceeds to solve for its portion of the solution vector in equation (4). However,
each iteration within the QMR solver requires one matrix-vector multiply and several vector dot
products. These operations pose problems because in order to complete them, information must
be exchanged both between all of the processors as well as small subsets of processors. The dot
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Figure 2: Processor stencil employed for message passing in order to correctly complete the matrix-
vector multiply for the forward problem.

products are fairly easy to implement as they involve; 1) a local calculation in which each processor
computes the dot-product of its portion of the vector and 2) a global calculation in which all the
local calculations are "gathered” by the lead processor, summed, and the result broadcast across
the machine.

The vector-matrix multiply is more difficult to implement because it requires that each processor
communicates with those "neighboring” processors that are solving for the scattered electric fields in
adjacent portions of the model. Determining these neighboring processors and the actual unknowns
that need to be communicated is accomplished in the following manner. If we assume that each
processor contains only a single node, then we can imagine it as a cubic shape enclosing node (i, j, k)
as well as all other nodes in Figure 1. Careful examination then indicates that there are two types
of communication that each processor needs to execute with its appropriate neighbors. The first
tvpe of communication will occur across the ”faces” of the cube. For node (i,j,k) this implies
communication with those nodes directly connected to it by the gray lines of the finite difference
stencil, i.e., nodes (i — 1,7,k), (i + 1,7,k), (,7 — 1,k), (2,5 + 1,k), (i, 7,k — 1) and (7,7,k + 1). For
these communications either two or three unknowns are exchanged per nodal position. The second
type of communication occurs across certain "edges” of the cube, and involves those nodes which
are not directly connected to (i, J, k) by the stencil lines, for example node (i + 1, 7, k— 1). This type
of communication requires only one unknown per node being communicated each way. If we now
expand the idea such that each processor cube contains a 3-D distribution of nodal points, then we
can develop the processor communication stencil shown in Figure 2.

The last point to be addressed is the message passing needed for data output. Because for any
given source we only need to know the results at only a limited number of receiver positions, all of
which may lie on the same processor, the data output is inherently non-parallel and is accomplished
in the following steps. 1) Each processor determines which processor holds the portion of the model
that contains the receiver position. 2) This "receiver” processor then determines if it need any
values from adjacent processors, completes the necessary point-to-point communication with those
processors, and then does the necessary bilinear interpolation. 3) The results are then sent to the
lead processor which outputs them to disk.

4.2 Message Passing Required in the Inverse Problem

Beyond the message passing needed in the forward problem, there will be additional message passing
needed for the inverse. Of primary importance is to limit the amount of inter-processor communica-
tion within the CG routine, which incorporates the matrix vector multiplies for both the Jacobian
and regularization matrices. To conserve space we only show one processor stencil here which can
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Figure 3: Processor stencil employed for message passing in order to correctly complete the matrix-
vector multiplies in the inverse.

be used to explain the three different local communications needed within the inverse. The local
communication pattern for a given processor is illustrated in Figure 3.

The communication needed to complete the matrix-vector multiplies involving the Jacobian ma-
trix consists along the faces of processors as well as along edges. Thus before the CG routine is
called, electric field values arising from the forward solver are exchanged which provides each pro-
cessor with the necessary values to complete the calculations in equations (21) and (22). Specifically
information is passed from the central processor to those neighbors designated by the lighter colors
in Figure 3. Likewise those neighboring processors which are darker pass information to the central
Processor.

Local communication for multiplies with the regularization matrix and its transpose involve only
communication along processor faces in Figure 3. Here all such processors send elements of the
CG vectors to the central processor as well as receive from it. Local communication occurs every
time the matrix-vector multiply is encountered in the CG routine because we have explicitly formed
the regularization matrix and the CG vectors are constantly updated for each relaxation step. In
addition there are five global dot products within a generic CG routine and one in equation 21 that
incur additional global communication overhead at each iteration.

After exiting the CG routine, additional message passing is needed. This is because electrical
properties for cells along processor boundaries need to be communicated with neighboring processors
in order to accurately calculate the correct average conductivity, dielectric permittivity and magnetic
permeability for subsequent forward modeling in the inversion. Those face and edge processors
designated with lighter colors send to the central processor, while those that are darker receive
information from it.

4.3 Message Passing Software

To provide for the required message passing we have chosen to employ the Message Passing Interface
MPI, Skjellum et al.,1993) rather than using machine specific commands. This provides portability
) the code as it will be able to run on any parallel machine and/or distributed network of machines

on which this public domain library is available. To this point both forward and inverse codes have

been implemented on the 1840 processor Intel Paragon at Sandia National Laboratories.

5 Demonstration of the FD Forward Solution

To illustrate the versatility and speed of the numerical solution when implemented on a parallel
platform, we have simulated two different models which represent measurement configurations that
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might be employed in the field and employ a wide range of frequencies. The first simulation will be
involve frequencies in the low GPR range while the second will simulate a portion of helicopter EM
survey. In the two cases the Krylov solver was assumed to have converged to an adequate error level
when equation (5) was found to be less than or equal to 10~7 and 1078, respectively. These error
levels are empirical and are based on extensive comparisons of the solution with other numerical
solutions and scale model experiments (eg., Alumbaugh and Newman, 1994).

5.1 High Frequency Simulation for the "VETEM?’ project

The 'VETEM?” (Very Early Time ElectroMagnetic) project is an attempt to build an electromagnetic
prospecting system that operates above traditional geophysical induction frequencies (100 kHz) yet
below ground penetrating Radar frequencies ( 100 MHz) (Pellerin et al., 1995).To illustrate the
ability of the code to simulate the electromagnetic response at these frequencies, variations of the
model shown in Figure 4 has been employed. This example was designed to simulate a test site at the
Colorado School of Mines where a prototype of the VETEM system known as the High Frequency
Sounder (HFS) (Stewart et al., 1994) was first tested. The model is particularly difficult to simulate
because of two conflicting conditions that are imposed by the material properties; 1) the wavelength
in the block at 28.5 MHz is approximately 1.6m which requires a maximum cell dimension of 0.16m
to avoid grid dispersion (Chew, 1990, p 244) and 2) the skin depth in the first layer at that same
frequency is 17.8m which requires the boundaries to be placed very far away to avoid reflections off
the grid. The small cell size coupled with the large distance to the boundaries produces a very large
mesh if no absorbing boundary conditions are employed.

Plan View <4—8m—p

Cross Section *
— g =g= == o' (0.255m

Figure 4: The Colorado School of Mines 3-D (CSM3D) model.

To simulate this example a 120 x 120 x 120 cell mesh was employed with a constant cell size of
0.15m in the x and y directions. This places the total distance across the mesh at 18m. In z, the
maximum cell size was also 0.15m, with a minimum cell size of 0.13m to accommodate the layer
thicknesses. Note, this mesh produces a total of 5x10° unknowns for which to solve, which is much
too large a problem for all but a supercomputer. The VMD source was placed at the center of the
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mesh in x and y, i.e., 9m from each boundary, and a background conductivity of o=10 ~!¢S/m was
assumed. To incorporate loss and thus avoid reflections off the edges of the mesh, b was set equal
to 0.6 over 20 cells along each edge of the mesh.

In the first case we simulate two 1-D models, a two layer which assumes the block is absent,
and a 3 layer model which assumes that the block extends to infinity in the x and y directions.
This allows us to compare to a 1-D code developed by Ki Ha Lee at Lawrence Berkeley Laboratory.
Because HFS directly measures tilt angle and ellipticity of the magnetic field (Smith and Ward,
1974) the results have been plotted in terms of these parameters rather than amplitude and phase
of the different components. As can be seen in Figure 4a for the layered models, the 3-D code
reproduces the 1-D calculations extremely well.

In Figure 5b the 3-D results for four different source positions are plotted with the results for
the two 1-D models. Notice that the 3-D responses never reproduce the 1-D results even when
the source-receivers are completely outside or within the block. This indicates that 3-D effects are
measurable at greater distances than is immediately evident and that 1-D inversions probably would
not accurately reproduce the structure of the subsurface.

To demonstrate some of the questions that must be answered when using the parallel machines,
the solution time as well as the flop rate has been plotted against the number of processors employed
for the 3 layer model at 10.1 MHz on the Intel Paragon. Figure 6 shows that a large decrease in
run time occurs with an increasing number of processors from 200 up to 1000. This corresponds to
solving for 24000 to 3000 unknowns per processor and indicates that the processors are spending the
majority of their time performing calculations rather than communicating. However, the relatively
small decrease in run time with increasing number of processors over 1000 indicates the solution
time is beginning to be dominated by message passing if less than 3000 unknowns are being solved
for on each processor. Thus we are left with a decision to make. If we wish to use the machine
most efficiently, we would employ less than 1000 processors such that the internal computations are
dominating the solution time. We could then run several jobs simultaneously such that the efficiency
increases proportionally to the number of jobs. On the other hand if we desire as quick a turn around
time as possible for a single computation, then we would want to operate near the right end of the
curve.

5.2 Airborne Simulation

The second example simulates an helicopter EM survey flown to define the location of a buried
paleo-channel through which conductive salt water is migrating, and is designed after a survey flown
in Australia in the early 1990’s (Doug Frazer, personnel communication). Figure 7 shows a plan
view of the model at 5m depth below the earths surface as well as two cross sections through the
model. The flight lines are 30m above the earth’s surface, are spaced at 200m intervals from top to
bottom in Figure 7, and along each line the sampling interval is 100m. This yields a total of 187
source positions. A VMD source is operating at 0.9 KHz, 7.2 kHz and 56 kHz, with the receiver
located 8m to the right of the source. The three frequencies coupled with the 187 positions yields a
total of 561 forward solves.

To calculate this with the 3-D finite difference code, the earth and air were divided into a 208 x
184 x 49 cell grid which yields a total of 5.6x10° unknowns for which to solve. To avoid reflections
off the mesh boundaries normal grid stretching (i.e. b=0) was employed to move them out to 400m
from the nearest sampling point. The smallest cell size employed was 5m x 5m by 2.5m and was
employed at the air-earth interface underneath each source array. The largest cell size employed was
in the corners of the mesh and was 20m x 20m x 20m. A background conductivity of s=10"16S/m
was assumed to simulate the electrical properties of the air.

Notice in Figure 8 that for all three frequencies the channel is clearly defined, although its
resistivity is not as accurately defined at higher frequencies. This is due to the increased sensitivity

13



at higher frequencies to the surface resistive layer. To run this model on 1360 processors of the Intel
Paragon took approximately two days. This reasonably quick turn around time for this complicated
model illustrates the utility of these machines for solving realistic geologic problems. In addition,
although this solution may of taken too much time to be employed for inversion of this large of a
model, the near future development of machines with tens-of-thousands of processors should allow
for it.

6 3-D Data Inversion — Synthetic Example

Figure 9 shows a model used to test the 3-D inverse. The data from this model were generated from
the integral equation solution of Newman et al. (1986) and provides a stronger check on the inversion
scheme than using data generated by the staggered finite difference code; using data generated with
the same forward code as embedded in the inverse will be prone to the same numerical errors and
thus will not be a fully independent check. The test model consists of a 0.2 S/m cube, 50 m on
a side, residing in a 0.005 S/m background. Eight wells surround the target, each contianing 15
vertical magnetic dipole (VMD) transmitters at 10 m intervals straddling the target. The vertical
magnetic fields were calculated in all other wells, excluding the transmitter well at 10 m intervals.
Because the frequency of excitation used in this test is only 20 kHz, the dielectric properties of
the target and host are not important in the simulation and only the conductivity properties need
be estimated; the magnetic permeability is assumed constant and set to free space throughout the
model.

Gaussian noise equal to two percent of the data amplitude were added to each data point. The
data were then weighted by the noise, before inversion. In total, they comprise a 12 600 transmitter-
receiver pairs. The inversion domain consist of 29 791 cells, but only 13 824 cells are shown in the
interwell region in Figure 10; cells outside this region are used to keep the boundary of the inversion
domain at distance so as to not affect the conductivity estimates in the interwell region. The
inversion has recovered fairly well the location and geometry of the cube, but a smeared version of
its conductivity; the estimates vary from 0.1 to 1 S/m. The conductivity estimates of the background
range as low as 0.0014 S/m. Improved estimates on the background can be obtained by tightening
the lower bound positivity constraint. In this example, the conductivity estimates were restricted
to be greater than 0.001 S/m.

Ten iterations were needed to obtain this reconstruction, where the reduction in relative error
against iteration count is illustrated in Figure 11. Assuming Gaussian noise with zero mean the
inversion is assumed to have converged when the relative error approaches the value of one. Because
the final error level is still above one in Figure 11 this might suggest that more information could be
extracted from the data. However, we ascribe the final error level to originate from bias in the data
caused by using a different forward modeling algorithm than the one used in the inverse. Finally
the processing time needed to produce the image in Figure 10 was approximately 21 hours on the
Paragon, with 512 processors utilized.

7 Conclusions and Discussion

In this paper we have presented a schemes to model and invert frequency domain electromagnetic
response of a 3-D earth over a wide band of frequencies using massively parallel computers. The
difficulties associated with providing absorbing boundary conditions for the forward solution and
porting the serial versions of both the forward and inverse problems to a parallel machine have been
outlined. Two simulations have been included to demonstrate the versatility of the forward code.
Further, the inversion code has been implemented such that reconstructions can be produced that
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do not underparameterize the earth; these reconstructions involve tens of thousands of cells. Since
the 3-D MP inverse also includes rigorous 3-D forward modeling for computing model sensitivities
and predicted data, it is our hope that this solution will also serve as an accuracy benchmark on
approximate inverse methods now being implemented on workstation platforms. Such solutions are
beginning to see widespread use in the EM geophysical community (cf. Torres-Verdin and Habashy,
1995 and 1994; Zhandnov and Fang, 1995).

Although the demonstrations shown here would have been nearly impossible prior to the parallel
implementation due to the size of the models and /or the number of frequencies and sources involved,
we believe that there is still much research to be done with regards to the implementation of these
types of schemes. A notable location for improvement is in the area of preconditioners for the
forward problem, which will correspondingly impact the solution time for the inverse problem. Here
we are currently considering the use of multigrid preconditioners, and methods to separately treat
the real and imaginary components of the matrix system. In addition, a scheme to accelerate
the convergence for very low frequency simulations where channeling currents dominate needs to be
developed in order to simulate natural field measurements as well as extend the frequency band down
below 100 Hz; Smith (1992) has found that a static correction can be incorporated to accommodate
this.

Finally, better ways are needed to manage the memory needed to carry out a 3-D inverse on
large data sets. Since electric field vectors need to be computed and stored in memory for all the
different transmitters and receivers this will eventually limit the model size that can be inverted.
To overcome this limitation, we are currently investigating methods that skeletonize the inversion
domain, but still retain the fine parameterization level in the forward solves for accuracy. Although
we are seeking smooth images, we can argue that a coarser inversion grid is acceptable, provided it is
not too coarse and ample smoothing applied in the inversion. With the coarser grid, the electric field
vectors needed in the inverse will be interpolated from a fine grid based on the forward modeling
to a sparser grid as needed in the inversion, thus reducing the storage overhead of the electric field
vectors and increasing dramatically the amount of data that can be inverted. Consider a problem
where the inversion grid is eight times coarser than the forward modeling grid. If 120° nodes are used
in the forward calculations, the skeletonize inversion grid which still comprises 216 000 cells, allows
the number of transmitter and receivers to increase from 700 to over 3000 on the Intel Paragon.
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Figure 5: Results for the CSM3D model. a) 1-D comparisons for 2 and 3 layer models. b) 3-D
comparison for different source positions.
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Figure 7: The subsurface channel model employed for the airborne simulation. The upper figure is
a plan view at the top of the channel, and the bottom figure is a vertically exaggerated cross-section
at v=1500 m. Although it is difficult to see, a 5 m thick- 500 Qm layer exists from the earth’s surface
down to the top of the channel. The gray scale varies logarithmically from 5 2m (black) to 697 m
(white).
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Figure 9: Synthetic example, with wellbores, used to test the inversion algorithm. The data were

calculated form this model using an integral equation solution. Different slices of the model are
shown from different perspectives.
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Figure 10: Reconstructed log conductivity and resistivity for the synthetic example illustrated in

Figure 9 for different slices from two different perspectives. The wellbores used in the simulation
are also indicated.
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