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Abstract. In this paper, semianalytical solutions to the diffusion problem are devel oped under
the conditions of diffusion cell experiments, which involve finite liquid volumes and temporally
variable concentrations in the upstream and downstream reservoirs. These solutions account
for diffusion in the pores, surface diffusion, mass transfer between the mobile and immobile
water fractions, linear sorption (equilibrium, kinetic or irreversible), and radioactive decay. Fully
analytical solutions for both through-diffusion and reservoir-depletion studies are obtained in the
Laplace space, which are subsequently numerically inverted to provide the solution in time. The
effectsof the variousdiffusion, sorption and geometric parameters on the solutions areinvestigated,
and scoping calculations for a realistic problem of radionuclide fate and transport are presented.
Twonumerical inversion schemes are evaluated, and are shown to produce comparable results. The
semianalytical solutions are coupled with a history-matching algorithm, and diffusion and sorption
parameters are estimated using experimental data. The semianalytical solutions are shown to have
significant advantages over the conventional graphical approach because (a) they are not based on
the often invalid assumption of constant upstream and negligible downstream concentrations, (b)
they doubletheamountofdata fromwhich toextract thepertinent diffusionandsorption parameters,

and (c) allow differentiation between equilibrium and kinetic sorption.
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1. Introduction

The deep disposal or isolation of contaminants by using natural or engineered barriers
necessitates an understanding of their fate and transport in the subsurface. This is particularly
important in the case of radionuclide storage and the performance of radioactive-wasterepositories.
Diffusion through, and sorption onto geological materials are important mechanisms of transport
and immobilization, and an accurate eval uation of the pertinent parametersisof critical importance.

Diffusion experiments represent a well established technique for the determination of the
transport properties of conservative and non-conservative tracers. Lever [1986] and Shackelford
[1991] presented thorough reviews of most diffusion techniques, and discussed their capabilities
and limitations. The majority of studies involve two basic diffusion cell designs: the through-
diffusion cell, or the reservoir-depletion/in-diffusion cell. A schematic of these two types of cells
isshown in Figure 1. Through-diffusion cells have been used extensively for the study of geologic
materials [Bradbury et al., 1982; 1986; Skagius and Neretnieks, 1986a; 1988; Kirchner et al.,
1996; McKinley and Svaminathan, 1996; Wenet al., 1997], while reservoir-depletion/in-diffusion
cellsare commonly used in the analysis of the diffusion of polymers[McKinley and Svaminathan,
1996].

No analytical solutions to the problem of diffusion and sorption under the conditions of
diffusion cell experiments (i.e., finite liquid volumes and temporally variable concentrations in
the upstream and downstream reservoirs) are currently available[Kirchner et al., 1996]. Numerical
solutionsarecommonlyusedtoanalyze theexperimental dataforparameter estimation[ Skagiusand
Neretnieks 1986a; Kirchner et al., 1996; Wen et al., 1997]. The mgjority of the through-diffusion
analyses, however, are conducted using the time-lag method, which is based on the approximate
analytical solution of Crank [1975], as adapted by Skagius and Neretnieks[1986a]. This solution
isdiscussed in Section 5.1.

The time-lag method assumes a linear equilibrium model, and isvalid if (1) the concentration
Cy of the upstream reservoir remains constant over time, (2) the concentration C'p of the

downstream reservoir is sufficiently low to be negligible compared to Cy;, (3) the diffusion
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coefficient is constant, and (4) diffusionisthe only transport mechanism, i.e., there is no advection
[Skagiusand Neretnieks, 1986b]. Condition (3) isusually valid, while condition (4) can be achieved
with careful experimental preparation. Regarding conditions (1) and (2), these may be good
approximations in the initial stages of the study, but their validity deteriorates as time advances
and may lead to erroneous diffusion and sorption parameters, especially in the case of strong
sorption. To overcome this shortcoming, current laboratory practices involve diffusion cells with
large upstreamand downstream reservoirs, while dataanalysisisrestricted to theearly portion of the
data. An alternative approach, which involves maintaining constant concentration by replenishing
the depleted species in the upstream reservoir, is cumbersome and requires specia equipment.

Additionally, the time-lag method assumes a quasi-steady diffusion after an initial transient
period. Parameter estimation isbased on the slope and intercept of the C', vs. time curve, which are
determined using a semi-empirical (graphical) method involving only the apparent linear portion
of the data set [Skagius and Neretnieks, 1986a; McKinley and Svaminathan, 1996]. Thus, the
conventional approach uses information from only the downstream reservoir, and only a portion of
the data which is early and linear. The often subjective nature of parameter estimation can lead to
substantial errors and ambiguities.

In this paper, general semianalytical solutions to the diffusion problem are developed under
the conditions of diffusion cell experiments. These include finite liquid volumes and temporally
variable concentrations in the upstream and downstream reservoirs, and involve practically no
simplifying assumptions. The solutions account for diffusion in the pores, surface diffusion, mass
transfer between the mobile and immobile water fractions, linear sorption (equilibrium, kinetic
or irreversible), and radioactive decay. Fully analytical solutions for both through-diffusion and
reservoir-depletion studies are obtained in the L aplace space, which are subsequently numerically
inverted to provide the solution in time. The semianalytical solutions are shown to have significant
advantages over the conventional graphical approach because (a) they are not based on the often
invalid assumption of constant upstream and negligible downstream concentrations, and (b) can

double the amount of data from which to extract the pertinent diffusion and sorption parameters.
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2. Governing Equations
2.1. The Diffusion Equation in Through-Diffusion Studies

The 1-D solute transport through the porous medium (PM) in a diffusion cell such as the one

shown in Figure lais described by the equation

0%C 92C; 0*F
Doz T Pigz +oPr 52
_ ., oC _ 4 9C _ oy OF (1)

T AC+ (¢ = de)ACi+ (1 =) pAF,

where

C species concentration in the mobile pore water [M L—3];

D,, intrinsic diffusion coefficient for the mobile pore water [L2T~1];
C; species concentration in the immobile pore water [M L~3];

D,  intrinsic diffusion coefficient in the immobile pore water [ L2T~1];
F relative concentration of the adsorbed mass [dimensionless];

Dr  apparent surface diffusion coefficient [L—'MT~1];
p PM grain density [M L~3];

10) total PM porosity [dimensionless];

O kinematic porosity [dimensionless];

A =1n2 /T /,, radioactive decay constant [T—1;

Tyo  half-life of radioactive species[17];

x length coordinate in the diffusion equation [L];

t time[T].

Thethreetermson theleft-hand side of equation (1) describe diffusionin themobile porewater
[Skagius and Neretnieks, 1988], through the immobile thin filmin theimmediate vicinity of the PM
grains[de Marsily, 1986], and surface diffusion [Jahnke and Radke, 1987; Skagius and Neretnieks,
1988; Cook, 1989; Berryand Bond, 1992], respectively. Thefirstandsecondsets ofthreetermseach

on the right-hand side of equation (1) describe the dissolved species accumulation and radioactive
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decay inthe porewater, in theimmobilefraction, and onthe PM grains dueto sorption, respectively.
The kinematic porosity ¢. is defined as the portion of the porosity corresponding to the mobile

fraction of the fluid phase [de Marsily, 1986], and can be approximated by

¢c:¢<1_57’>v (2)

where S,. isthe irreducible water saturation, which can be obtained from the van Genuchten [1980]
capillary pressure curve of the PM.

From Oldenburg and Pruess [1995] and Skagius and Neretnieks [1986a]
D,, :Tp¢cD0 :Tp¢(1 _S'r’) Dy, (3)

where 7, isthetortuosity factor of the pore paths [dimensionless], and D, isthe molecular diffusion

coefficient of the dissolved speciesin water [L27~']. Similarly,
D; =1 (¢—¢c) Do =1 ¢S Do, (4)

where7; isthetortuosity factor inthe diffusion pathsthrough theimmobile fraction [dimensionless].
If surface diffusion cannot be neglected [Jensen and Radke, 1988], D is given by [Jahnke, 1986;

Jahnke and Radke, 1987]
(1-9¢)
¢

where 7, isthe tortuosity factor of the surface path [dimensionless], and D, isthe surface diffusion

Dp =175 sta (5>

coefficient [ 2T ~']. For homogeneous PM systems there is theoretical justification [Cook, 1989]
for the relationship 7, = 2 7,,.

Because water is very strongly bound (in electric double layers) to the PM grain surface,
Brownian motion is limited and solubility in the immobile water is lower than in the mobile water
fraction. This boundary layer thus acts as a liquid sorption layer. The importance of this boundary
layer has been recognized by de Marsily [1986], who differentiates C' and C;, and Skagius and
Neretnieks[1986a], who use the mobile fraction of water in the analysis of diffusion experiments.

Using the linear equilibrium relationship [de Marsily, 1986],

C,=K;C, (6)
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where K; isamass transfer coefficient [dimensionless], equation (1) becomes

where
Dr = Doy (1— 8,) +7: 5, K] (8)
and
h:%+¢_¢¢cKi=1—S¢a+SrKi- (9)

The initial and boundary conditions are
C(x =0,1) = Cy(t), Cy(0) = Cyo # 0, (10)

C(x=L,t) =Cp(t), Cp(0)=0, and C(z,t=0)=0, (11)
where L is the length of the PM compartment ([L], see Figure 1a). An additional condition is
imposed by the dissolved species mass conservation, i.e.,

My + My + Mg+ Mp = Mp for t>0, (12)

where My, My, Mg, Mp, and M are the species mass [ M] in the upstream reservoir, in the
pore water of the PM, adsorbed onto the PM grains, in the downstream reservoir, and in the whole

system, respectively. It is obvious that
Mt = Vi Cuo exp(—At), (13)

where Vs isthe liquid volumein the upstream reservoir [ L3]. For anon-radioactive species, A = 0
and Mr = Vi Cyo, i.€., constant over time.
The final boundary condition in through-diffusion studies equates the dissolved species mass

in the downstream reservoir with the mass that crosses the x = L boundary, i.e.,

t oC OF
—A¢/ {DT (a—) + Dp (a—> }dt
0 T x=L T =L
t
=Vp (CD—f—)\/ CDdt),
0
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where Vp isthe downstream reservoir volume [ L3], and A isthe cross-sectional area of flow [L?].
For non-radioactive species, A = 0 and Mp = Vp Cp. Inreservoir-depletion and in-diffusion
studies, equation (14) applieswith Vi, = 0, i.e., by setting the right-hand side of the equation equal
to zero.

Equation (7), subject to the conditions of equations (10) through (14), is the general equation
of diffusion. The only assumption made is that the concentration in the upstream and downstream
reservoirs are uniform, i.e., they are well mixed, and there are no spatial concentration gradients
in either. Thisis avalid assumption because the solutions in the reservoirs of diffusion cells are

continuously stirred [McKinley and Svaminathan, 1996].
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2.2. The Sorption Equation

Considering that sorption occurs as the dissol ved species diffuses through the immobile water
fraction, and assuming that the sorption is linear, instantaneous and reversible (i.e., equilibrium

linear sorption), the following relationship applies:
F=FK,KC, (15)

where K, is the distribution coefficient [L3 M —']. The validity of this approach is supported by
experimental evidence [de Marsily, 1986], which suggests that equilibrium is reached in a matter
of afew minutesin clayey PMs, i.e., practically instantaneously, given that diffusion experiments
routinely last from days to months. Equation (15) is the most general form of the linear sorption
equation, and accounts for the effect of mass transfer through the immobile water fraction. If,
however, this effect is disregarded, K; = 1 and equation (15) reverts to the more commonly used
form of linear sorption.

The linearity of equation (15) allows its combination with the general diffusion equation (7)

and with the boundary equation (14), yielding

0°C R* [0C
922 = D (E + AC) ) (16)
and
t 80 t
_A$D" / (—) dt = Vp (CD A / Cp dt) , (17)
0 833 =1 0
where the retardation factor R* and the effectivediffusion coefficient D* are defined by
R :}—Sr+Ser+TPKdKz and D = Dr + 15w Dyg. (18)
7 ~———
h w

For non-radioactive species, equation (16) applieswith A = 0.

If sorption is not in equilibrium and its kinetics are linear [de Marsily, 1986], the temporal
variation of F' [Harada et al., 1980; Pigford et al., 1980] is modified to account for radioactive
decay, yielding

OF

S FAF = k(K K.C ~F), (19)
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where k is the kinetic constant of linear chemical adsorption [T"~1].

Linear irreversible sorption is decribed by the relationship [Bear, 1979]

%—ZZ+AF:KLKZC, (20)

where K1, is a constant [ L3 M ~*T—!]. Equation (20) indicates a solid phase acting as asink for
the dissolved species.
The non-linearity of equations (19) and (20) does not permit substitution in (7), and the

equations of diffusion and sorption must be solved simultaneously.

3. The L aplace Space Solutions
3.1. Through-Diffuson With Linear Equilibrium

The Laplace transform of the governing equation (16) resultsin

(s+N)C=0, (21)

where C' = £{C'}, s isthe Laplace space parameter, and £{} denotes the Laplace transform of the

term within the brackets. A general solution to equation (21) is

~

C(z) =aexp(yz) + Sexp(—yz) , (22)

where

*

D*

V= (s+A), (23)

and o« and 3 are coefficientsto be determined. From (22) and the L aplace transform of the boundary

conditions (10) and (11),

Co=L{Cy}=Cz=0,8)=a+f

. . (24)
Cr=L{Cp}=C(x=L,s) =aexp(yL)+ sexp(—y L) .
Combining equations (12) and (13), and taking the Laplace transform yields
~ - - A Vi C
My + My + Mg + Mp = 0 (25)

(s+A)’
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where M = £{M}. The summation terms on the left-hand side of equation (25) are:
My =VyCo=(a+8)Vu, (26)

L
MW:¢ [(I—ST)-l‘SrKZ‘]/ Aédl’
0

(27)
=Aoh {% lexp(y L) — 1] + g [1- exp(—vL)]}7
A L N
Ms=(1-¢)pKqK, / ACdx
0 (28)
=A¢pw {% [exp(y L) — 1] + g 11— exp(—vL)]},
and
Mp =VpCr =Vp [aexp(yL) + Bexp(—y L)]. (29)
The Laplace transform of equation (17) yields
~L D" Aglaep(yL) — fexp(—y L)
\ (30)
= Vi faepl 1)+ pep(— )] (1+2)),
from which
o= Bnexp(—2y L), (31)
where
_D"A¢y—Vp(s+ ) (32)

T D Apy+Vp(s+N)
For non-radioactive species, A = 0, and equation (32) is simplified accordingly.

Substituting (26) through (29) in (25), using (31), and collecting and rearranging termsyields

B Vv Cuo
ﬂ_(8+)\)(P1+P2+P3)’ (33)
where AR
Py =[1+nexp(—2yL)] Vy, Px= pAR [1 — nexp(—2vy L)]
(34)

¢ A R*

Py= |Vp(1+1n)— (1—=mn)| exp(—yL).
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The Laplace space solutions are thus given by

C(z,s) = B {nexply(z — 2L)] + exp(—y 2)} ,
Co(s) = B [nexp(—2v L) +1] , (35)
Cr(s)=B(1+n)exp(—yL) .
The same solutionis obtained if, instead of the mass balance equation (25), the flux conditions
atthex = 0 boundary are used. Inthiscase, J isgiven by adifferent expression (see Appendix A),

and all other terms remain unchanged. Equation (35) returns identical solutions for 3 either from

equation (33) or from equation (A4).

3.2. Through-Diffusion With Linear Kinetic Sorption

Taking the Laplace transform of equations (7) and (19) leadsto

82C 02 F . (1—¢) )
DTW—FDF@—]I(S—F)\)C—F Q5 p(S—FA)F, (36)
and
R R . R R K,K; -
SP+NF = kK K C—kF and F=BaBi o (37)
s+k+ A

where F' = £{F}. Substituting (37) into (36) and rearranging terms yields

R*
92C  h+u .
92 D (s+N)C=0, (38)
i.e., where
U= b Kq K (1_¢>p and D* = Dy 4+ 15u Dy (39)

stk+A o

In this case, the notion of the effectiveretardation factor R* is expanded to describe time-variable
behavior, and no longer conforms to its conventional meaning, as defined in linear equilibrium
sorption scenarios. The mass balance equations, the only exception being equations (28), in which

My isnow given by

Vs = Adu {% ety 2) — 1]+ 21 - eXp(—vL)]} . (40)
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When the appropriate R* (equation (38)) and D* (equation (39)) terms are used, al the
eguations devel opedin the linear equilibrium problem apply unchanged to the case of linear kinetic

sorption. The solution of F' is then obtained from equations (35) and (37).

3.3. Through-Diffusion With Irreversible Sorption

Inthiscase[Bear, 1979], the Laplacetransform of the governing sorption equation (20) results

K. K; »
L7 &

F= 41
s+ A (41)

Y

where K, isaconstant [L3 M ~1T~!]. Equation (41) indicates a solid phase acting as asink for
the dissolved species. Using an approach entirely analogousto that for diffusion with linear kinetic
sorption, the solution is described by equation (35) when

KL K; (1-9)
s+ 10)

R =h+v, and D* =Dr+7,0D,. (42)

In this case, Mg is given by equation (28) or equation (40), after substituting v for w or w,
respectively. All other terms, parameters and equations defined in Section 3.2 apply unchanged.
The solution of £ is obtained from equations (35) and (41).

3.4. Extension to Reservoir Depletion and In-Diffusion Studies

Under these conditions (Figure 1b), equation (30) yields
—2 D" Aplaep(yL) — fexp(—y L) =0, (43)

from which

a=pgexp(—2yL). (44)

Thisisidentical to (31) for = 1, whichis obtained automatically when Vp = 0. Theimplication
of this redlization is that the solutions for C' in equation (35) and for £ in equations (37) and (44),
aswell asall the associated terms corresponding to diffusion with (@) linear equilibrium sorption,
(b) linear kinetic sorption, and (c) irreversible sorption, apply unchanged to reservoir-depletion and

in-diffusion studies by setting V, = 0.



MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS 13

3.5. Assumptions, Options and Simplifications

The solutions developed in this section are general, and applicable to diffusion in any closed
systemcomposedof upstreamanddownstreamreservoirs(orasi ngl eupstreamreservoir)of constant
volumes and a PM sample of afinite length. A minimum of assumptions were involved in the
development of the solutions, i.e.,

(1) the mass transfer between the mobile and immobile water fractions in the pores is described
by the linear equilibrium of equation (6), and

(2) the concentration measurements do not necessitate solution sample removal (e.g., ion-specific
electrodes [ McKinley andSwaminathan, 1996]), or thesample volumeswithdrawnfor analysis
are negligible compared to the reservoir volumes.

Simplification of the solutions is accomplished by an appropriate choice of values for the
various parameters, without the need to alter the equations. Setting A = 0 automatically provides
the solutions to diffusion of non-radioactive solutes. When K; = 1 and S, = 0, no separate
immobile water fraction is considered, and diffusion is assumed to occur uniformly in the pores of
the PM. For D, = 0, surface diffusion [Jahnke and Radke, 1987] is neglected. Ashasaready been
discussed, setting Vp = 0 provides the solution to the problem of diffusion in reservoir depletion
and in-diffusion experiments (Figure 1b) without any equation adjustments.

Note that although the focus is on diffusion experiments, the solutions are general and can
accommodate any values for Vi, Vp, A and L. Thus, these equations can be used to investigate
the performance of barriersin nuclear waste isolation applications.

Analysis of conventional diffusion results [Skagius and Neretnieks, 1986a; McKinley and
Swaminathan,1996] involvesinformation from the downstream reservoir (called the measurement
reservoir) and allowsthe determination of composite termsrather than their respective components.
For example, in the case of linear equilibrium, it is possible to determine R* and D* rather than the
individual terms 7, 7;, 75, Ds, Kq, K;, and S,. (itis assumed that ¢ and D, are already available).

Unlike conventional techniques, the solutions discussed here allow the use of information

from both the upstream and downstream reservoirs. Thus, it appearsthat it is possible to determine
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a larger number of direct (rather than composite) parameters by jointly inverting the upstream
and downstream curves in an appropriate optimization scheme for parameter estimation. Certain
simplifications may, however, be necessary to quantify some of the parameters if no independent
evaluation is available. A common assumption is that the tortuosity factors 7, = 7, = 7, = 7
[Jahnke and Radke, 1987], which could be determined from a®H or aI~ (non-sorbing) diffusion
experiment. D, isusually substantially smallerthan D, and becomesimportant only whensorption

isvery strong [Cook, 1989].

4. Numerical Inversion of the L aplace Solutions

The time-variable concentrations can be determined by inverting the L aplace space solutions,
ie,
Cu(t) =L HCo(s)},  COp(t) = L H{Cw(s)}

) . (45)
C(z,t) = L7HC(z, s)}, F(z,t) = L™YF(x,s)},

where £~1{} denotestheinverseL aplace transform of the quantity in the brackets. In diffusion cell
studies, of particular interest are the Cy; (t) and the C'p () solutions, from which the key diffusion
and sorption parameters are deduced.

The complexity of the Laplace space solution precludes analytical inversion and the develop-
ment of a closed-form equation. The problem is alleviated by numerically inverting the Laplace

space solutions using one of the methods discussed below.

4.1. The Stehfest Algorithm

For a desired observation time ¢, the s in the Stehfest algorithm [Stehfest, 1970a; 1970b] is

real and given by

s, =—-v, v=1,...,Ng (46)

where Ng isthe number of summation termsin the algorithm and is an even number.

When using the Stehfest algorithm, theinversion Z(¢t) (= C, Cy, Cp, F) of aLaplace space
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solution Y (= C, Cy, C, F, respectively) at atimet is obtained from

In2 &
2(t) = — ;W,, T(s,) , (47)
where
mingv, 55} Ns
Ng k== (2k!)

W, =(-1)=1 : 48
1) k_;ﬂ) (%2 — k)Kl(k — 1)/ (v — k)!(2k — v)! (48)

75 v

Although the accuracy of the method is theoretically expected to improve with increasing Ng,
Sehfest [1970a;1970b] showed that with increasing Ng the number of correct significant figures
inreases linearly at first and then, due to roundoff errors, decreases linearly. He determined that
the optimum Ng was 10 for single-precision variables (8 significant figures) and 18 for double-
precision variables (16 significant figures). Moridis and Reddell [1991] reported that the method
seemsto beinsensitiveto Ng for 6 < Ng < 20 inthe Laplace Transform Finite Difference (LTFD)

method.

4.2. The De Hoog M ethod

In the method of De Hoog et al. [1982], hereafter referred to as the De Hoog method, s isa

complex number given by Crump [1976] as

72 In(E
SV:SO—i_?j; So = M — (2TR>7

VZl,...,NH (49)

where 2T istheperiod oftheFourierseriesapproximating theinverse functionintheinterval [0, 277,
j =+/—1,and Ng = 2My + 1 isan odd number. Moridis [1992a] showed that very accurate
solutions were obtained when o = 0, 10719 < Er < 1078, and 0.9 t,00 < T < 1.1 ty42, Where
tmaz 1S the maximum simulation time.

The inversion of the Laplace space solution obtained with the De Hoog method is far more
complicated than in the Stehfest algorithm. The solution Z(t) is given by

Z(t) = %exp(sot) Re {%} ) (50)
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where

An:An,1+dn ZAn,Q, Bn:Bn,1+dn z Bn,Q, nzl,...,?MH, (51)

jmt
=exp| — 52
z p< T) (52)
A_l = 0, AO = d07 B_1 = BO = 1, (53)
dO = aop, d2m71 - _(b(qg)7 de - _6'52)7 m = 17 .. '7MH7 (54)

0=1,... My, &P =¢"D _¢® LMD k=0, 2My —20

for £=2,..., My, ¢ =gl MM k=0, 2My - 201,

ef! =0 for k=0,....2My and ¢" =app1/a for k=0,....2My —1,  (56)

and

ap = %T(so), ar = Y(sg). (57)

A convergenceacceleration isobtained if, on the last evaluation of the recurrencerelations, daay,, 2

in (51) isrepaced by Roys,, (2),

Bty (2) = ~haaty, |1 = V(1 + dantyy 2/hanty)| (58)
where
1
h2MH = 5[1 +z (dQMH—l - dQMH)L (59)
giving
A\QMH = Aoy —1 + Ronry Aoy —2, §2MH = Bomy—1 + Romy Bong—2, (60)

in which case the accelerated solution at atime ¢ isgiven by replacing Asy,,, and Boyy,, by EQMH
and §2MH, respectively, in (50).
All the operations in equations (50) through (60) involvecomplex variables. Moridis[1992a]

determined that the minimum My for an acceptable accuracy is 5 (Vg = 11), and that for an
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accuracy comparable to that of the Stehfest method My > 6 (Ng > 13). The unique advantages
of the De Hoog formulation is that (a) it is capable of accurately inverting very steep solution
surfaces, and (b) a whole range of solutions at times ¢ in the range [0, 7] can be obtained from a

single set of solutions T, i.e., equation (50) needs not be solved for each ¢ of interest.

5. Asymptotic Verifications

Asetof FORTRANprogramswas  writtentoobtainthesemianalytical solutionsbynumerically
invertingequation (35). Theseprograms, aswellas representativedatafiles, areavailableon theweb
at URL http://ccs.Ibl.gov/Diffusion/. The standard parameter values used in the ensuing analysis
appear in Table 1. Both the individual and the composite parameters (i.e., D* and R*) are shown.
In the following sections, only parameters different from the standard ones are mentioned. Tovary
D*, thevaueof D isadjusted, but the tortuosity factors remain unchanged (see equations (8) and
(18)). Tovary R*, only the K4 valueis adjusted in equation (17).

5.1. Through-Diffusion

The closed-form analytical solution of Skagius and Neretnieks[1986a] is based on the Crank

[1975] solution, and is given by the equation

Cp AL |¢D*t $R* 2¢R* i (-1)» exp (_D* n? 7r2t> (61)

Crp = —
RO = oo~ Vp | L2 6 2 n2 L2 R+

n=1
whichisvalid when the conditionsdiscussed in theintroduction aremet. For larget, theexponentia
componentsin (61) become negligibleand D* and R* are determined from the slope and intercept,
respectively, of the linear relationship of the C'zp vs. t curve.

Figure 2 shows a comparison of C'rp solutions obtained using equation (61) and of the
solutions obtained by the inversion of equation (35) under through-diffusion conditions, hereafter

referred to asthe SA1 (SemiAnalytical 1) solution. The SA1 solutions of

are also shown.
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Twogenera caseswereinvestigated. Incase 1, C'rp wasdetermined from (61) for athrough-
diffusion system with the standard parameters (Table 1). To duplicate the conditions applying to
(61), inthe SA1 solution V), = Vi; = 20 m?3 (case 1(a)). The two solutions are virtually identical,
confirming the validity of the SA1 solution under these conditions. The C'ry curve indicates
practically constant upstream concentration during the duration of the diffusion, thus fulfilling the
validity conditions of (61).

When the diffusion cell reservoirs have more realistic volumesin case 1(b), i.e,, Vy = Vp =
2 x 1073 m3, a small divergence of the two Crp solutions is observed. Given the potential
measurement errors, it appears that the divergence of the solutions is insufficient to substantially
affect the accuracy of parameter prediction when using (61). What is more important, however,
isthe realization that the current practice of parameter estimation using equation (61) is unable to
exploit the information from the variation in the value of C'ry; from the upstream reservoir. This
reduces the potentially available dataset by half, and produces inherently less accurate parameter
estimates. Note that the underlying assumption of a constant Cy = Cyy( for avalid equation (61)
is compromised.

In case 2, equation (61) is used to predict Crp when D* = 5 x 1070 m?2s~! and all
the other parameters remain unchanged. The SA1 solutions of C'rp and Cry in case 2(a) use
Vir = Vp =2 x 1073 m3, and show the substantial errors which (61) can introduce in the course
of athrough-diffusion cell experiment. While the slope of the two solutions about the origin are the
same, the difficulty of obtaining accurate parameter estimates from (61) is obvious because (a) the
representative portion of the curveis short (only 4 days in this case) and its duration is not known
a-priori, (b) the first measurements are limited and have inherently larger measurement errors and
scattering as downstream concentrations increase from 0, (c) an attempt to reduce data scattering
and measurement errors by increasing the duration of the initial measurement period inevitably
affects the quality of the parameter predictions as more non-linear data are interpreted using a
linear model, and (d) information from the upstream reservoir (usually more reliable, asit involves

adecrease from alarger and easier measured concentration) isnot considered. Of particular interest
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is the fact that the magnitude of the C'ryy signal can be linearly amplified by varying the absolute

and relativesizes of V.

5.2. Reservoir Depletion and In-Diffusion

For an infinite-acting PM sample (L — oo), the depletion of anon-radioactive species (Figure

1b) is described by [Lever, 1986]

2 12 * *
i_exp(—A ¢ D" R t) erfc
Cuo

Cru = =% =
RU VU2

AQ QD* R* 1/2
ey e

By setting A = 0, Vp = 0, and using the Laplace transform property
L{s72 (512 4+ BY?) ™1 = exp(Bt) erfc(vVBt), (63)

it is easy to show that, for exp(—y L) — 0 as L — oo, Cy(= 3) in equation (35) can be put in the
form of the argument of £{} in equation (63), and thus (62) is obtained from (35).

For confirmation, Figure 3 shows a comparison of the Cry; evolution over time computed
from equation (62) and from SA1, i.e, the inversion of (35), for L = 100 m. In addition to the
SA1 solution, equation (35) was solved with Vp = 0, and is hereafter referred to as the SA2
(SemiAnalytical 2) solution. Inthe SA2 solution, L = 100 m, i.e., practically infinite-acting. The
remaining parameters in the SA2 solution and in equation (62) were asin Table 1. As expected,
the three solutions coincide.

Figure 3 aso shows the SA2 solutions for L = 0.05 m and L = 0.02 m, while all the other
parametersremainunchanged. Itcanbe seenthatwhen L isfinite, equation (62)is initially accurate,

but becomes increasingly inaccurate once the dissolved species front reaches the x = L boundary.

6. Analysis and Discussion
6.1. Through-Diffusion With Linear Equilibrium Sor ption

6.1.1. Effect of D*. Figure 4 shows the effect of D* on the Cry and Crp solutions. As

expected, higher D* values correspond to faster changes in the concentrations of the reservaoirs.



20 MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS

For no sorption (R* = 1), at equilibrium Cry = Cgrp = Vi /(Vu + Vp). Inthe case of Figure 4,
dueto sorption (R* = 3), the final equilibrium concentrations Cry = Crp <V /(Vu + Vp) due
to the finite mass of the dissolved species.

6.1.2. Effect of Sorption. With increasing sorption (i.e., increasing R*), both the C'r; and
C'rp solution curves shift downwards(Figure5), and the equilibrium concentration isthus reduced.
This indicates faster concentration changes in the upstream reservoir and breakthrough delays in
the downstream reservoir. The advantage of the SA1 solution of equation (35) over the traditional
parameter estimation approach [Skagius and Neretnieks, 1986a] is obviousin the case of stronger
sorption (R* = 100). If used alone, the rapidly declining C'ry can providefaster and more accurate
parameter estimates than the delayed C'rp breakthrough curve; when the two data sets are used
together, more reliable estimates are possible.

It must be pointed out that Figure 5 (and even more so Figure 7, see next section) shows
that the SA1 solution of C'ry is free of the most serious disadvantage [Kirchner et al., 1996] of
the conventional method of equation (61): that the time needed to establish steady-state may be
excessively (and impractically) long for strong adsorbers[Put and Henrion, 1988]. Onthe contrary,
stronger sorption accelerates the rate of C'r;; change in SA1, thus reducing accordingly the data
aquisition time.

6.1.3. Effect of Surface Diffusion. The significance of surface diffusion in the performance
of barriers in nuclear waster isolation applications was recognized rather recently [Lever, 1986;
Jahnke, 1986; Jensen and Radke, 1988; Jahnke and Radke, 1987; Berry and Bond, 1992]. When
sorptionisvery strong (i.e., large R* values), it can be shown that the apparent diffusion coefficient
D4 = D*/R* — 75 Dy inequation (16), i.e., surface diffusion isresponsible for practicaly all the
diffusion despite the fact that D, is usually substantially smaller than D,. The implication of this
realization is that the diffusion of a strongly sorbed species through a PM which supports surface
diffusion may be much faster than would be predicted on the basis of batch sorption experiments
and reasonable D, values[Cook, 1989].

Figure 6 showsthe effect of surfacediffusiononthe C'ryy and C'rp solutionsfor R* = 10 and
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100, corresponding to K; = 1.8639 x 1073 m3kg—! and 2.0503 x 10~2 m3kg~!, respectively.
Dr ismaintained constant at 10~ m2s~!, and D, = 0.1 Dy. The Cry and Crp curveswith and
without surface diffusion tend to the same equilibrium values. Although D, is small compared to
Dy, itseffect on the accel eration of equilibrium in the concentration of both reservoirsis substantial
and easily measurable. It can be seen that the accelerating effects are amplified when sorption
becomes stronger. For R* = 100, the evolution of C'rp over time indicates a substantially faster
breakthrough (by about an order of magnitude). Of particular interest is the C'ryy curve, which
is characterized by a steep initial decline, followed by a more gradual decrease. Although the
equilibrium concentrations with and without surface diffusion are the same, the declinein the C'r/
curve with Dy = 0.1 Dy is substantially faster. The advantage of using both Cry; and Crp for
parameter estimation is obvious, as the surface diffusion process can be captured and described by
the combination of the two curves, and especialy by the faster, large and easy-to-measure changes
in Cry. Using only the information from the C'rp curve may not suffice to differentiate the pore
and surface diffusion processes [Lever, 1986].

When Cy(t) = Cyo and sorption is very strong, the transport rate is controlled only by
D4 ~ 15 D, and does not decrease as sorption increases. This attribute has been used to identify
and measure surface diffusion [Muurinen et al., 1989]. In diffusion cells with afinite dissolved
species mass thisis not the case because a significant portion of its mass is removed from solution
asit sorbs onto the PM.

The behavior of the Cry and C'rp solutions under conditions of very strong sorption and
surface diffusion is shown in Figure 7. In Figure 7, the ‘v’ and ‘d’ denote C'r;; and Crp curves
respectively; ‘1’, ‘2 and ‘3 indicate a Ky = 5.1568 x 1072 m3kg~! (R* = 250), 1 m3kg~!
(e.g., Pusorption onto Y uccaMountain vitric tuffs[ Triay et al., 1996], R* = 4829), and 3 m3kg~!
(e.g., Cssorption onto a Na bentonite [ Torstenfelt, 1986], R* = 14486), respectively; ‘S’ indicates
the presence of surface diffusion, with D, = 0.1 Dy; and *C’ denotes the conventional solution of
equation (61).

Under theconditions ofequation (61), thecurves for R* = 250, 4829 and 14486 inFigure 7 are
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d1S-C, d2S-C and d3S-C, respectively, and the downstream cell is the only source of information.
These curves are obtained from the SA1 solutions by setting V; = 200 m?3, i.e, Cy ~ Cuo.
While it is possible to differentiate d1S-C, the d2S-C and d3S-C curves coincide, in agreement
with previous observations [Muurinen et al., 1989]. The conventional approach is incapable of
differentiating between different PMs once sorption becomes sufficiently high (R* > 800) in PMs
whichsupportsurfacediffusion(e.g., bentonite-basedbarriers). Additionally, itis hamperedby long
breakthrough times, aswell asthe difficulties of obtaining accurate datafrom at low concentrations.

When a closed diffusion cell system is used and Cry is measured, it is easy to differentiate
between PMseven under conditions of surface diffusion and extremely high sorption, animpossible
task for the conventional approach. In Figure 7, the Cry curvesfor R* = 250, 4829 and 14486
with surfacediffusion (i.e., curvesulS, u2S and u3S, respectively) show significant separation from
each other, in addition to being distinctively different from the corresponding curves for the same
R* but with no surface diffusion (curves ul, u2 and u3, respectively). The presence of surface
diffusion significantly decreases C'r;; under strong sorptive conditions. A distinctive feature of
these two sets of curvesis that the stronger the sorption is, the faster and more pronounced is the
effect on C'ry, i.€., the opposite of what occursin conventional analysisof C'rp.

Compared to the conventional breakthrough curves (i.e.,, d1S-C, d2S-C and d3S-C), the
behavior of Crp in closed systems shows a substantial delay. This delay increases with sorption.
Whensurface diffusionisnotconsidered, onlytheCrp curvefor R* = 250 (curvedl)showsaclear
andmeasurabl ebreakthrough, whilenobreakthroughoccursfor R* = 4829 and R* = 14486 within
the time-frame of the observation. The presence of surface diffusion accelerates the emergence of a
breakthrough (curve d1S),which occursroughly at the sametime asfor thed1S-C curvebut exhibits
amuch slower rate of increase. Thisisdueto the significantly smaller equilibrium concentrationin
the downstream reservoir because of the fixed mass and the strong sorption of the dissolved species.
Note that the Crp curvesfor R* = 4829 and R* = 14486 with surface diffusion are shown in the
lower right corner of Figure 7 but can be barely differentiated from the = = 0 axis.

The practical implication of theserealizationsisthat a closed system with afixed species mass
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alows the differentiation and parameter estimation of systems with strong sorption and surface
diffusion. C'ry measurements allow fast and accurate parameter estimation. As stronger sorption
increases the rate of C'r;; change (e.g., in u3S, Cry = 0.162 a t = 0.02 days), egquation (35)
can be used to determine the absolute and relative reservoir sizes (i.e., Vi and Vp) for optimum
data quality within adesired sampling period. Although the C'zp datacan provide auseful second
data set for more reliable parameter estimates, the long time for data aguisition and the larger
measurement errors at |low concentrations limit their usefulness.

It isalso important to note that these resultsindicate that the traditional approach of evaluating
the performance of adiffusion barrier material in terms of K ; may not be relevant in the presence
of surface diffusion. A larger K, clearly indicates stronger sorption, but this does not mean
immobilization of the dissolved species when the PM supports surface diffusion. On the contrary,
the stronger the sorption (i.e., thelarger the K ), thelarger the diffusion rate will be, and practically
all of it due to the surface process. This counterintuitive observation confirms previous work on
the subject [Jahnke and Radke, 1987; Cook, 1989].

6.1.4. Effect of Immobile Water Fraction. It is obvious that the presence of an immobile
water fraction would result in lower diffusion (equation (8)) and lower sorption (equation (18))
due to the limited mass transfer of dissolved species between the mobile and immobile water pore
fractions. Thisisdemonstrated in Figure 8, which depicts the effect of K; and S,. on the C'r; and
Crp solutions for two different K ; values.

For alow-sorbing system (K;=1.86 x 1073 m3 kg~ !),aK,; =0.1and S, =0.2 (R* = 1.718,
D =0.082 Dy) shiftsthe C'ryy curve measurably upward compared to the case of K; =1 and S,
=0 (R* =10, D7 =0.1 Dy, i.e.,, when no immobile fraction is considered). Thisindicates alower
rate of species depletion, and is in accordance with expectations based on the lower R* and D
values. The Crp solutions, though, are practically indistinguishable, and it is doubtful whether
measurement methods are sufficiently accurate to differentiate the two.

The effect of the immobile water fraction is far more pronounced in the case of stronger

sorption (K4 = 2.05 x 1072 m3 kg~'). A change from K; =1 and S, =0 (R* = 100, Dy =
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0.1Dp) to K; =0.1 and S, =0.2 (R* =10.72, Dy = 0.082 D) in essence reduces sorption by a
factor of about 10, and resultsin the significant difference between the two sets of Cryy and Crp
solutions. The effect of the reduced D is substantially smaller.

A point which must be made clearly isthat the immobile fraction affects the composite terms
R* and D*, which are the only ones that can be determined from the analysis of the diffusion
cell results. For aknown D, and 7, = 7; (from a diffusion experiment of the same PM with a
non-sorbing species), the K; and S, can be evaluated using both the C'ryy and Crp curves for
maximum accuracy and reliability.

6.1.5. Effect of Radioactive Decay. Figure 9 shows the effect of radioactive decay on the
Cru and Cgp solutionsfor (a) anon-sorbing (R* = 1) specieswith T/, = 12.32yrs (®H) and (b)
astrongly sorbing (R* = 250) species with T} 2 = 2.065 yrs (*3*Cs). The Cry and Cgp curves
for the non-radioactive species with the same sorption behavior are also included for reference.

Within the duration of most diffusion experiments (< 1 yr), the C'ryy curves of the radioactive
and the non-radioactive non-sorbing species exhibit no measurable differences. The same is
observed for the Crp solutions. The differences begin to be measurable at impractically long
observationtimes (¢t > 500 days). On the other hand, measurable differences are observed within a
year in the case of the strongly sorbing species with the shorter half-life, and especially inthe C'ry
curves.

The practical implication of these observationsin diffusion cell dataanalysisisthat radioactive
decay has to be accounted for if the half-life is significant compared to the experiment duration.
Otherwise, the datamay be misinterpreted asindicating stronger apparent diffusion and/or sorption.

6.1.6. Effect of Cell Design and Geometry. Because of the finite mass of dissolved species,
the specifications of the diffusion cell can be altered in order to optimize the data quality and
aquisition. We use as an example the case of surface diffusion (D5 = 0.1Dg) under conditions of
very strong sorption, i.e,, R* = 4829 and R* = 14486 (see Section 5.2.3). From Figure 7, we
notice that the response of C'r; (curves u2S and u3S) may be too rapid for reliable and convenient

data aquisition, and that it declinesto very low (and inherently difficult to measure) levelswithin a
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few days, thus reducing the volume and possibly the quality of obtainable data.

Figure 10 showsthe effect of adjusting the V;; and Vp volumeson the Cryy and Crp curves.
When V}; increases from 0.002 m3 (2 L) to 0.004 m? (4 L) and Vp decreases from 0.002 m? to
0.001 m? (1 L), both the C'ryy and the C'rp curves shift upwards, thus providing higher readings
(easier and more accurate to measure) over alonger time. This agrees with expectations, as more
speciesmassisnow availablein the upstream reservoir, while a stronger response is expected in the
smaller downstream reservoir. Additionally, C'rp measurements can be made at an earlier time,
thus reducing the duration of the experiment while providing information from both reservoirs.
Increasing V; to 0.006 (6 L) m? while maintaining Vp = 0.001 m3 shifts the Cryy and Crp
curves even higher and allows better-controlled data aquisition under conditions of very rapid C'ry
signal change.

Theeffectofthecross-sectionalareaof diffusion A appearsinFigurellforthesameconditions
of sorption and diffusion discussed in Figure 10, and for V; = Vp =0.002 m3. By reducing A from
0.01 m? to 0.008 and 0.005 m?, the PM mass is reduced, and the dissolved species mass sorbed
on the PM sampleis accordingly reduced. Thisresultsin the significant upward shift of the C'ry
curvesshown in Figure 11. The effect onthe C'rp curvesisfar less pronounced, and evident only
at later times, i.e., reducing A does not appear to advance the onset of data aguisition.

The practical implications of the analysis of Figures 10 and 11 is that manipulation of the
geometric features of the diffusion cell allows control over the duration of the experiment and the
dataquality. Notethat it is not necessary for V;; and V), to befixed cell specifications. It iseasy to
increase Vi and Vp by connecting the fixed reservoirsin Figure 1(a) with external reservoirs and
maintaining liquid circulation. Inthis case, V; and Vp in equation (35) are taken as the sums of

the fixed and external reservoir volumes.

6.2. Through-Diffusion With Linear Kinetic Sorption

In the conventional analysisof the vast majority of diffusionexperiments, itisassumed that the

sorption processes are instantaneous, reversible, and represented by alinear isotherm [Shackelford,
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1991; Kirchner et al., 1993]. The importance of non-linear and kinetic sorption processes in
diffusion experiments, especialy in cases of strong adsorption in nuclear waste applications, has
only recently been realized [Kirchner et al., 1996], and the existing body of literature is limited
[Smith; 1990; Kirchner et al., 1996].

In this section, we discuss through-diffusion experiments with linear kinetic sorption using
the semi-analytical SA1 solution involving the numerical inversion of the Laplace space equation
(35) and the terms defined in Sections 3.1 and 3.2. An analysissimilar to that for linear equilibrium
sorption can be conducted. The following discussion is limited to an analysis of issues important
to nuclear waste applications, and their implication for the interpretation of the results of diffusion
experiments.

6.2.1. Effectsof Kinetic Constant & for VaryingDistribution Coefficients K ;. Figures 12,
13 and 14 show the effects of avarying k in systems with K; = 1.8639 x 1072, 5.1568 x 1072
and 1 m3kg~1, respectively. When at equilibrium, these K ;' scorrespond to an R* of 10, 250 and
4829, respectively. The effect of varying & isinvestigated by obtaining the SA1 solutions of C'r/
and Crp from equation (35) for k = ki, ko, k3 (k1 = 1072 571, ko = 1078 571, k3 = 10710
s~1). For comparison, the solutions when V; = 200 m? (i.e., when the upstream concentration is
kept constant) are also included in the figures, and are denoted by an asterisk for the corresponding
k (e.g., k1~ denotes the solution when & = k1 and Cy = Cyyg). The latter represent the anticipated
experimental observationsin conventional diffusion experiments.

Figure 12 indicates that lower k£ values cause the Cry and Crp curves to shift upward, in
accordance with expectations. It isimportant to note that the effects of varying k by several orders
of magnitude are not significant when sorption is not strong. The differences between the curves
appear to become measurable for ¢ > 200 days, i.e., near the upper limit of duration for most
diffusion experiments. Giventhe usual levelsof experimental accuracy, it isunlikely that the C'rr
and C'rp curvescan provide sufficient information todetermine thekinetic character of the sorption
process (as the solution curves are quite similar to those for equilibrium sorption) and to accurately

determine k£ and K. If the fact that sorption is kinetically controlled cannot be independently
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established, it is quite possible to misinterpret the measurement data by using alinear equilibrium
model.

Figure 12 also showsthat it is extremely difficult to infer the kinetic character of sorption (let
alone the k values) from the C'r p measurements when Cyy = Cy, asthe curves are very closeto
eachother, havenodistinguishing characteristic, and canbeeasilymisinterpreted byinappropriately
using the linear equilibrium model of equation (61). The problem persists in the stronger sorption
environment of Figures 13 and 14, where the curves for Cy = Cyy indicate a slow breakthrough
and demonstrate inability to either describe the kinetic character of sorption or quantify it.

The SA1 solutions for C'ryy and C'rp in Figures 13 and 14 demonstrate a fast response. The
curves are measurably different with varying k, and this curve differentiation increases with K,
(Figure 14). For smaller k values, C'rp (and occasionaly C'ryy) demonstrates a distinctive hump
shape, caused by diffusion from the downstream reservoir back toward the PM sample as sorption
increases with time until equilibrium. This may allow the identification of sorption as kinetically
controlled, as well as the determination of k£ and K4 by jointly inverting both the C'r; and Crp
curves. Unfortunately, this occurs at times well outside the practical time-frame of most diffusion
experiments.

Thedurationof most diffusion experimentsissuch that the C'r; and C'r p measurementscould
be interpreted by using either an equilibrium or a kinetic model, as the data set is insufficiently
long to capture the particularities of kinetic behavior. The choice of the model may be of critical
importance in diffusion studiesfor nuclear waster isolation. Theinability to unequivocally identify
the sorption process within a practical time-frame necessitates an independent determination of its
equilibrium or kinetic behavior. Evidence of kinetic behavior can be provided by conducting batch
sorption experiments and analyzing the results using a linear equilibrium model. A time-variable
K, increasing with time (and then possibly stabilizing) is a necessary (though not sufficient)
indication of kinetically controlled sorption. Once this is established, joint inversion of the C'ry
and C'rp measurements allows the determination of £ and K.

Figure 15 showstheratio M rsw = mg/my of the adsorbed species mass to its dissolved
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mass in the pore waters of the PM sample for the examples discussed in Figures 12 through 14.
As expected from the underlying linear kinetic model, Mzgsw first increases and then reaches a
maximum constant level. Stronger sorption (i.e., alarger K ;) increases M rsyy and raisesthelevel
of theplateau. A lower k shiftstherising portion of the M sy curvesdownward (i.e., lower values
at the same t), and thus delays reaching the plateau.

6.2.2. Kinetically-Controlled Sorption and Surface Diffusion. The effect of surface
diffusion in PM system with kinetically controlled sorption is demonstrated in Figures 16 and
17for K4 = 5.1568 x 1072 and 1 m3kg !, respectively. The Cryy and Crp curveswere obtained
for D, = 0.1 Dy, Viy = 0.02 m3 (i.e, Viy = 10Vp), and for k = ky, ks, ks (defined in Section
5.3.1).

Of particular interest isthe oscillatory behavior of Crp (and, to afar lesser extent, of C'r) for
ko and k3, 1.e., forslowerkineticrates. Thisisakintooscillatory chemicalandgeochemicalsystems,
forwhichasubstantialbodyofliteratureisavailable] FisherandLasaga, 1981;Ortoleva, 1994]. The
oscillationsareeventually attenuated, and thesystemreachesequilibrium. For K; = 5.1568 x 102
m3kg~! and k = ks, the time to equilibrium is extremely long (> 10° days). When the kinetic
rateis high (k = k1), no such oscillations are observed.

A related significant item isthe observation that in such systems Cr p can occasionally exceed
1, indicating downstream concentrations higher than Cy¢. Thisis an intriguing observation. In
Figure 18, an analysis of the species mass in the various components of the diffusion system (i.e.,
My, My, Mg, and Mp) for the PM with K; = 1 m3kg~"! and k = k5 (see Figure 17) indicates
that they do not exhibit a non-physical behavior and that mass balance is maintained (i.e., M is
constant) at all times (Cyo = 1 kg - m™3).

Thermodynamic analysis of the system showed an increase in the total entropy, thus the third
law of thermodynamicsisnot violated. Analysisof the SA solution showed that the oscillations are
not an artifact of the numerical inversion of the L aplace space equation (35), and appear predictably
when sorption is strong. When the same problem was solved numerically using a general-purpose

simulator[ Pruess, 1991]withanappropriatesol utetransportmodule] Moridisetal .,1998], identical
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solutions were obtained.

Thisbehavior isattributed to (a) the large speciesmass originally in V; = 10Vp and finaly in
the soil sample, (b) the behavior of the soil sample as atime-variable boundary for the downstream
reservoir, and (c) the C'rp response time lag, which is controlled by the magnitude of k. Study
of Figures 17 and 18 indicate that the sorbed species mass Mg increases monotonically. At the
peak Crp ~ 1.2, Mg is about 2 orders of magnitude larger than My, and M, about an order of
magnitude smaller than M;;. Notethat at ¢t = 10* days, the species mass in the upstream reservoir
(Vi = 2 x 1072 m?) isequal to the mass sorbed on the PM which isonly L = 102 m across.

The ocsillations are evident in Figure 19, which showsthe spatial and temporal variation of the
concentration in the pore water of the PM sample with K; = 1 m3kg—! and k = k3. Therelative
concentration Crp = C(x)/Cyy initially follows the concentration gradient in the reservoirs.
Thisis later reversed, and Crp peaks at x = L and at about ¢ = 1000 days (Figure 19a). This
cycling continues (Figure 19b), and eventually the oscillations are attenuated as the system reaches
equilibrium.

Contrary to Figure 19, the concentration of the sorbed species in Figure 20 (expressed as
Frs = F/Cyo) confirms its behavior as a time-variable boundary for the downstream reservoir
as it shows practically imperceptible oscillations, very mild spatial variations across the length of
the sample, and a monotonically increasing pattern over time (which continues to equilibrium).
It appears that the concentration fluctuations are necessary to support the relatively stable Frg
imposed by the sorption kinetics and the surface diffusion. Note that at the Crp and the Frg
curves have opposite slopes when C'r p oscillates, and that these oscillations do not appear to have
an effect on the slope or magnitude of Frs.

This oscillatory behavior seems to be unique to PM systems which support surface diffusion
and have kinetically controlled sorption. While this behavior is mathematically possible and was
obtained using reasonabl e diffusion and sorption parameters, it is not known whether such systems
occur naturally and caution should be exercized. To the author’s knowledge, no such oscillatory

behavior has been reported in the diffusion literature. That would have been unlikely, as the time



30 MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS

frame for the appearance of these oscillations exceeds the duration of most diffusion experiments.
Such behavior, if it can be experimentally confirmed, could have significant implications in the
design and performance of barriers for nuclear waste isolation, as bentonite (a common barrier

material) is known to support surface diffusion [Jensen and Radke, 1986].

6.3. Through-Diffusion With Irreversible Sorption

In such asystem, the solid phase actsas asink for the dissolved species[Bear, 1979]. TheSA1
equationswiththeadjustmentsdiscussedinSection3.3.  canbeusedtodescribemathematically (but
not necessarily physically or chemically) a combination of sorption and precipitation as a reactant
moves through a PM, provided F' can be described by equation (44) with appropriate parameters.

Theanalysis of such asystem can be made in amanner entirely analogousto the one discussed
in Sections 6.1 and 6.2. For completeness, | include Figure 21, which shows the response of Cr;
and Crp for K7, = 107°,1075,107® and 1071 m3kg—1s~1. It can be seen that C'ry; declines
to zero for al K, values, and no Crp breakthrough occurs for K, > 1071° m3kg=—'s~!. This
is due to the high values of the transfer rate constant K, which causes the rapid removal of the
dissolved species from the solution. For K, = 10710 m3kg—1's~!, sorption is slow compared to
diffusion, and a breakthrough is observed starting at about ¢ = 8 days. As irreversible sorption
continues, the dissolved speciesis sorbed onto the PM, and eventually both C'r; and C'rp tend to

Z€ero.

6.4. Reservoir-Depletion and I n-Diffusion Experiments

Aswas discussed earlier, the reservoir-depletion and in-diffusion (SA2) solutions are a subset
of the through-diffusion (SA1) solutions, from which they are obtained by setting Vp = 0. It
follows that an analysis of the SA2 solutions under (@) equilibrium, (b) linear kinetic, and (c)
irreversible sorption can be conducted in a manner analogous to the ones described in Sections
5.2, 5.3, and 5.4. It is obvious that this type of diffusion study is applicable to cases of strong

sorption. Otherwise, the very limited volume of the sample would have alimited (and potentially
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undetectable) effect on the upstream concentration.

Ofinteresti stheappli cationofthesol utionofequati on(35)i nscopi ngcal cul ationstodetermine
theeffectofdiffusioninthetransportofradionuclides.  Thecaseinvestigatedherei sthatof Retention
Basin 281-3H (hereafter referred to as the H-basin), a shallow catchment basin at the Savannah
RiverSite (SRS) of the U.S. Deprtment of Energy in South Carolina, theisolation of which provided
the initial impetus for this study. The H-basin was originally built to control contaminated runoff
from the H Reactor, and has been contaminated mainly by 3”Csand °°Sr. A detailed description
of the pond, contamination, and the prevailing conditions at the site can be found in Moridis et al.
[1996].

The pond dimensions are 60 x 36 x 2 m, and the average water depth is 0.6 m. Rainfal
in that area averages 1.15 m/year, and is assumed to replenish evaporation losses. Most of the
contamination was believed to be confined within the first 0.3-0.6 m from the basin bottom and
walls.

Assuming that the water level in the basin coincideswith the groundwater level, and neglecting
advection, equation (35) can be used to determine the minimum extent (best-case scenario) of
radionuclide transport and distribution. The actual transport is expected to be higher because of
advection. Based on the volumeof water inthe basin, the cross-sectional areacorresponding to each
m?> of water in the basin is 1.75 m?. The soil in the H-basin areais mainly kaolinitic clay, which
has limited ion-exchange capacity [Moridis et al., 1996]. Batch sorption experiments showed that
905r sorptionis linear, with Ky = 1073 m3 /kg [Hakemet al., 1997].

In equation (35), ¢ = 0.38, p = 2600 kgm =3, D* = 107 m?s~', D, =0, S, = 0,
Vo =1m3, A= 175m? and L = 100 m (i.e., practically infinite). V was set to zero (SA2
solution), although identical results are obtained for V» # 0 because of the very large L. For 2°Sr,
T, /2 = 29.1 years, correspondingto A = 7.5 x 10710 s 1,

Figure 22 showsthat C'ry; in the H-basin after 10° days (273.8 yrs) is about 5 x 10~4, which
could be substantial if Cyyo (which isnot yet fully determined) is high. The spatial distribution of

Crp (= C(z)/Cyo) over timeis shown in Figure 23, and indicates that at t = 10* days (roughly
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the time since the releases into the basin), the extent of contamination is limited to lessthan 1 m
from the basin bottom and walls. Note that at t = 10° days, the contamination is limited to the top
3—3.5m fromthecontact area, butits levelscould besubstantial dependingonthe Cy;,. Because of
linear sorption, the amount of sorbed speciesisdirectly proportional to Crp, and Ms/Mp = 3.56,
i.e., the sorbed species mass is 3.56 times larger than the mass in the pore water. This can be
easily seen in Figure 24, which shows the relative masses Mz, = M;/M,, 1 = U, P, S, T, where
My = Vy Cpo,i.e, Mrat=0,

6.5. Comparison of the Inversion Schemes

The solutions presented up to now were obtai ned by inverting equation (35) using the DeHoog
method with My = 20 (Ny = 41), Er = 10~ and T’ = t,;,, Wheret,,;, isthetime of observation.
Thiswill bereferred to asthe standard solution. Although the De Hoog method allows computation
of the solution over the whole range of 0 < ¢, < t,42, the accuracy deteriorates if ¢ = ¢, in
equation (53) and 1" are not of the same order of magnitude[Moridis, 1992b]. Tominimize machine
accuracy errors as t becomes large, the unit of time in the solutions was days instead of s. The
valueof My = 20 was chosen because, in earlier tests [Moridis, 1992b], it had been determined
to successfully invert the Laplace transform of the step function (the most challenging inversion
problem available) with an error of lessthan 10~ %.

The standard sol ution was compared to the C'r; and m solutions obtained from theinversion
of equation (35) using (@) the De Hoog method for 6 < My < 22 and (b) the Stehfest algorithm
for6 < Ng < 22. The problem used in these comparisons was of that through diffusion with linear
equilibrium sorption (R* = 100) and no surface diffusion (see Section 5.2.2 and Table1).

Figure 25 showsthat for My = 6, the absolute deviation of C'ry; from the standard solution
waslessthan 4 x 105 %, and that for M = 8 afew individual solutions exhibited deviations as
t grew larger, but did not exceed 3 x 10~7 %. For My > 8, the solutions were identical in at |east
the first 8 significant digits and are not included in Figure 25. The same pattern was observed in

the study of the effect of My on the mass balance (i.e., m7). Compared to the standard solution,
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mp wasinvariablefor My > 6 over the range of time, and showed an absolute deviation of less
than 3 x 10~7 % for My = 8.

The Stehfest inversion of equation (35) exhibits a more complicated picture. From Figure
26(a), it can be seen that the C'ryy solutions shows significant deviations from the standard solution
for Ng = 6. These deviations decrease with an increasing Ng. For Ng = 14, the deviations are
less than 10~% for t < 300 days, but increase rapidly for longer times, although they exhibits a
seriesof local minima. The same pattern isobserved for Ng = 16 in Figure 26(b), which, however,
demonstrates somewhat higher deviations that increase rapidly for ¢ > 800 days. For Ng = 18,
however, the absolute deviation fluctuates around 2 x 10=% %, i.e., it is higher than those for
Ng = 14 or Ng = 16, but is relatively stable over the time range studied here. It appears that the
number of summation termsisinsufficient to counteract roundoff error ast increasesfor Ng < 16.
For Ng > 18, the deviationsincrease with Ng due to larger roundoff errors [Stehfest, 1970a].

Of interest isthe effect of Ng onthe deviationsof m from the standard solution. Figure 27(a)
includesonly the curvefor Ng = 14 becausethe deviationsarelessthan 10~7 %for 6 < Ng < 14.
Thisclearly indicatesthat for these low Ng values, the Stehfest inversion of (35) produces solutions
which are inaccurate, but still maintain mass balance. The consequence of this observation is that
mass balance aloneis an insufficient indicator of an accurate solution. For Ng > 16, the deviations
of M~ from the standard solution, both in terms of pattern and magnitude, are remarkably similar
to that of C'ry, and seems to be unaffected by .

The implication of these results for the choice of the inversion method is that, with an
appropriate choice of parameters, both methods produce accurate solutions, which differ in the
fourth decimal place and beyond, i.e., they are practically identical. The Stehfest solution has the
additional advantage of ssimplicity and ease of coding, while execution speed is not aconsideration
because both inversions are very fast (requiring less than 2 s to invert equation (35) at 500 ¢,
points). On the other hand, if very high accuracy (and especialy at very low C'zyy and Crp levels)
isrequired, the Stehfest solution may not be the appropriate choice, asit oscillates about zero when

Cru, Crp < 1075, Inthis case, the De Hoog inversion is a better choice.
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Regarding the parameters of theinversionschemes, a Ns = 18 appearsto givethe best overall
performance in the Stehfest algorithm. This is the optimum value suggested by Stehfest [1970a]
for double precision arithmetic. For the De Hoog method, Er = 10~? and T' = 2 t,,;, appear to
give excellent results, whilea My = 10 or 12 appears to be adequate for most applications, and
provides accurate, non-oscillatory C'ryy and Crp results at the 10~ 14 level. Increasing My does

not lead to roundoff errors, but increases the accuracy of the solution.

7. Estimation of Diffusion and Sor ption Parameters

Theestimation of parametersfrom experimentaldata, i.e., theinverse problem,is demonstrated
in this example. The extreme non-linearity of the solution and the number of parametersinvolved
(although it is possible to reduce their number by estimating the composite parameters) preclude
the use of a trial-and-error approach. The non-linear optimization (history-matching) technique
of Thomas and Hellums [1972] was coupled with the semianalytical solutions, and provided
the diffusion and sorption parameters that minimize the second norm of the deviations between
measurements and predictions.

The experimental data from a through-diffusion experiment were obtained by McKinley and
Swaminathan [1996] in their study of rock matrix diffusion of Pb and Cd through shales for the
deep injection of wastes. The particular data set used for history matching corresponded to a
shale from Du Pont’s Beaumont works in Texas, taken from a depth of 3646 ft (1111 m). As
this experiment used the conventional approach, alinear equilibrium model was assumed and only
Crp measurementswere made. Using equation (61) (simplified by the omission of the exponential
terms) and the corresponding empirical determination of the slope and intercept of the Crp Vvs. t

curve, McKinley and Svaminathan [1996] determined that for Pb
$pD* =583 x 1079 m?s™1 and ¢ R* =19.2

From previous batch experiments, it had been determined that ¢ = 0.41 and that sorption had a

linear equilibrium isothermwith a K = 5.2 x 1072 m3kg~'. Using thisvalue of ¢, the diffusion
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experiment yields

D* =142x10%m?s™? and R* = 46.8,

fromwhich K¢ = 1.225 x 1072 m3kg~1, i.e,, the K, from the diffusion experiment is 4.25 times
smaller than that determined from the batch experiment. When these values were used in equation
(35), the SA1 solution (designated in Figure 28 as the curve with D*, K; from M+S) showed
significant deviation from the experimental data.

Three sets of history-matching runs were conducted. The non-varying parameters for the
history-matching iterations are shown in Table 2. In the first set, linear equilibrium sorption
was assumed, and K, was kept fixed at the value determined from the batch experiments, i.e.,
Ky, = 5.2 x 1072 m3kg~!. The parameter allowed to vary was D, (=D* for 7, = 1), which
had as initial value that determined from the analysis of the diffusion experiment of McKinley and
Swaminathan [1986], i.e., D* = 1.42 x 1072 m2s~!. After threeiterations, the optimum fit was
obtained for D* = 2.875 x 102 m2s~!. Figure 28 shows an excellent fit between measurements
and the C'rp curve obtained from the SA1 solution. Some discrepancy is observed at early times,
but at these low concentrations there is measurement uncertainty due to analytical errors.

In the second set of history-matching runs, linear equilibrium sorption was assumed, and both
D* and K, were perturbed ssmultaneously. Their starting values were those at the end of the first
history-matching set, i.e., D* = 2.875 x 1072 m?s ! and K; = 5.2 x 1072 m3kg~!. Aftera
total of 9 iterations, the objective function was minimized for D* = 1.671 x 102 m?s~! and
Kg = 2.465 x 1072 m3kg~1. Thefit between the corresponding C'rp curve and the experimental
observationsisexcellent. Although thiscurve appearsto fit the data somewhat better than that from
thefirst history-matching set, their differences are practically negligible.

In the third of history-matching runs, alinear kinetic sorption model was assumed, and D*
K, and k were determined. The starting values of D* and K ; were those at the end of the second
history-matching set, and theinitial £ = 10~* s~!. Theinversion of this set wasfar more difficult
because of the larger number of perturbed parameters. After atotal of 17 iterations, the objective

function was minimized for D* = 2.00 x 107 m?s~1, K; = 3.218 x 1072 m3kg¢~!, and
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= 3.06 x 10~ s~!. These parameters provide the best fit with the experimental data (lowest
value of the objective function).

A review of Figure 28 points out the weaknesses of the conventional method of parameter
estimation from through-diffusion experiments. Its empirical nature cannot be relied upon to
provide accurate estimates. Additionally, the same experimental data were matched almost equally
well with three curves representing different sorption models and involving different values of the
pertinent parameters. The conventional approach limits measurements to the downstream reservoir
(i.e., to Cgp), and is incapable of resolving the ambiguities arising from non-unigque solutions.
These uncertainties could be overcome if a second data set, that of C'ry, were available.

The point is illustrated in Figure 29, which depicts the Cry behavior corresponding to the
Crp curves of Figure 28. It is obvious that the four curves are easily distinguishable from each
other. Had such a data set been available, it would have been possible to determine (a) the type of
sorption (equilibrium or kinetic) and (b) the corresponding parameters with afar higher degree of
certainty. The semi-analytical solution developed in this paper makes this possible.

It must be pointed out that Figure 29 aso demonstrates another weakness of the conventional
approach, namely the violation of the assumption of constant Cy; = Cyy for equation (61) to be
valid. Because of technical difficulties, it is common practice to avoid replenishing the upstream
reservoir to maintain aconstant Cy;, and to use only thefirst Crp datafor analysis. These dataare
inherently less accurate because of analytical errors at these low concentration levels. When larger
data sets are used, it can be seen from Figure 29 that C'y; exhibits avery significant declinethat is
controlled by the diffusion and sorption parameters. For the curve with thefixed K; = 5.2 x 102
m3kg—!, Cry declines very rapidly and reaches 0.54 at ¢t = 20 days. Inclusion of the Crp data
points at the corresponding times contaminates the data set with substantial errors, as equation (61)
isno longer valid. The semianalytical solution proposed here is general and suffers from no such
shortcoming.

Animportant i ssue which must be addressed isthat of increasing difficulty of history matching

asthe number of parametersto be determined increases. The availability of C'ryy data set aleviates



MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS 37

the problem, but if the history-matching technique is not sufficiently robust, parameter estimation
may suffer from non-uniqueness. The history-matching method of Thomas and Hellums [1972]
used in thisanalysisis based on the Gauss-Newton algorithm, and may be unstable inthe inversion
of the strongly non-linear problems of diffusion discussed in this paper. In the author’ sexperience,
it is always possible to determine one parameter using this algorithm, and two parameters can be
easily determined if the starting point is close to the solution. It is possible to determine three
parameters only if the starting point is close to the solution, and it is not advisable to attempt the
simultaneous determination of more than three parameters.

To address this problem, an existing inversion package Finsterle [1997] is currently being
coupl edwiththesemianal yti cal diffusionequationforautomaticparameterestimation.  Thishistory-
matching package includes the L evenberg-Marquardt algorithm and simulated annealing, and has
been shown capable of determining simultaneously several parameters in extremely non-linear

problems [Finsterle and Persoff, 1997].

8. Summary and Conclusions

In this paper semianalytical solutions to the problem of diffusion and sorption in diffusion
cell experiments are developed. The PDE solved accounts for diffusion in the PM pores,
surface diffusion, mass transfer between the mobile and immobile water fractions, linear sorption
(equilibrium, kinetic or irreversible), and radioactive decay. Using Laplace transforms, analytical
solutions are developed in the Laplace space. Direct inversion of these solutionsto obtain a closed-
form solutionintimeisnotpossible, thusthe numerical inversion schemesof Stehfest [1970a;b] and
of DeHoog et al. [1982] are employed. Thetwo numerical inversionschemesareevaluated, and are
shown to produce comparable results. These semianalytical solutions make possible the analysis
of data from diffusion experiments without suffering from the shortcomings and inaccuracies of
the conventional empirical approach, which only uses information from the downstream reservoir
(i.e, Crp).

The semianalytical solutions are developed for the conditions of through-diffusion experi-
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ments, but it is shown that extension to reservoir-depletion and in-diffusion experimentsis trivia,
and is accomplished by setting the downstream reservoir volume Vp = 0 in the solutions. The
generality in the development of the solutions alows any length of the PM sample, and thus the
equations can be used for scoping calculations in waste containment applications.

The semi-analytical solutions are verified under limit conditions, for which closed-form
analytical solutions exist. The effects of various diffusion, sorption and geometric parameters
on the solutions are investigated.

In through-diffusion experiments and under linear equilibrium sorption, diffusion is shown
to increase with the pore diffusion coefficient. Increasing sorption shifts both the Cry and Crp
curves downward (as less species mass remains in the liquid phase), and delays breakthrough in
the downstream reservoir.

When surface diffusion is present, it is shown to account for practically al diffusion when
sorption isstrong, and its effects become more pronounced as sorption (i.e., the K ;) increases. The
semianalytical solutions allow the differentiation and parameter estimation of sampleswith strong
sorption and surface diffusion, atask impossiblein conventional analysis. Animportant conclusion
is that the traditional approach of evaluating the performance of a diffusion barrier material in
terms of K, may not be relevant in the presence of surface diffusion. A larger K, clearly indicates
stronger sorption, but this does not mean immobilization of the dissolved species when the PM
supports surface diffusion. On the contrary, the stronger the sorption (i.e., the larger the K ), the
larger the diffusion rate will be, and practically al of it due to the surface process.

The study of the effects of the cell geometry indicates the ability to selectively amplify the
magnitude of Cry and C'rp by varying the absolute and relative sizes of V; and/or Vpp, and by
adjusting A. Thisimplies that manipulation of the geometric features of the diffusion cell allows
control over the duration of the experiment and the data quality.

In diffusion with linear kinetic sorption, an increasing k is shown to result in faster depletion
in the upstream reservoir and slower breakthrough curves, and increasing sorption amplifies these

effects. Of particular interestisthe effect of surfacediffusionin diffusionwith kinetically controlled
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sorption, which results in oscillatory C'rp behavior when sorption is very strong.

The study shows that the use of the semianalytical solutions has significant advantages over
the conventional graphical approach because (a) it is not based on the often invalid assumption of
constant upstream concentration Cy; = Cpo, and (b) doubles the amount of data (by providing
both the more sensitive C'ryy and the C'rp measurements), from which to extract the pertinent
diffusion and sorption parameters. Thus, a larger number of parameters can be determined with
greater accuracy.

In the investigation of diffusion with linear kinetic sorption, an increasing & is shown to
result in faster depletion in the upstream reservoir and slower breakthrough curves, and increasing
sorption amplifies these effects. Of particular interest is the effect of surface diffusion in diffusion
with kinetically controlled sorption, which results in oscillatory C'rp behavior. In diffusion with
irreversible sorption, the effect of K, isthat of adelay, or even elimination, of breakthrough.

Asimilar approachcanbefollowedinthecaseof reservoir-depletionand/or in-diffusion, which
isasimplified option of the through-diffusion case. This solution is used for scoping calculations
of radionuclide fate and transport using data from the H-basin area of the Savannah River Site
[Moridiset al., 1996; Hakemet al., 1997].

Two numerical inversion methods of the Laplace space solutions, the Stehfest agorithm
[Sehfest, 1970a,b] and the De Hoog method [De Hoog et al., 1982], were evaluated. Both methods
produce practically identical solutions. The Stehfest solution has the additional advantage of
simplicity and ease of coding, while execution speed is not a consideration because both inversions
are very fast. On the other hand, if very high accuracy (and especially at very low Cry and Crp
levels) is required, the Stehfest solution may not be the appropriate choice, as it oscillates about
zerowhen Cry, Crp < 1075 Inthis case, the De Hoog inversion is a better choice.

Finally, the semianalytical solution is coupled with the history-matching algorithm of Thomas
and Hellums [1972] for the estimation of the diffusion and sorption parameters of shales, using
previously published data [McKinley and Svaminathan, 1996]. In three sets of history matching

runs, (@) D* isobtained for afixed K; equal to that determined from batch experiments [McKinley
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andSwaminathan,1996], (b)both D* and K ; aresimultaneouslydeterminedforalinearequilibrium
sorption model, and (¢) D*, K, and k are simultaneously determined for alinear kinetic sorption
model. The excellent fits between observations and predictions based on the parameters from the
threehistory-matching runsareincontrast withthe significantdeviationsof thecurveobtained using
the parameters from the conventional analysis, which cannot be relied upon to provide accurate
estimates.

These resultsindicate both the power and accuracy of the semianalytical solution for parameter
estimation, aswellas the ambiguitiesthat stem from using only Crp data, asthe same experimental
datawere matched almost equally well with three curvesrepresenting different sorption models and
involving different values of the pertinent parameters. An examination of the corresponding C'ry/
curvesindicatesthat they are easily distinguishable from each other, and can resol vethe ambiguities
arising from non-unique solutions. The semi-analytical solution developedin this paper makesthis

possible.

Appendix A: Alternative Boundary Equation

Equating the change in the dissol ved species mass in the upstream reservoir with the mass that

crosses the x = 0 boundary and that lost due to radioactive decay, we have

t
—A¢/ {DT @—C) dt + Dy (Z—F> } dt
0 T/ z=0 L ) =0

t (A1)
:VUOU()—VU (CU+)\/CUdt>,
0

where all the terms are as previously defined. For simplicity, we consider the case of linear
equilibrium sorption. Taking into account equations (18) and (21), the Laplace transform of (A1)

yields after a simple manipulation
aw + Bws = Vy Cyo, (A2)

where

wr=Vy(s+A)—D"A¢py and wy=Vy(s+A)+D*"A¢pr. (A3)
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Substituting o from equation (31) into (A2), 3 is determined from

Vi Cuo
b wa + nwy exp(—2v L) (44)

For linear kinetic and linear irreversible sorption, equation (A4) applies unchanged when the

appropriate D* and R* expressions are used (see Sections 3.2 and 3.3).
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Tablel. Standard parametersin the examples of the semianalytical solution

Parameter Value Parameter Value
Vi 2 x 1073 m? Vb 2 x 1073 m?
A 1072 m? L 1072 m
[0} 0.35 p 2600 kgm =3
Tp =Ti = Ts 0.1 S, 0.0
A 0st Dg 1072 m2s~1!
Dy = D* 10710 m2s—1 Dy 0m?2s~!
K4 4.14 x 107t m3kg~1! R* 3
K; 1 Ky, 0m3kg—1s™t
k 0s1! ) 1
My 20 Er 1079
T t =1 7 0
Table2. Fixed parametersin the history-matching example
Parameter Value Parameter Value
Vi 4.906 x 1073 m? Vb 2.76 x 1073 m?3
A 7.854 x 1073 m? L 1072 m
[0} 0.41 p 2600 kgm =3
Tp=Ti=Ts 1 S 0.0
A 0s ! Dy = D* Dy
Dy 0m?s~1 K; 1
K, 0m3kg ts™! 0 1
My 20 Egr 1079
T t =1t W 0
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Figure 1. Diffusion cells for (@) through-diffusion experiments and (b) reservoir-depletion and/or

in-diffusion studies.
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Figure 2. Comparison of the SA1 solutions of C'rp to the approximate analytical solutions of

equation (61) [Crank, 1975]. The corresponding SA1 predictions of C'ry; are a'so shown.
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Figure 3. Comparison of the analytical solution [Lever, 1986] to (a) the SA1 solution for L = 100

m, (b) the SA2 solution for L = 100 m and (c¢) the SA2 solutions for L = 100 m, L = 0.05 m,

and L = 0.02 m.
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Figure5. Effect of sorption (variable R*) onthe Cry and Crp solutions for D* = 10710 m?/s.
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Figure6. Effect of surface diffusion onthe C'zyy and C'rp solutions for two different R* values.
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Figure 8. Effect of mass transfer between the mobile and immobile water fractions on the C'ry

and Crp solutions.
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Figure 11. Effect of the size of A onthe C'zry and C'rp solutions in the case of strong sorption

with surface diffusion.



58 MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS

H
o
|
a——

o
o

o
fo)

Cru Curves N4

0.4

Crp curves

0.2 3
K4 = 0.00186 m'/kg

D; = 10 m%s

or C
Cru RD
| U I T T N N N U T N A U N U TN N T U T N N M U U N NN N U (AU N AN A AT R ENN NN N N AR

o
o

I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1
0 200 400 600 800 1000 1200 1400
Time (days)

Figure 12. Effect of the kinetic constant £ on the C'ry and C'rp solutions in a PM with a

Kg=1.8639x 102 m3kg ' (k1 =102 s 1, ks =108 571, ks = 10710 571).
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Figure 13. Effect of the kinetic constant £ on the C'ry and C'rp solutions in a PM with a

Kgq =5.1568 x 1072 m3kg~! (ki1, ko, k3 asin Figure 12).
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Figure 14. Effect of the kinetic constant £ onthe C'ri; and Crp solutionsinaPM witha Ky = 1

mgkg_l (k’l, ko, k3 asin Figure 12)
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Figure 15. Evolution of the massratio Mrsw = Mg /My, over time for the combination of Ky

and k of Figures 12 through 14.
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Figure 16. Effect of the surface diffusion D, = 0.1 Dy on the C'ry and Crp solutionsin a PM

witha K; = 5.1568 x 1072 m3kg~? (k1, ks, k3 asin Figure 12).
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Figure 17. Effect of the surface diffusion D, = 0.1 Dy on the C'ry and Crp solutionsin a PM

witha Ky = 1 m3kg=" (k1, ko, k3 asin Figure 12).
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Figure 18. Mass of the dissolved species in the various components of the diffusion cell system
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(i.e., My, My, Mg, Mp, M) under the conditions of the study for £ = k3 in Figure 17.
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Figure19. Spatial and tempora distributionof Crp = C(x)/CyoinaPM samplewith L = 1072

m under the conditions of the study for £ = k3 in Figure 17.
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Figure 20. Spatial and temporal distribution of Frs = F/Cyo inaPM samplewith L = 1072 m
under the conditions of the study for £ = k3 in Figure 17.
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Figure2l. Effectof varying K, onthe C'ry and C'rp solutionsunder through-diffusionconditions
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Figure 22. Scoping calculations of C'zyy evolution over time in the example of the H-basin.
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advection is neglected.
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Figure 24. Relative masses of dissolved species in the various components of the H-basin system.
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Figure 25. Effect of the My parameter in the De Hoog method (6 < My < 22) on the deviation
(%) of the Cryy and M solutions from the standard sol utions (obtained using the De Hoog method

with My = 20). Thecurvesfor My > 10 exhibited deviations < 10~7 % and are not shown.
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Figure 26. Effect of the Vg parameter in the Stehfest algorithm (6 < Ng < 22) on the deviation

(%) of C'ry from the standard solution (De Hoog with My = 20).
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the standard solution. Only the curves with deviations > 10~7 % are shown.

Figure 27. Effect of the Ng parameter in the Stehfest algorithm on the deviation (%) of M, from
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Figure 28. Comparison of measurements to SA1 predictions of Crp with history-matched

sorption/diffusion parametersin a‘ Beaumont 3646 ft' sample [McKinley and Svaminathan, 1996].
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Figure 29. Predictions of C'gy; corresponding to the Crp curvesin Figure 27.



