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Abstract. In this paper, semianalytical solutions to the diffusion problem are developed under

the conditions of diffusion cell experiments, which involve finite liquid volumes and temporally

variable concentrations in the upstream and downstream reservoirs. These solutions account

for diffusion in the pores, surface diffusion, mass transfer between the mobile and immobile

water fractions, linear sorption (equilibrium, kinetic or irreversible), and radioactive decay. Fully

analytical solutions for both through-diffusion and reservoir-depletion studies are obtained in the

Laplace space, which are subsequently numerically inverted to provide the solution in time. The

effects of the various diffusion, sorption and geometric parameters on the solutions are investigated,

and scoping calculations for a realistic problem of radionuclide fate and transport are presented.

Two numerical inversion schemes are evaluated, and are shown to produce comparable results. The

semianalytical solutions are coupled with a history-matching algorithm, and diffusion and sorption

parameters are estimated using experimental data. The semianalytical solutions are shown to have

significant advantages over the conventional graphical approach because (a) they are not based on

the often invalid assumption of constant upstream and negligible downstream concentrations, (b)

they double theamountofdata fromwhich toextract thepertinent diffusionandsorption parameters,

and (c) allow differentiation between equilibrium and kinetic sorption.
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1. Introduction

The deep disposal or isolation of contaminants by using natural or engineered barriers

necessitates an understanding of their fate and transport in the subsurface. This is particularly

important in the case of radionuclide storage and the performance of radioactive-waste repositories.

Diffusion through, and sorption onto geological materials are important mechanisms of transport

and immobilization, and an accurate evaluation of the pertinent parameters is of critical importance.

Diffusion experiments represent a well established technique for the determination of the

transport properties of conservative and non-conservative tracers. Lever [1986] and Shackelford

[1991] presented thorough reviews of most diffusion techniques, and discussed their capabilities

and limitations. The majority of studies involve two basic diffusion cell designs: the through-

diffusion cell, or the reservoir-depletion/in-diffusion cell. A schematic of these two types of cells

is shown in Figure 1. Through-diffusion cells have been used extensively for the study of geologic

materials [Bradbury et al., 1982; 1986; Skagius and Neretnieks, 1986a; 1988; Kirchner et al.,

1996; McKinley and Swaminathan, 1996; Wen et al., 1997], while reservoir-depletion/in-diffusion

cells are commonly used in the analysis of the diffusion of polymers [McKinley and Swaminathan,

1996].

No analytical solutions to the problem of diffusion and sorption under the conditions of

diffusion cell experiments (i.e., finite liquid volumes and temporally variable concentrations in

the upstream and downstream reservoirs) are currently available [Kirchner et al., 1996]. Numerical

solutionsarecommonlyusedtoanalyze theexperimentaldataforparameter estimation[Skagiusand

Neretnieks, 1986a; Kirchner et al., 1996; Wen et al., 1997]. The majority of the through-diffusion

analyses, however, are conducted using the time-lag method, which is based on the approximate

analytical solution of Crank [1975], as adapted by Skagius and Neretnieks [1986a]. This solution

is discussed in Section 5.1.

The time-lag method assumes a linear equilibrium model, and is valid if (1) the concentration

CU of the upstream reservoir remains constant over time, (2) the concentration CD of the

downstream reservoir is sufficiently low to be negligible compared to CU , (3) the diffusion
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coefficient is constant, and (4) diffusion is the only transport mechanism, i.e., there is no advection

[Skagius and Neretnieks, 1986b]. Condition (3) is usually valid, while condition (4) can be achieved

with careful experimental preparation. Regarding conditions (1) and (2), these may be good

approximations in the initial stages of the study, but their validity deteriorates as time advances

and may lead to erroneous diffusion and sorption parameters, especially in the case of strong

sorption. To overcome this shortcoming, current laboratory practices involve diffusion cells with

large upstreamand downstream reservoirs, while data analysis is restricted to theearly portion of the

data. An alternative approach, which involves maintaining constant concentration by replenishing

the depleted species in the upstream reservoir, is cumbersome and requires special equipment.

Additionally, the time-lag method assumes a quasi-steady diffusion after an initial transient

period. Parameter estimation is based on the slope and intercept of the CD vs. time curve, which are

determined using a semi-empirical (graphical) method involving only the apparent linear portion

of the data set [Skagius and Neretnieks, 1986a; McKinley and Swaminathan, 1996]. Thus, the

conventional approach uses information from only the downstream reservoir, and only a portion of

the data which is early and linear. The often subjective nature of parameter estimation can lead to

substantial errors and ambiguities.

In this paper, general semianalytical solutions to the diffusion problem are developed under

the conditions of diffusion cell experiments. These include finite liquid volumes and temporally

variable concentrations in the upstream and downstream reservoirs, and involve practically no

simplifying assumptions. The solutions account for diffusion in the pores, surface diffusion, mass

transfer between the mobile and immobile water fractions, linear sorption (equilibrium, kinetic

or irreversible), and radioactive decay. Fully analytical solutions for both through-diffusion and

reservoir-depletion studies are obtained in the Laplace space, which are subsequently numerically

inverted to provide the solution in time. The semianalytical solutions are shown to have significant

advantages over the conventional graphical approach because (a) they are not based on the often

invalid assumption of constant upstream and negligible downstream concentrations, and (b) can

double the amount of data from which to extract the pertinent diffusion and sorption parameters.
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2. Governing Equations

2.1. The Diffusion Equation in Through-Diffusion Studies

The 1-D solute transport through the porous medium (PM) in a diffusion cell such as the one

shown in Figure 1a is described by the equation

Dm
∂2C

∂x2 + Di
∂2Ci

∂x2 + φ DF
∂2F

∂x2

= φc
∂C

∂t
+ (φ − φc)

∂Ci

∂t
+ (1 − φ) ρ

∂F

∂t

+ φc λ C + (φ − φc)λ Ci + (1 − φ) ρ λF,

(1)

where

C species concentration in the mobile pore water [ML−3];

Dm intrinsic diffusion coefficient for the mobile pore water [L2T −1];

Ci species concentration in the immobile pore water [ML−3];

Di intrinsic diffusion coefficient in the immobile pore water [L2T −1];

F relative concentration of the adsorbed mass [dimensionless];

DF apparent surface diffusion coefficient [L−1MT−1];

ρ PM grain density [ML−3];

φ total PM porosity [dimensionless];

φc kinematic porosity [dimensionless];

λ = ln2/T1/2, radioactive decay constant [T −1];

T1/2 half-life of radioactive species [T ];

x length coordinate in the diffusion equation [L];

t time [T ].

The three terms on the left-hand side of equation (1) describe diffusion in themobile pore water

[Skagius and Neretnieks, 1988], through the immobile thin film in the immediate vicinity of the PM

grains [de Marsily, 1986], and surface diffusion [Jahnke and Radke, 1987; Skagius and Neretnieks,

1988; Cook, 1989; Berryand Bond, 1992], respectively. Thefirstandsecondsets ofthreetermseach

on the right-hand side of equation (1) describe the dissolved species accumulation and radioactive
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decay in the pore water, in the immobile fraction, and on the PM grains due to sorption, respectively.

The kinematic porosity φc is defined as the portion of the porosity corresponding to the mobile

fraction of the fluid phase [de Marsily, 1986], and can be approximated by

φc = φ (1 − Sr), (2)

where Sr is the irreducible water saturation, which can be obtained from the van Genuchten [1980]

capillary pressure curve of the PM.

From Oldenburg and Pruess [1995] and Skagius and Neretnieks [1986a]

Dm = τp φc D0 = τp φ (1 − Sr) D0, (3)

where τp is the tortuosity factor of the pore paths [dimensionless], and D0 is the molecular diffusion

coefficient of the dissolved species in water [L2T −1]. Similarly,

Di = τi (φ − φc)D0 = τi φSr D0, (4)

where τi is thetortuosity factor inthe diffusion paths through theimmobile fraction [dimensionless].

If surface diffusion cannot be neglected [Jensen and Radke, 1988], DF is given by [Jahnke, 1986;

Jahnke and Radke, 1987]

DF = τs
(1 − φ)

φ
ρ Ds, (5)

where τs is the tortuosity factor of the surface path [dimensionless], and Ds is the surface diffusion

coefficient [L2T −1]. For homogeneous PM systems there is theoretical justification [Cook, 1989]

for the relationship τs = 2
3 τp.

Because water is very strongly bound (in electric double layers) to the PM grain surface,

Brownian motion is limited and solubility in the immobile water is lower than in the mobile water

fraction. This boundary layer thus acts as a liquid sorption layer. The importance of this boundary

layer has been recognized by de Marsily [1986], who differentiates C and Ci, and Skagius and

Neretnieks [1986a], who use the mobile fraction of water in the analysis of diffusion experiments.

Using the linear equilibrium relationship [de Marsily, 1986],

Ci = Ki C, (6)
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where Ki is a mass transfer coefficient [dimensionless], equation (1) becomes

DT
∂2C

∂x2 + DF
∂2F

∂x2 = h

(
∂C

∂t
+ λ C

)
+

(1 − φ)
φ

ρ

(
∂F

∂t
+ λ F

)
, (7)

where

DT = D0 [τp (1 − Sr) + τi Sr Ki] (8)

and

h =
φc

φ
+

φ − φc

φ
Ki = 1 − Sr + Sr Ki . (9)

The initial and boundary conditions are

C(x = 0, t) = CU (t), CU (0) = CU0 6= 0, (10)

C(x = L, t) = CD(t), CD(0) = 0, and C(x, t = 0) = 0, (11)

where L is the length of the PM compartment ([L], see Figure 1a). An additional condition is

imposed by the dissolved species mass conservation, i.e.,

MU + MW + MS + MD = MT for t ≥ 0, (12)

where MU , MW , MS, MD , and MT are the species mass [M] in the upstream reservoir, in the

pore water of the PM, adsorbed onto the PM grains, in the downstream reservoir, and in the whole

system, respectively. It is obvious that

MT = VU CU0 exp(−λt), (13)

where VU is the liquid volume in the upstream reservoir [L3]. For a non-radioactive species, λ = 0

and MT = VU CU0, i.e., constant over time.

The final boundary condition in through-diffusion studies equates the dissolved species mass

in the downstream reservoir with the mass that crosses the x = L boundary, i.e.,

−A φ

∫ t

0

[
DT

(
∂C

∂x

)

x=L

+ DF

(
∂F

∂x

)

x=L

]
dt

= VD

(
CD + λ

∫ t

0
CD dt

)
,

(14)
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where VD is the downstream reservoir volume [L3], and A is the cross-sectional area of flow [L2].

For non-radioactive species, λ = 0 and MD = VD CD . In reservoir-depletion and in-diffusion

studies, equation (14) applies with VD = 0, i.e., by setting the right-hand side of the equation equal

to zero.

Equation (7), subject to the conditions of equations (10) through (14), is the general equation

of diffusion. The only assumption made is that the concentration in the upstream and downstream

reservoirs are uniform, i.e., they are well mixed, and there are no spatial concentration gradients

in either. This is a valid assumption because the solutions in the reservoirs of diffusion cells are

continuously stirred [McKinley and Swaminathan, 1996].
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2.2. The Sorption Equation

Considering that sorption occurs as the dissolved species diffuses through the immobile water

fraction, and assuming that the sorption is linear, instantaneous and reversible (i.e., equilibrium

linear sorption), the following relationship applies:

F = Kd Ki C , (15)

where Kd is the distribution coefficient [L3M−1]. The validity of this approach is supported by

experimental evidence [de Marsily, 1986], which suggests that equilibrium is reached in a matter

of a few minutes in clayey PMs, i.e., practically instantaneously, given that diffusion experiments

routinely last from days to months. Equation (15) is the most general form of the linear sorption

equation, and accounts for the effect of mass transfer through the immobile water fraction. If,

however, this effect is disregarded, Ki = 1 and equation (15) reverts to the more commonly used

form of linear sorption.

The linearity of equation (15) allows its combination with the general diffusion equation (7)

and with the boundary equation (14), yielding

∂2C

∂x2 =
R∗

D∗

(
∂C

∂t
+ λ C

)
, (16)

and

−A φ D∗
∫ t

0

(
∂C

∂x

)

x=L

dt = VD

(
CD + λ

∫ t

0
CD dt

)
, (17)

where the retardation factor R∗ and the effective diffusion coefficient D∗ are defined by

R∗ = 1 − Sr + Sr Ki︸ ︷︷ ︸
h

+
1 − φ

φ
ρ Kd Ki

︸ ︷︷ ︸
w

and D∗ = DT + τs w Ds. (18)

For non-radioactive species, equation (16) applies with λ = 0.

If sorption is not in equilibrium and its kinetics are linear [de Marsily, 1986], the temporal

variation of F [Harada et al., 1980; Pigford et al., 1980] is modified to account for radioactive

decay, yielding
∂F

∂t
+ λ F = k (Kd Ki C − F ) , (19)
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where k is the kinetic constant of linear chemical adsorption [T −1].

Linear irreversible sorption is decribed by the relationship [Bear, 1979]

∂F

∂t
+ λ F = KL Ki C , (20)

where KL is a constant [L3M−1T−1]. Equation (20) indicates a solid phase acting as a sink for

the dissolved species.

The non-linearity of equations (19) and (20) does not permit substitution in (7), and the

equations of diffusion and sorption must be solved simultaneously.

3. The Laplace Space Solutions

3.1. Through-Diffusion With Linear Equilibrium

The Laplace transform of the governing equation (16) results in

∂2Ĉ

∂x2 − R∗

D∗ (s + λ) Ĉ = 0 , (21)

where Ĉ = L{C}, s is the Laplace space parameter, and L{} denotes the Laplace transform of the

term within the brackets. A general solution to equation (21) is

Ĉ(x) = α exp(γ x) + β exp(−γ x) , (22)

where

γ =

√
R∗

D∗ (s + λ) , (23)

and α and β are coefficients to be determined. From (22) and the Laplace transform of the boundary

conditions (10) and (11),

Ĉ0 = L{CU} = Ĉ(x = 0, s) = α + β

ĈL = L{CD} = Ĉ(x = L, s) = α exp(γ L) + β exp(−γ L) .
(24)

Combining equations (12) and (13), and taking the Laplace transform yields

M̂U + M̂W + M̂S + M̂D =
VU CU0

(s + λ)
, (25)



10 MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS

where M̂ = L{M}. The summation terms on the left-hand side of equation (25) are:

M̂U = VU Ĉ0 = (α + β)VU , (26)

M̂W = φ [(1 − Sr) + Sr Ki]
∫ L

0
A Ĉdx

= A φ h

{
α

γ
[exp(γ L) − 1] +

β

γ
[1 − exp(−γ L)]

}
,

(27)

M̂S = (1 − φ) ρ Kd Ki

∫ L

0
A Ĉdx

= A φ w

{
α

γ
[exp(γ L) − 1] +

β

γ
[1 − exp(−γ L)]

}
,

(28)

and

M̂D = VD ĈL = VD [α exp(γ L) + β exp(−γ L)] . (29)

The Laplace transform of equation (17) yields

−
γ

s
D∗ A φ [α exp(γ L) − β exp(−γ L)]

= VD [α exp(γ L) + β exp(−γ L)]
(

1 +
λ

s

)
,

(30)

from which

α = β η exp(−2γ L) , (31)

where

η =
D∗ A φγ − VD (s + λ)
D∗ A φγ + VD (s + λ)

. (32)

For non-radioactive species, λ = 0, and equation (32) is simplified accordingly.

Substituting (26) through (29) in (25), using (31), and collecting and rearranging terms yields

β =
VU CU0

(s + λ) (P1 + P2 + P3)
, (33)

where

P1 = [1 + η exp(−2γ L)] VU , P2 =
φ A R∗

γ
[1 − η exp(−2γ L)]

P3 =
[
VD (1 + η) − φA R∗

γ
(1 − η)

]
exp(−γ L).

(34)
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The Laplace space solutions are thus given by

Ĉ(x, s) = β {η exp [γ(x − 2L)] + exp(−γ x)} ,

Ĉ0(s) = β [η exp(−2γ L) + 1] ,

ĈL(s) = β (1 + η) exp(−γ L) .

(35)

The same solution is obtained if, instead of the mass balance equation (25), the flux conditions

at the x = 0 boundary are used. In this case, β is given by a different expression (see Appendix A),

and all other terms remain unchanged. Equation (35) returns identical solutions for β either from

equation (33) or from equation (A4).

3.2. Through-Diffusion With Linear Kinetic Sorption

Taking the Laplace transform of equations (7) and (19) leads to

DT
∂2Ĉ

∂x2 + DF
∂2F̂

∂x2 = h (s + λ) Ĉ +
(1 − φ)

φ
ρ (s + λ) F̂ , (36)

and

s F̂ + λ F̂ = k Kd Ki Ĉ − k F̂ and F̂ =
k Kd Ki

s + k + λ
Ĉ , (37)

where F̂ = L{F }. Substituting (37) into (36) and rearranging terms yields

∂2Ĉ

∂x2 −

R∗
︷ ︸︸ ︷
h + u

D∗ (s + λ) Ĉ = 0 , (38)

i.e., where

u =
k Kd Ki

s + k + λ

(1 − φ)
φ

ρ and D∗ = DT + τs u Ds (39)

In this case, the notion of the effective retardation factor R∗ is expanded to describe time-variable

behavior, and no longer conforms to its conventional meaning, as defined in linear equilibrium

sorption scenarios. The mass balance equations, the only exception being equations (28), in which

M̂S is now given by

M̂S = A φ u

{
α

γ
[exp(γ L) − 1] +

β

γ
[1 − exp(−γ L)]

}
. (40)
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When the appropriate R∗ (equation (38)) and D∗ (equation (39)) terms are used, all the

equations developed in the linear equilibrium problem apply unchanged to the case of linear kinetic

sorption. The solution of F̂ is then obtained from equations (35) and (37).

3.3. Through-Diffusion With Irreversible Sorption

In this case [Bear, 1979], the Laplace transform of the governing sorption equation (20) results

in

F̂ =
KL Ki

s + λ
Ĉ, (41)

where KL is a constant [L3M−1T−1]. Equation (41) indicates a solid phase acting as a sink for

the dissolved species. Using an approach entirely analogous to that for diffusion with linear kinetic

sorption, the solution is described by equation (35) when

R∗ = h + v, v =
KL Ki

s + λ

(1 − φ)
φ

ρ and D∗ = DT + τs v Ds . (42)

In this case, MS is given by equation (28) or equation (40), after substituting v for w or u,

respectively. All other terms, parameters and equations defined in Section 3.2 apply unchanged.

The solution of F̂ is obtained from equations (35) and (41).

3.4. Extension to Reservoir Depletion and In-Diffusion Studies

Under these conditions (Figure 1b), equation (30) yields

−
γ

s
D∗ A φ [α exp(γ L) − β exp(−γ L)] = 0, (43)

from which

α = β exp(−2γ L) . (44)

This is identical to (31) for η = 1, which is obtained automatically when VD = 0. The implication

of this realization is that the solutions for Ĉ in equation (35) and for F̂ in equations (37) and (44),

as well as all the associated terms corresponding to diffusion with (a) linear equilibrium sorption,

(b) linear kinetic sorption, and (c) irreversible sorption, apply unchanged to reservoir-depletion and

in-diffusion studies by setting VD = 0.
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3.5. Assumptions, Options and Simplifications

The solutions developed in this section are general, and applicable to diffusion in any closed

systemcomposedofupstreamanddownstreamreservoirs(orasingleupstreamreservoir)ofconstant

volumes and a PM sample of a finite length. A minimum of assumptions were involved in the

development of the solutions, i.e.,

(1) the mass transfer between the mobile and immobile water fractions in the pores is described

by the linear equilibrium of equation (6), and

(2) the concentration measurements do not necessitate solution sample removal (e.g., ion-specific

electrodes [McKinley andSwaminathan , 1996]), or thesample volumes withdrawn for analysis

are negligible compared to the reservoir volumes.

Simplification of the solutions is accomplished by an appropriate choice of values for the

various parameters, without the need to alter the equations. Setting λ = 0 automatically provides

the solutions to diffusion of non-radioactive solutes. When Ki = 1 and Sr = 0, no separate

immobile water fraction is considered, and diffusion is assumed to occur uniformly in the pores of

the PM. For Ds = 0, surface diffusion [Jahnke and Radke, 1987] is neglected. As has already been

discussed, setting VD = 0 provides the solution to the problem of diffusion in reservoir depletion

and in-diffusion experiments (Figure 1b) without any equation adjustments.

Note that although the focus is on diffusion experiments, the solutions are general and can

accommodate any values for VU , VD, A and L. Thus, these equations can be used to investigate

the performance of barriers in nuclear waste isolation applications.

Analysis of conventional diffusion results [Skagius and Neretnieks, 1986a; McKinley and

Swaminathan,1996] involves information from the downstream reservoir (called the measurement

reservoir) and allows the determination of composite terms rather than their respective components.

For example, in the case of linear equilibrium, it is possible to determine R∗ and D∗ rather than the

individual terms τp, τi, τs, Ds, Kd, Ki, and Sr (it is assumed that φ and D0 are already available).

Unlike conventional techniques, the solutions discussed here allow the use of information

from both the upstream and downstream reservoirs. Thus, it appears that it is possible to determine
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a larger number of direct (rather than composite) parameters by jointly inverting the upstream

and downstream curves in an appropriate optimization scheme for parameter estimation. Certain

simplifications may, however, be necessary to quantify some of the parameters if no independent

evaluation is available. A common assumption is that the tortuosity factors τp = τi = τs = τ

[Jahnke and Radke, 1987], which could be determined from a 3H or a I− (non-sorbing) diffusion

experiment. Ds isusually substantially smallerthan D0, and becomesimportant only whensorption

is very strong [Cook, 1989].

4. Numerical Inversion of the Laplace Solutions

The time-variable concentrations can be determined by inverting the Laplace space solutions,

i.e.,

CU (t) = L−1{Ĉ0(s)}, CD(t) = L−1{ĈL(s)}

C(x, t) = L−1{Ĉ(x, s)}, F (x, t) = L−1{F̂ (x, s)} ,
(45)

where L−1{} denotes the inverse Laplace transform of the quantity in the brackets. In diffusion cell

studies, of particular interest are the CU (t) and the CD(t) solutions, from which the key diffusion

and sorption parameters are deduced.

The complexity of the Laplace space solution precludes analytical inversion and the develop-

ment of a closed-form equation. The problem is alleviated by numerically inverting the Laplace

space solutions using one of the methods discussed below.

4.1. The Stehfest Algorithm

For a desired observation time t, the s in the Stehfest algorithm [Stehfest, 1970a; 1970b] is

real and given by

sν =
ln2
t

· ν, ν = 1, . . . ,NS (46)

where NS is the number of summation terms in the algorithm and is an even number.

When using the Stehfest algorithm, the inversion Z(t) (≡ C, CU , CD , F ) of a Laplace space
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solution Υ (≡ Ĉ, Ĉ0, ĈL, F̂ , respectively) at a time t is obtained from

Z(t) =
ln2
t

NS∑

ν=1

Wν Υ(sν) , (47)

where

Wν = (−1)
NS
2 +ν

min{ν,
NS
2 }∑

k= 1
2 (ν+1)

k
NS
2 (2k!)

(NS

2 − k)!k!(k − 1)!(ν − k)!(2k − ν)!
. (48)

Although the accuracy of the method is theoretically expected to improve with increasing NS ,

Stehfest [1970a;1970b] showed that with increasing NS the number of correct significant figures

inreases linearly at first and then, due to roundoff errors, decreases linearly. He determined that

the optimum NS was 10 for single-precision variables (8 significant figures) and 18 for double-

precision variables (16 significant figures). Moridis and Reddell [1991] reported that the method

seems to be insensitive to NS for 6 ≤ NS ≤ 20 in the Laplace Transform Finite Difference (LTFD)

method.

4.2. The De Hoog Method

In the method of De Hoog et al. [1982], hereafter referred to as the De Hoog method, s is a

complex number given by Crump [1976] as

sν = s0 +
νπ

T
j, s0 = µ − ln(ER)

2T
, ν = 1, . . . ,NH (49)

where 2T is theperiod oftheFourierseriesapproximating theinverse functionintheinterval [0, 2T ],

j =
√

−1, and NH = 2MH + 1 is an odd number. Moridis [1992a] showed that very accurate

solutions were obtained when µ = 0, 10−10 ≤ ER ≤ 10−8, and 0.9 tmax ≤ T ≤ 1.1 tmax, where

tmax is the maximum simulation time.

The inversion of the Laplace space solution obtained with the De Hoog method is far more

complicated than in the Stehfest algorithm. The solution Z(t) is given by

Z(t) =
1
T

exp(s0t) Re

[
A2MH

B2MH

]
, (50)



16 MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS

where

An = An−1 + dn z An−2, Bn = Bn−1 + dn z Bn−2, n = 1, . . . , 2MH , (51)

z = exp

(
j π t

T

)
(52)

A−1 = 0, A0 = d0, B−1 = B0 = 1 , (53)

d0 = a0, d2m−1 = −q(0)
m , d2m = −e(0)

m , m = 1, . . . ,MH , (54)

` = 1, . . . ,MH , e
(k)
` = q

(k+1)
` − q

(k)
` + e

(k+1)
`−1 , k = 0, . . . , 2MH − 2`

for ` = 2, . . . ,MH , q
(k)
` = q

(k+1)
`−1 e

(k+1)
`−1 /e

(k)
`−1, k = 0, . . . , 2MH − 2` − 1,

(55)

e
(k)
0 = 0 for k = 0, . . . , 2MH and q

(k)
1 = ak+1/ak for k = 0, . . . , 2MH − 1, (56)

and

a0 =
1
2
Υ(s0), ak = Υ(sk). (57)

A convergence acceleration is obtained if, on the last evaluation of the recurrence relations, d2MH z

in (51) is repaced by R2MH (z),

R2MH (z) = −h2MH

[
1 −

√
(1 + d2MH z/h2MH )

]
, (58)

where

h2MH =
1
2
[1 + z (d2MH−1 − d2MH )], (59)

giving

Â2MH = A2MH−1 + R2MH A2MH−2, B̂2MH = B2MH−1 + R2MH B2MH−2, (60)

in which case the accelerated solution at a time t is given by replacing A2MH and B2MH by Â2MH

and B̂2MH , respectively, in (50).

All the operations in equations (50) through (60) involve complex variables. Moridis [1992a]

determined that the minimum MH for an acceptable accuracy is 5 (NH = 11), and that for an
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accuracy comparable to that of the Stehfest method MH ≥ 6 (NH ≥ 13). The unique advantages

of the De Hoog formulation is that (a) it is capable of accurately inverting very steep solution

surfaces, and (b) a whole range of solutions at times t in the range [0, T ] can be obtained from a

single set of solutions Υ, i.e., equation (50) needs not be solved for each t of interest.

5. Asymptotic Verifications

AsetofFORTRANprogramswas writtentoobtainthesemianalytical solutionsbynumerically

invertingequation (35). Theseprograms, aswellas representativedatafiles, areavailableon theweb

at URL http://ccs.lbl.gov/Diffusion/. The standard parameter values used in the ensuing analysis

appear in Table 1. Both the individual and the composite parameters (i.e., D∗ and R∗) are shown.

In the following sections, only parameters different from the standard ones are mentioned. To vary

D∗, the value of D0 is adjusted, but the tortuosity factors remain unchanged (see equations (8) and

(18)). To vary R∗, only the Kd value is adjusted in equation (17).

5.1. Through-Diffusion

The closed-form analytical solution of Skagius and Neretnieks [1986a] is based on the Crank

[1975] solution, and is given by the equation

CRD =
CD

CU0
=

AL

VD

[
φD∗ t

L2 −
φR∗

6
−

2φR∗

π2

∞∑

n=1

(−1)n

n2 exp

(
−

D∗ n2 π2 t

L2 R∗

)]
, (61)

which is valid when the conditions discussed in theintroduction are met. For large t, the exponential

components in (61) become negligible and D∗ and R∗ are determined from the slope and intercept,

respectively, of the linear relationship of the CRD vs. t curve.

Figure 2 shows a comparison of CRD solutions obtained using equation (61) and of the

solutions obtained by the inversion of equation (35) under through-diffusion conditions, hereafter

referred to as the SA1 (SemiAnalytical 1) solution. The SA1 solutions of

CRU =
CU

CU0

are also shown.
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Two general cases were investigated. In case 1, CRD was determined from (61) for a through-

diffusion system with the standard parameters (Table 1). To duplicate the conditions applying to

(61), in the SA1 solution VD = VU = 20 m3 (case 1(a)). The two solutions are virtually identical,

confirming the validity of the SA1 solution under these conditions. The CRU curve indicates

practically constant upstream concentration during the duration of the diffusion, thus fulfilling the

validity conditions of (61).

When the diffusion cell reservoirs have more realistic volumes in case 1(b), i.e., VU = VD =

2 × 10−3 m3, a small divergence of the two CRD solutions is observed. Given the potential

measurement errors, it appears that the divergence of the solutions is insufficient to substantially

affect the accuracy of parameter prediction when using (61). What is more important, however,

is the realization that the current practice of parameter estimation using equation (61) is unable to

exploit the information from the variation in the value of CRU from the upstream reservoir. This

reduces the potentially available dataset by half, and produces inherently less accurate parameter

estimates. Note that the underlying assumption of a constant CU = CU0 for a valid equation (61)

is compromised.

In case 2, equation (61) is used to predict CRD when D∗ = 5 × 10−10 m2s−1 and all

the other parameters remain unchanged. The SA1 solutions of CRD and CRU in case 2(a) use

VU = VD = 2 × 10−3 m3, and show the substantial errors which (61) can introduce in the course

of a through-diffusion cell experiment. While the slope of the two solutions about the origin are the

same, the difficulty of obtaining accurate parameter estimates from (61) is obvious because (a) the

representative portion of the curve is short (only 4 days in this case) and its duration is not known

a-priori, (b) the first measurements are limited and have inherently larger measurement errors and

scattering as downstream concentrations increase from 0, (c) an attempt to reduce data scattering

and measurement errors by increasing the duration of the initial measurement period inevitably

affects the quality of the parameter predictions as more non-linear data are interpreted using a

linear model, and (d) information from the upstream reservoir (usually more reliable, as it involves

a decrease from a larger and easier measured concentration) is not considered. Of particular interest
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is the fact that the magnitude of the CRU signal can be linearly amplified by varying the absolute

and relative sizes of VD.

5.2. Reservoir Depletion and In-Diffusion

For an infinite-acting PM sample (L → ∞), the depletion of a non-radioactive species (Figure

1b) is described by [Lever, 1986]

CRU =
CU

CU0
= exp

(
A2 φ2 D∗ R∗ t

V 2
U

)
erfc

[(
A2 φ2 D∗ R∗ t

V 2
U

)1/2
]

. (62)

By setting λ = 0, VD = 0, and using the Laplace transform property

L{s−1/2 (s1/2 + B1/2)−1} = exp(B t) erfc(
√

B t), (63)

it is easy to show that, for exp(−γ L) → 0 as L → ∞, Ĉ0(= β) in equation (35) can be put in the

form of the argument of L{} in equation (63), and thus (62) is obtained from (35).

For confirmation, Figure 3 shows a comparison of the CRU evolution over time computed

from equation (62) and from SA1, i.e., the inversion of (35), for L = 100 m. In addition to the

SA1 solution, equation (35) was solved with VD = 0, and is hereafter referred to as the SA2

(SemiAnalytical 2) solution. In the SA2 solution, L = 100 m, i.e., practically infinite-acting. The

remaining parameters in the SA2 solution and in equation (62) were as in Table 1. As expected,

the three solutions coincide.

Figure 3 also shows the SA2 solutions for L = 0.05 m and L = 0.02 m, while all the other

parameters remainunchanged. Itcanbe seen thatwhen L is finite, equation (62)is initially accurate,

but becomes increasingly inaccurate once the dissolved species front reaches the x = L boundary.

6. Analysis and Discussion

6.1. Through-Diffusion With Linear Equilibrium Sorption

6.1.1. Effect of D∗. Figure 4 shows the effect of D∗ on the CRU and CRD solutions. As

expected, higher D∗ values correspond to faster changes in the concentrations of the reservoirs.
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For no sorption (R∗ = 1), at equilibrium CRU = CRD = VU/(VU + VD). In the case of Figure 4,

due to sorption (R∗ = 3), the final equilibrium concentrations CRU = CRD < VU/(VU + VD) due

to the finite mass of the dissolved species.

6.1.2. Effect of Sorption. With increasing sorption (i.e., increasing R∗), both the CRU and

CRD solution curves shift downwards (Figure 5), and the equilibrium concentration is thus reduced.

This indicates faster concentration changes in the upstream reservoir and breakthrough delays in

the downstream reservoir. The advantage of the SA1 solution of equation (35) over the traditional

parameter estimation approach [Skagius and Neretnieks, 1986a] is obvious in the case of stronger

sorption (R∗ = 100). If used alone, the rapidly declining CRU can provide faster and more accurate

parameter estimates than the delayed CRD breakthrough curve; when the two data sets are used

together, more reliable estimates are possible.

It must be pointed out that Figure 5 (and even more so Figure 7, see next section) shows

that the SA1 solution of CRU is free of the most serious disadvantage [Kirchner et al., 1996] of

the conventional method of equation (61): that the time needed to establish steady-state may be

excessively (and impractically) long for strong adsorbers [Put and Henrion, 1988]. On the contrary,

stronger sorption accelerates the rate of CRU change in SA1, thus reducing accordingly the data

aquisition time.

6.1.3. Effect of Surface Diffusion. The significance of surface diffusion in the performance

of barriers in nuclear waster isolation applications was recognized rather recently [Lever, 1986;

Jahnke, 1986; Jensen and Radke, 1988; Jahnke and Radke, 1987; Berry and Bond, 1992]. When

sorption is very strong (i.e., large R∗ values), it can be shown that the apparent diffusion coefficient

DA = D∗/R∗ → τs Ds in equation (16), i.e., surface diffusion is responsible for practically all the

diffusion despite the fact that Ds is usually substantially smaller than D0. The implication of this

realization is that the diffusion of a strongly sorbed species through a PM which supports surface

diffusion may be much faster than would be predicted on the basis of batch sorption experiments

and reasonable D0 values [Cook, 1989].

Figure 6 shows the effect of surface diffusion on the CRU and CRD solutions for R∗ = 10 and
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100, corresponding to Kd = 1.8639 × 10−3 m3kg−1 and 2.0503 × 10−2 m3kg−1, respectively.

DT is maintained constant at 10−10 m2s−1, and Ds = 0.1 D0. The CRU and CRD curves with and

without surface diffusion tend to the same equilibrium values. Although Ds is small compared to

D0, its effect on the acceleration of equilibrium in the concentration of both reservoirs is substantial

and easily measurable. It can be seen that the accelerating effects are amplified when sorption

becomes stronger. For R∗ = 100, the evolution of CRD over time indicates a substantially faster

breakthrough (by about an order of magnitude). Of particular interest is the CRU curve, which

is characterized by a steep initial decline, followed by a more gradual decrease. Although the

equilibrium concentrations with and without surface diffusion are the same, the decline in the CRU

curve with Ds = 0.1D0 is substantially faster. The advantage of using both CRU and CRD for

parameter estimation is obvious, as the surface diffusion process can be captured and described by

the combination of the two curves, and especially by the faster, large and easy-to-measure changes

in CRU . Using only the information from the CRD curve may not suffice to differentiate the pore

and surface diffusion processes [Lever, 1986].

When CU (t) = CU0 and sorption is very strong, the transport rate is controlled only by

DA ' τs Ds and does not decrease as sorption increases. This attribute has been used to identify

and measure surface diffusion [Muurinen et al., 1989]. In diffusion cells with a finite dissolved

species mass this is not the case because a significant portion of its mass is removed from solution

as it sorbs onto the PM.

The behavior of the CRU and CRD solutions under conditions of very strong sorption and

surface diffusion is shown in Figure 7. In Figure 7, the ‘u’ and ‘d’ denote CRU and CRD curves

respectively; ‘1’, ‘2’ and ‘3’ indicate a Kd = 5.1568 × 10−2 m3kg−1 (R∗ = 250), 1 m3kg−1

(e.g., Pu sorption onto Yucca Mountain vitric tuffs [Triay et al., 1996], R∗ = 4829), and 3 m3kg−1

(e.g., Cs sorption onto a Na bentonite [Torstenfelt, 1986], R∗ = 14486), respectively; ‘S’ indicates

the presence of surface diffusion, with Ds = 0.1 D0; and ‘C’ denotes the conventional solution of

equation (61).

Under theconditions ofequation (61), thecurves for R∗ = 250, 4829 and 14486 inFigure 7 are
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d1S-C, d2S-C and d3S-C, respectively, and the downstream cell is the only source of information.

These curves are obtained from the SA1 solutions by setting VU = 200 m3, i.e., CU ' CU0.

While it is possible to differentiate d1S-C, the d2S-C and d3S-C curves coincide, in agreement

with previous observations [Muurinen et al., 1989]. The conventional approach is incapable of

differentiating between different PMs once sorption becomes sufficiently high (R∗ ≥ 800) in PMs

whichsupportsurfacediffusion(e.g., bentonite-basedbarriers). Additionally, itis hamperedby long

breakthrough times, as well as the difficulties of obtaining accurate data from at low concentrations.

When a closed diffusion cell system is used and CRU is measured, it is easy to differentiate

between PMs even under conditions of surface diffusion and extremely high sorption, animpossible

task for the conventional approach. In Figure 7, the CRU curves for R∗ = 250, 4829 and 14486

with surface diffusion (i.e., curves u1S, u2S and u3S, respectively) show significant separation from

each other, in addition to being distinctively different from the corresponding curves for the same

R∗ but with no surface diffusion (curves u1, u2 and u3, respectively). The presence of surface

diffusion significantly decreases CRU under strong sorptive conditions. A distinctive feature of

these two sets of curves is that the stronger the sorption is, the faster and more pronounced is the

effect on CRU , i.e., the opposite of what occurs in conventional analysis of CRD .

Compared to the conventional breakthrough curves (i.e., d1S-C, d2S-C and d3S-C), the

behavior of CRD in closed systems shows a substantial delay. This delay increases with sorption.

Whensurface diffusionisnotconsidered, only the CRD curvefor R∗ = 250 (curved1)showsaclear

andmeasurablebreakthrough, whilenobreakthroughoccursfor R∗ = 4829 and R∗ = 14486within

the time-frame of the observation. The presence of surface diffusion accelerates the emergence of a

breakthrough (curve d1S),which occurs roughly at the sametime as for the d1S-C curvebut exhibits

a much slower rate of increase. This is due to the significantly smaller equilibrium concentration in

the downstream reservoir because of the fixed mass and the strong sorption of the dissolved species.

Note that the CRD curves for R∗ = 4829 and R∗ = 14486 with surface diffusion are shown in the

lower right corner of Figure 7 but can be barely differentiated from the x = 0 axis.

The practical implication of these realizations is that a closed system with a fixed species mass
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allows the differentiation and parameter estimation of systems with strong sorption and surface

diffusion. CRU measurements allow fast and accurate parameter estimation. As stronger sorption

increases the rate of CRU change (e.g., in u3S, CRU = 0.162 at t = 0.02 days), equation (35)

can be used to determine the absolute and relative reservoir sizes (i.e., VU and VD) for optimum

data quality within a desired sampling period. Although the CRD data can provide a useful second

data set for more reliable parameter estimates, the long time for data aquisition and the larger

measurement errors at low concentrations limit their usefulness.

It is also important to note that these results indicate that the traditional approach of evaluating

the performance of a diffusion barrier material in terms of Kd may not be relevant in the presence

of surface diffusion. A larger Kd clearly indicates stronger sorption, but this does not mean

immobilization of the dissolved species when the PM supports surface diffusion. On the contrary,

the stronger the sorption (i.e., the larger the Kd), the larger the diffusion rate will be, and practically

all of it due to the surface process. This counterintuitive observation confirms previous work on

the subject [Jahnke and Radke, 1987; Cook, 1989].

6.1.4. Effect of Immobile Water Fraction. It is obvious that the presence of an immobile

water fraction would result in lower diffusion (equation (8)) and lower sorption (equation (18))

due to the limited mass transfer of dissolved species between the mobile and immobile water pore

fractions. This is demonstrated in Figure 8, which depicts the effect of Ki and Sr on the CRU and

CRD solutions for two different Kd values.

For a low-sorbing system (Kd = 1.86×10−3 m3 kg−1), a Ki = 0.1 and Sr = 0.2 (R∗ = 1.718,

DT = 0.082 D0) shifts the CRU curve measurably upward compared to the case of Ki = 1 and Sr

= 0 (R∗ = 10, DT = 0.1 D0, i.e., when no immobile fraction is considered). This indicates a lower

rate of species depletion, and is in accordance with expectations based on the lower R∗ and DT

values. The CRD solutions, though, are practically indistinguishable, and it is doubtful whether

measurement methods are sufficiently accurate to differentiate the two.

The effect of the immobile water fraction is far more pronounced in the case of stronger

sorption (Kd = 2.05 × 10−2 m3 kg−1). A change from Ki = 1 and Sr = 0 (R∗ = 100, DT =
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0.1 D0) to Ki = 0.1 and Sr = 0.2 (R∗ = 10.72, DT = 0.082 D0) in essence reduces sorption by a

factor of about 10, and results in the significant difference between the two sets of CRU and CRD

solutions. The effect of the reduced DT is substantially smaller.

A point which must be made clearly is that the immobile fraction affects the composite terms

R∗ and D∗, which are the only ones that can be determined from the analysis of the diffusion

cell results. For a known D0 and τp = τi (from a diffusion experiment of the same PM with a

non-sorbing species), the Ki and Sr can be evaluated using both the CRU and CRD curves for

maximum accuracy and reliability.

6.1.5. Effect of Radioactive Decay. Figure 9 shows the effect of radioactive decay on the

CRU and CRD solutions for (a) a non-sorbing (R∗ = 1) species with T1/2 = 12.32 yrs (3H) and (b)

a strongly sorbing (R∗ = 250) species with T1/2 = 2.065 yrs (134Cs). The CRU and CRD curves

for the non-radioactive species with the same sorption behavior are also included for reference.

Within the duration of most diffusion experiments (≤ 1 yr), the CRU curves of the radioactive

and the non-radioactive non-sorbing species exhibit no measurable differences. The same is

observed for the CRD solutions. The differences begin to be measurable at impractically long

observation times (t ≥ 500 days). On the other hand, measurable differences are observed within a

year in the case of the strongly sorbing species with the shorter half-life, and especially in the CRU

curves.

The practical implication of these observations in diffusion cell data analysis is that radioactive

decay has to be accounted for if the half-life is significant compared to the experiment duration.

Otherwise, the data may be misinterpreted as indicating stronger apparent diffusion and/or sorption.

6.1.6. Effect of Cell Design and Geometry. Because of the finite mass of dissolved species,

the specifications of the diffusion cell can be altered in order to optimize the data quality and

aquisition. We use as an example the case of surface diffusion (Ds = 0.1D0) under conditions of

very strong sorption, i.e., R∗ = 4829 and R∗ = 14486 (see Section 5.2.3). From Figure 7, we

notice that the response of CRU (curves u2S and u3S) may be too rapid for reliable and convenient

data aquisition, and that it declines to very low (and inherently difficult to measure) levels within a
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few days, thus reducing the volume and possibly the quality of obtainable data.

Figure 10 shows the effect of adjusting the VU and VD volumes on the CRU and CRD curves.

When VU increases from 0.002 m3 (2 L) to 0.004 m3 (4 L) and VD decreases from 0.002 m3 to

0.001 m3 (1 L), both the CRU and the CRD curves shift upwards, thus providing higher readings

(easier and more accurate to measure) over a longer time. This agrees with expectations, as more

species mass is now available in the upstream reservoir, while a stronger response is expected in the

smaller downstream reservoir. Additionally, CRD measurements can be made at an earlier time,

thus reducing the duration of the experiment while providing information from both reservoirs.

Increasing VU to 0.006 (6 L) m3 while maintaining VD = 0.001 m3 shifts the CRU and CRD

curves even higher and allows better-controlled data aquisition under conditions of very rapid CRU

signal change.

Theeffectofthecross-sectionalareaof diffusionA appearsinFigure11forthesameconditions

of sorption and diffusion discussed in Figure 10, and for VU = VD = 0.002 m3. By reducing A from

0.01 m2 to 0.008 and 0.005 m2, the PM mass is reduced, and the dissolved species mass sorbed

on the PM sample is accordingly reduced. This results in the significant upward shift of the CRU

curves shown in Figure 11. The effect on the CRD curves is far less pronounced, and evident only

at later times, i.e., reducing A does not appear to advance the onset of data aquisition.

The practical implications of the analysis of Figures 10 and 11 is that manipulation of the

geometric features of the diffusion cell allows control over the duration of the experiment and the

data quality. Note that it is not necessary for VU and VD to be fixed cell specifications. It is easy to

increase VU and VD by connecting the fixed reservoirs in Figure 1(a) with external reservoirs and

maintaining liquid circulation. In this case, VU and VD in equation (35) are taken as the sums of

the fixed and external reservoir volumes.

6.2. Through-Diffusion With Linear Kinetic Sorption

In the conventional analysis of the vast majority of diffusion experiments, it is assumed that the

sorption processes are instantaneous, reversible, and represented by a linear isotherm [Shackelford,
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1991; Kirchner et al., 1993]. The importance of non-linear and kinetic sorption processes in

diffusion experiments, especially in cases of strong adsorption in nuclear waste applications, has

only recently been realized [Kirchner et al., 1996], and the existing body of literature is limited

[Smith; 1990; Kirchner et al., 1996].

In this section, we discuss through-diffusion experiments with linear kinetic sorption using

the semi-analytical SA1 solution involving the numerical inversion of the Laplace space equation

(35) and the terms defined in Sections 3.1 and 3.2. An analysis similar to that for linear equilibrium

sorption can be conducted. The following discussion is limited to an analysis of issues important

to nuclear waste applications, and their implication for the interpretation of the results of diffusion

experiments.

6.2.1. Effects of Kinetic Constant k for Varying Distribution Coefficients Kd. Figures 12,

13 and 14 show the effects of a varying k in systems with Kd = 1.8639 × 10−3, 5.1568 × 10−2

and 1 m3kg−1, respectively. When at equilibrium, these Kd’s correspond to an R∗ of 10, 250 and

4829, respectively. The effect of varying k is investigated by obtaining the SA1 solutions of CRU

and CRD from equation (35) for k = k1, k2, k3 (k1 = 10−5 s−1, k2 = 10−8 s−1, k3 = 10−10

s−1). For comparison, the solutions when VU = 200 m3 (i.e., when the upstream concentration is

kept constant) are also included in the figures, and are denoted by an asterisk for the corresponding

k (e.g., k1∗ denotes the solution when k = k1 and CU = CU0). The latter represent the anticipated

experimental observations in conventional diffusion experiments.

Figure 12 indicates that lower k values cause the CRU and CRD curves to shift upward, in

accordance with expectations. It is important to note that the effects of varying k by several orders

of magnitude are not significant when sorption is not strong. The differences between the curves

appear to become measurable for t > 200 days, i.e., near the upper limit of duration for most

diffusion experiments. Given the usual levels of experimental accuracy, it is unlikely that the CRU

and CRD curves can provide sufficient information todetermine the kinetic character of the sorption

process (as the solution curves are quite similar to those for equilibrium sorption) and to accurately

determine k and Kd. If the fact that sorption is kinetically controlled cannot be independently
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established, it is quite possible to misinterpret the measurement data by using a linear equilibrium

model.

Figure 12 also shows that it is extremely difficult to infer the kinetic character of sorption (let

alone the k values) from the CRD measurements when CU = CU0, as the curves are very close to

eachother, havenodistinguishing characteristic, and canbeeasilymisinterpreted byinappropriately

using the linear equilibrium model of equation (61). The problem persists in the stronger sorption

environment of Figures 13 and 14, where the curves for CU = CU0 indicate a slow breakthrough

and demonstrate inability to either describe the kinetic character of sorption or quantify it.

The SA1 solutions for CRU and CRD in Figures 13 and 14 demonstrate a fast response. The

curves are measurably different with varying k, and this curve differentiation increases with Kd

(Figure 14). For smaller k values, CRD (and occasionaly CRU ) demonstrates a distinctive hump

shape, caused by diffusion from the downstream reservoir back toward the PM sample as sorption

increases with time until equilibrium. This may allow the identification of sorption as kinetically

controlled, as well as the determination of k and Kd by jointly inverting both the CRU and CRD

curves. Unfortunately, this occurs at times well outside the practical time-frame of most diffusion

experiments.

The durationof most diffusion experiments is such that the CRU and CRD measurementscould

be interpreted by using either an equilibrium or a kinetic model, as the data set is insufficiently

long to capture the particularities of kinetic behavior. The choice of the model may be of critical

importance in diffusion studies for nuclear waster isolation. The inability to unequivocally identify

the sorption process within a practical time-frame necessitates an independent determination of its

equilibrium or kinetic behavior. Evidence of kinetic behavior can be provided by conducting batch

sorption experiments and analyzing the results using a linear equilibrium model. A time-variable

Kd, increasing with time (and then possibly stabilizing) is a necessary (though not sufficient)

indication of kinetically controlled sorption. Once this is established, joint inversion of the CRU

and CRD measurements allows the determination of k and Kd.

Figure 15 shows the ratio MRSW = mS/mW of the adsorbed species mass to its dissolved
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mass in the pore waters of the PM sample for the examples discussed in Figures 12 through 14.

As expected from the underlying linear kinetic model, MRSW first increases and then reaches a

maximum constant level. Stronger sorption (i.e., a larger Kd) increases MRSW and raises the level

of the plateau. A lower k shifts the rising portion of the MRSW curves downward (i.e., lower values

at the same t), and thus delays reaching the plateau.

6.2.2. Kinetically-Controlled Sorption and Surface Diffusion. The effect of surface

diffusion in PM system with kinetically controlled sorption is demonstrated in Figures 16 and

17 for Kd = 5.1568×10−2 and 1 m3kg−1, respectively. The CRU and CRD curves were obtained

for Ds = 0.1 D0, VU = 0.02 m3 (i.e., VU = 10VD), and for k = k1, k2, k3 (defined in Section

5.3.1).

Of particular interest is the oscillatory behavior of CRD (and, to a far lesser extent, of CRU ) for

k2 and k3, i.e., forslowerkineticrates. This isakintooscillatory chemicalandgeochemicalsystems,

forwhichasubstantialbodyofliteratureisavailable[ FisherandLasaga , 1981;Ortoleva, 1994]. The

oscillationsareeventually attenuated, and thesystemreachesequilibrium. For Kd = 5.1568×10−2

m3kg−1 and k = k3, the time to equilibrium is extremely long (> 106 days). When the kinetic

rate is high (k = k1), no such oscillations are observed.

A related significant item is the observation that in such systems CRD can occasionally exceed

1, indicating downstream concentrations higher than CU0. This is an intriguing observation. In

Figure 18, an analysis of the species mass in the various components of the diffusion system (i.e.,

MU , MW , MS , and MD) for the PM with Kd = 1 m3kg−1 and k = k3 (see Figure 17) indicates

that they do not exhibit a non-physical behavior and that mass balance is maintained (i.e., MT is

constant) at all times (CU0 = 1 kg · m−3).

Thermodynamic analysis of the system showed an increase in the total entropy, thus the third

law of thermodynamics is not violated. Analysis of the SA solution showed that the oscillations are

not an artifact of the numerical inversion of the Laplace space equation (35), and appear predictably

when sorption is strong. When the same problem was solved numerically using a general-purpose

simulator[Pruess, 1991]withanappropriatesolutetransportmodule[ Moridisetal .,1998], identical
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solutions were obtained.

This behavior is attributed to (a) the large species mass originally in VU = 10VD and finally in

the soil sample, (b) the behavior of the soil sample as a time-variable boundary for the downstream

reservoir, and (c) the CRD response time lag, which is controlled by the magnitude of k. Study

of Figures 17 and 18 indicate that the sorbed species mass MS increases monotonically. At the

peak CRD ' 1.2, MS is about 2 orders of magnitude larger than MW , and MD about an order of

magnitude smaller than MU . Note that at t = 104 days, the species mass in the upstream reservoir

(VU = 2 × 10−2 m3) is equal to the mass sorbed on the PM which is only L = 10−2 m across.

The ocsillations are evident in Figure 19, which shows the spatial and temporal variation of the

concentration in the pore water of the PM sample with Kd = 1 m3kg−1 and k = k3. The relative

concentration CRP = C(x)/CU0 initially follows the concentration gradient in the reservoirs.

This is later reversed, and CRP peaks at x = L and at about t = 1000 days (Figure 19a). This

cycling continues (Figure 19b), and eventually the oscillations are attenuated as the system reaches

equilibrium.

Contrary to Figure 19, the concentration of the sorbed species in Figure 20 (expressed as

FRS = F/CU0) confirms its behavior as a time-variable boundary for the downstream reservoir

as it shows practically imperceptible oscillations, very mild spatial variations across the length of

the sample, and a monotonically increasing pattern over time (which continues to equilibrium).

It appears that the concentration fluctuations are necessary to support the relatively stable FRS

imposed by the sorption kinetics and the surface diffusion. Note that at the CRP and the FRS

curves have opposite slopes when CRP oscillates, and that these oscillations do not appear to have

an effect on the slope or magnitude of FRS.

This oscillatory behavior seems to be unique to PM systems which support surface diffusion

and have kinetically controlled sorption. While this behavior is mathematically possible and was

obtained using reasonable diffusion and sorption parameters, it is not known whether such systems

occur naturally and caution should be exercized. To the author’s knowledge, no such oscillatory

behavior has been reported in the diffusion literature. That would have been unlikely, as the time
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frame for the appearance of these oscillations exceeds the duration of most diffusion experiments.

Such behavior, if it can be experimentally confirmed, could have significant implications in the

design and performance of barriers for nuclear waste isolation, as bentonite (a common barrier

material) is known to support surface diffusion [Jensen and Radke, 1986].

6.3. Through-Diffusion With Irreversible Sorption

In such a system, the solid phase acts as a sink for the dissolved species [Bear, 1979]. The SA1

equationswiththeadjustmentsdiscussedinSection3.3. canbeusedtodescribemathematically (but

not necessarily physically or chemically) a combination of sorption and precipitation as a reactant

moves through a PM, provided F can be described by equation (44) with appropriate parameters.

The analysis of such a system can be made in a manner entirely analogous to the one discussed

in Sections 6.1 and 6.2. For completeness, I include Figure 21, which shows the response of CRU

and CRD for KL = 10−5, 10−6, 10−8 and 10−10 m3kg−1s−1. It can be seen that CRU declines

to zero for all KL values, and no CRD breakthrough occurs for KL > 10−10 m3kg−1s−1. This

is due to the high values of the transfer rate constant KL, which causes the rapid removal of the

dissolved species from the solution. For KL = 10−10 m3kg−1s−1, sorption is slow compared to

diffusion, and a breakthrough is observed starting at about t = 8 days. As irreversible sorption

continues, the dissolved species is sorbed onto the PM, and eventually both CRU and CRD tend to

zero.

6.4. Reservoir-Depletion and In-Diffusion Experiments

As was discussed earlier, the reservoir-depletion and in-diffusion (SA2) solutions are a subset

of the through-diffusion (SA1) solutions, from which they are obtained by setting VD = 0. It

follows that an analysis of the SA2 solutions under (a) equilibrium, (b) linear kinetic, and (c)

irreversible sorption can be conducted in a manner analogous to the ones described in Sections

5.2, 5.3, and 5.4. It is obvious that this type of diffusion study is applicable to cases of strong

sorption. Otherwise, the very limited volume of the sample would have a limited (and potentially
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undetectable) effect on the upstream concentration.

Ofinterestistheapplicationofthesolutionofequation(35)inscopingcalculationstodetermine

theeffectofdiffusioninthetransportofradionuclides. ThecaseinvestigatedhereisthatofRetention

Basin 281-3H (hereafter referred to as the H-basin), a shallow catchment basin at the Savannah

RiverSite (SRS) of the U.S. Deprtment of Energy in South Carolina, the isolation of which provided

the initial impetus for this study. The H-basin was originally built to control contaminated runoff

from the H Reactor, and has been contaminated mainly by 137Cs and 90Sr. A detailed description

of the pond, contamination, and the prevailing conditions at the site can be found in Moridis et al.

[1996].

The pond dimensions are 60 × 36 × 2 m, and the average water depth is 0.6 m. Rainfall

in that area averages 1.15 m/year, and is assumed to replenish evaporation losses. Most of the

contamination was believed to be confined within the first 0.3-0.6 m from the basin bottom and

walls.

Assuming that the water level in the basin coincides with the groundwater level, and neglecting

advection, equation (35) can be used to determine the minimum extent (best-case scenario) of

radionuclide transport and distribution. The actual transport is expected to be higher because of

advection. Based on the volume of water inthe basin, the cross-sectional area corresponding to each

m3 of water in the basin is 1.75 m2. The soil in the H-basin area is mainly kaolinitic clay, which

has limited ion-exchange capacity [Moridis et al., 1996]. Batch sorption experiments showed that

90Sr sorption is linear, with Kd = 10−3 m3/kg [Hakem et al., 1997].

In equation (35), φ = 0.38, ρ = 2600 kgm−3, D∗ = 10−10 m2s−1, Ds = 0, Sr = 0,

VU = 1 m3, A = 1.75 m2, and L = 100 m (i.e., practically infinite). VD was set to zero (SA2

solution), although identical results are obtained for VD 6= 0 because of the very large L. For 90Sr,

T1/2 = 29.1 years, corresponding to λ = 7.5 × 10−10 s−1.

Figure 22 shows that CRU in the H-basin after 105 days (273.8 yrs) is about 5 × 10−4, which

could be substantial if CU0 (which is not yet fully determined) is high. The spatial distribution of

CRP (= C(x)/CU0) over time is shown in Figure 23, and indicates that at t = 104 days (roughly
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the time since the releases into the basin), the extent of contamination is limited to less than 1 m

from the basin bottom and walls. Note that at t = 105 days, the contamination is limited to the top

3−3.5 m from thecontact area, butits levelscould besubstantial depending on the CU0. Because of

linear sorption, the amount of sorbed species is directly proportional to CRP , and MS/MP = 3.56,

i.e., the sorbed species mass is 3.56 times larger than the mass in the pore water. This can be

easily seen in Figure 24, which shows the relative masses MRi = Mi/M0, i ≡ U,P, S, T , where

M0 = VU CU0, i.e., MT at t = 0.

6.5. Comparison of the Inversion Schemes

The solutions presented up to now were obtained by inverting equation (35) using the De Hoog

method with MH = 20 (NH = 41), ER = 10−9 and T = tob, where tob is the time of observation.

This will be referred to as the standard solution. Although the De Hoog method allows computation

of the solution over the whole range of 0 ≤ tob ≤ tmax, the accuracy deteriorates if t = tob in

equation (53) and T are not of the same order of magnitude [Moridis, 1992b]. Tominimize machine

accuracy errors as t becomes large, the unit of time in the solutions was days instead of s. The

value of MH = 20 was chosen because, in earlier tests [Moridis, 1992b], it had been determined

to successfully invert the Laplace transform of the step function (the most challenging inversion

problem available) with an error of less than 10−4 %.

The standard solution was compared to the CRU and mT solutions obtained from the inversion

of equation (35) using (a) the De Hoog method for 6 ≤ MH ≤ 22 and (b) the Stehfest algorithm

for 6 ≤ NS ≤ 22. The problem used in these comparisons was of that through diffusion with linear

equilibrium sorption (R∗ = 100) and no surface diffusion (see Section 5.2.2 and Table 1).

Figure 25 shows that for MH = 6, the absolute deviation of CRU from the standard solution

was less than 4 × 10−5 %, and that for MH = 8 a few individual solutions exhibited deviations as

t grew larger, but did not exceed 3 × 10−7 %. For MH > 8, the solutions were identical in at least

the first 8 significant digits and are not included in Figure 25. The same pattern was observed in

the study of the effect of MH on the mass balance (i.e., mT ). Compared to the standard solution,
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mT was invariable for MH > 6 over the range of time, and showed an absolute deviation of less

than 3 × 10−7 % for MH = 8.

The Stehfest inversion of equation (35) exhibits a more complicated picture. From Figure

26(a), it can be seen that the CRU solutions shows significant deviations from the standard solution

for NS = 6. These deviations decrease with an increasing NS. For NS = 14, the deviations are

less than 10−6 for t < 300 days, but increase rapidly for longer times, although they exhibits a

series of local minima. The same pattern is observed for NS = 16 in Figure 26(b), which, however,

demonstrates somewhat higher deviations that increase rapidly for t > 800 days. For NS = 18,

however, the absolute deviation fluctuates around 2 × 10−4 %, i.e., it is higher than those for

NS = 14 or NS = 16, but is relatively stable over the time range studied here. It appears that the

number of summation terms is insufficient to counteract roundoff error as t increases for NS ≤ 16.

For NS > 18, the deviations increase with NS due to larger roundoff errors [Stehfest, 1970a].

Of interest is the effect of NS on the deviations of mT from the standard solution. Figure 27(a)

includes only the curve for NS = 14 because the deviations are less than 10−7 % for 6 ≤ NS < 14.

This clearly indicates that for these low NS values, the Stehfest inversion of (35) produces solutions

which are inaccurate, but still maintain mass balance. The consequence of this observation is that

mass balance alone is an insufficient indicator of an accurate solution. For NS ≥ 16, the deviations

of MT from the standard solution, both in terms of pattern and magnitude, are remarkably similar

to that of CRU , and seems to be unaffected by t.

The implication of these results for the choice of the inversion method is that, with an

appropriate choice of parameters, both methods produce accurate solutions, which differ in the

fourth decimal place and beyond, i.e., they are practically identical. The Stehfest solution has the

additional advantage of simplicity and ease of coding, while execution speed is not a consideration

because both inversions are very fast (requiring less than 2 s to invert equation (35) at 500 tob

points). On the other hand, if very high accuracy (and especially at very low CRU and CRD levels)

is required, the Stehfest solution may not be the appropriate choice, as it oscillates about zero when

CRU , CRD < 10−6. In this case, the De Hoog inversion is a better choice.
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Regarding the parameters of the inversion schemes, a NS = 18 appears to give the best overall

performance in the Stehfest algorithm. This is the optimum value suggested by Stehfest [1970a]

for double precision arithmetic. For the De Hoog method, ER = 10−9 and T = 2 tob appear to

give excellent results, while a MH = 10 or 12 appears to be adequate for most applications, and

provides accurate, non-oscillatory CRU and CRD results at the 10−14 level. Increasing MH does

not lead to roundoff errors, but increases the accuracy of the solution.

7. Estimation of Diffusion and Sorption Parameters

Theestimation of parametersfrom experimentaldata, i.e., theinverse problem,is demonstrated

in this example. The extreme non-linearity of the solution and the number of parameters involved

(although it is possible to reduce their number by estimating the composite parameters) preclude

the use of a trial-and-error approach. The non-linear optimization (history-matching) technique

of Thomas and Hellums [1972] was coupled with the semianalytical solutions, and provided

the diffusion and sorption parameters that minimize the second norm of the deviations between

measurements and predictions.

The experimental data from a through-diffusion experiment were obtained by McKinley and

Swaminathan [1996] in their study of rock matrix diffusion of Pb and Cd through shales for the

deep injection of wastes. The particular data set used for history matching corresponded to a

shale from Du Pont’s Beaumont works in Texas, taken from a depth of 3646 ft (1111 m). As

this experiment used the conventional approach, a linear equilibrium model was assumed and only

CRD measurements were made. Using equation (61) (simplified by the omission of the exponential

terms) and the corresponding empirical determination of the slope and intercept of the CRD vs. t

curve, McKinley and Swaminathan [1996] determined that for Pb

φD∗ = 5.83 × 10−10 m2s−1 and φ R∗ = 19.2

From previous batch experiments, it had been determined that φ = 0.41 and that sorption had a

linear equilibrium isotherm with a Kb
d = 5.2 × 10−2 m3kg−1. Using this value of φ, the diffusion
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experiment yields

D∗ = 1.42 × 10−9 m2s−1 and R∗ = 46.8,

from which Kd
d = 1.225 × 10−2 m3kg−1, i.e., the Kd from the diffusion experiment is 4.25 times

smaller than that determined from the batch experiment. When these values were used in equation

(35), the SA1 solution (designated in Figure 28 as the curve with D∗, Kd from M+S) showed

significant deviation from the experimental data.

Three sets of history-matching runs were conducted. The non-varying parameters for the

history-matching iterations are shown in Table 2. In the first set, linear equilibrium sorption

was assumed, and Kd was kept fixed at the value determined from the batch experiments, i.e.,

Kd = 5.2 × 10−2 m3kg−1. The parameter allowed to vary was D0 (=D∗ for τp = 1), which

had as initial value that determined from the analysis of the diffusion experiment of McKinley and

Swaminathan [1986], i.e., D∗ = 1.42 × 10−9 m2s−1. After three iterations, the optimum fit was

obtained for D∗ = 2.875 × 10−9 m2s−1. Figure 28 shows an excellent fit between measurements

and the CRD curve obtained from the SA1 solution. Some discrepancy is observed at early times,

but at these low concentrations there is measurement uncertainty due to analytical errors.

In the second set of history-matching runs, linear equilibrium sorption was assumed, and both

D∗ and Kd were perturbed simultaneously. Their starting values were those at the end of the first

history-matching set, i.e., D∗ = 2.875 × 10−9 m2s−1 and Kd = 5.2 × 10−2 m3kg−1. After a

total of 9 iterations, the objective function was minimized for D∗ = 1.671 × 10−9 m2s−1 and

Kd = 2.465× 10−2 m3kg−1. The fit between the corresponding CRD curve and the experimental

observations is excellent. Although this curve appears to fit the data somewhat better than that from

the first history-matching set, their differences are practically negligible.

In the third of history-matching runs, a linear kinetic sorption model was assumed, and D∗

Kd and k were determined. The starting values of D∗ and Kd were those at the end of the second

history-matching set, and the initial k = 10−4 s−1. The inversion of this set was far more difficult

because of the larger number of perturbed parameters. After a total of 17 iterations, the objective

function was minimized for D∗ = 2.00 × 10−9 m2s−1, Kd = 3.218 × 10−2 m3kg−1, and
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k = 3.06 × 10−5 s−1. These parameters provide the best fit with the experimental data (lowest

value of the objective function).

A review of Figure 28 points out the weaknesses of the conventional method of parameter

estimation from through-diffusion experiments. Its empirical nature cannot be relied upon to

provide accurate estimates. Additionally, the same experimental data were matched almost equally

well with three curves representing different sorption models and involving different values of the

pertinent parameters. The conventional approach limits measurements to the downstream reservoir

(i.e., to CRD), and is incapable of resolving the ambiguities arising from non-unique solutions.

These uncertainties could be overcome if a second data set, that of CRU , were available.

The point is illustrated in Figure 29, which depicts the CRU behavior corresponding to the

CRD curves of Figure 28. It is obvious that the four curves are easily distinguishable from each

other. Had such a data set been available, it would have been possible to determine (a) the type of

sorption (equilibrium or kinetic) and (b) the corresponding parameters with a far higher degree of

certainty. The semi-analytical solution developed in this paper makes this possible.

It must be pointed out that Figure 29 also demonstrates another weakness of the conventional

approach, namely the violation of the assumption of constant CU = CU0 for equation (61) to be

valid. Because of technical difficulties, it is common practice to avoid replenishing the upstream

reservoir to maintain a constant CU , and to use only the first CRD data for analysis. These data are

inherently less accurate because of analytical errors at these low concentration levels. When larger

data sets are used, it can be seen from Figure 29 that CU exhibits a very significant decline that is

controlled by the diffusion and sorption parameters. For the curve with the fixed Kd = 5.2 × 10−2

m3kg−1, CRU declines very rapidly and reaches 0.54 at t = 20 days. Inclusion of the CRD data

points at the corresponding times contaminates the data set with substantial errors, as equation (61)

is no longer valid. The semianalytical solution proposed here is general and suffers from no such

shortcoming.

An important issue which must be addressed is that of increasing difficulty of history matching

as the number of parameters to be determined increases. The availability of CRU data set alleviates
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the problem, but if the history-matching technique is not sufficiently robust, parameter estimation

may suffer from non-uniqueness. The history-matching method of Thomas and Hellums [1972]

used in this analysis is based on the Gauss-Newton algorithm, and may be unstable in the inversion

of the strongly non-linear problems of diffusion discussed in this paper. In the author’s experience,

it is always possible to determine one parameter using this algorithm, and two parameters can be

easily determined if the starting point is close to the solution. It is possible to determine three

parameters only if the starting point is close to the solution, and it is not advisable to attempt the

simultaneous determination of more than three parameters.

To address this problem, an existing inversion package Finsterle [1997] is currently being

coupledwiththesemianalyticaldiffusionequationforautomaticparameterestimation. Thishistory-

matching package includes the Levenberg-Marquardt algorithm and simulated annealing, and has

been shown capable of determining simultaneously several parameters in extremely non-linear

problems [Finsterle and Persoff, 1997].

8. Summary and Conclusions

In this paper semianalytical solutions to the problem of diffusion and sorption in diffusion

cell experiments are developed. The PDE solved accounts for diffusion in the PM pores,

surface diffusion, mass transfer between the mobile and immobile water fractions, linear sorption

(equilibrium, kinetic or irreversible), and radioactive decay. Using Laplace transforms, analytical

solutions are developed in the Laplace space. Direct inversion of these solutions to obtain a closed-

form solution in time is notpossible, thus the numerical inversion schemes of Stehfest [1970a;b] and

of De Hoog et al. [1982] are employed. The two numerical inversion schemes are evaluated, and are

shown to produce comparable results. These semianalytical solutions make possible the analysis

of data from diffusion experiments without suffering from the shortcomings and inaccuracies of

the conventional empirical approach, which only uses information from the downstream reservoir

(i.e., CRD).

The semianalytical solutions are developed for the conditions of through-diffusion experi-
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ments, but it is shown that extension to reservoir-depletion and in-diffusion experiments is trivial,

and is accomplished by setting the downstream reservoir volume VD = 0 in the solutions. The

generality in the development of the solutions allows any length of the PM sample, and thus the

equations can be used for scoping calculations in waste containment applications.

The semi-analytical solutions are verified under limit conditions, for which closed-form

analytical solutions exist. The effects of various diffusion, sorption and geometric parameters

on the solutions are investigated.

In through-diffusion experiments and under linear equilibrium sorption, diffusion is shown

to increase with the pore diffusion coefficient. Increasing sorption shifts both the CRU and CRD

curves downward (as less species mass remains in the liquid phase), and delays breakthrough in

the downstream reservoir.

When surface diffusion is present, it is shown to account for practically all diffusion when

sorption is strong, and its effects become more pronounced as sorption (i.e., the Kd) increases. The

semianalytical solutions allow the differentiation and parameter estimation of samples with strong

sorption and surface diffusion, a task impossible in conventional analysis. An important conclusion

is that the traditional approach of evaluating the performance of a diffusion barrier material in

terms of Kd may not be relevant in the presence of surface diffusion. A larger Kd clearly indicates

stronger sorption, but this does not mean immobilization of the dissolved species when the PM

supports surface diffusion. On the contrary, the stronger the sorption (i.e., the larger the Kd), the

larger the diffusion rate will be, and practically all of it due to the surface process.

The study of the effects of the cell geometry indicates the ability to selectively amplify the

magnitude of CRU and CRD by varying the absolute and relative sizes of VU and/or VD , and by

adjusting A. This implies that manipulation of the geometric features of the diffusion cell allows

control over the duration of the experiment and the data quality.

In diffusion with linear kinetic sorption, an increasing k is shown to result in faster depletion

in the upstream reservoir and slower breakthrough curves, and increasing sorption amplifies these

effects. Of particular interest is the effect of surface diffusion in diffusionwith kinetically controlled
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sorption, which results in oscillatory CRD behavior when sorption is very strong.

The study shows that the use of the semianalytical solutions has significant advantages over

the conventional graphical approach because (a) it is not based on the often invalid assumption of

constant upstream concentration CU = CU0, and (b) doubles the amount of data (by providing

both the more sensitive CRU and the CRD measurements), from which to extract the pertinent

diffusion and sorption parameters. Thus, a larger number of parameters can be determined with

greater accuracy.

In the investigation of diffusion with linear kinetic sorption, an increasing k is shown to

result in faster depletion in the upstream reservoir and slower breakthrough curves, and increasing

sorption amplifies these effects. Of particular interest is the effect of surface diffusion in diffusion

with kinetically controlled sorption, which results in oscillatory CRD behavior. In diffusion with

irreversible sorption, the effect of KL is that of a delay, or even elimination, of breakthrough.

Asimilar approachcanbefollowedinthecaseof reservoir-depletionand/or in-diffusion, which

is a simplified option of the through-diffusion case. This solution is used for scoping calculations

of radionuclide fate and transport using data from the H-basin area of the Savannah River Site

[Moridis et al., 1996; Hakem et al., 1997].

Two numerical inversion methods of the Laplace space solutions, the Stehfest algorithm

[Stehfest, 1970a,b] and the De Hoog method [De Hoog et al., 1982], were evaluated. Both methods

produce practically identical solutions. The Stehfest solution has the additional advantage of

simplicity and ease of coding, while execution speed is not a consideration because both inversions

are very fast. On the other hand, if very high accuracy (and especially at very low CRU and CRD

levels) is required, the Stehfest solution may not be the appropriate choice, as it oscillates about

zero when CRU , CRD < 10−6. In this case, the De Hoog inversion is a better choice.

Finally, the semianalytical solution is coupled with the history-matching algorithm of Thomas

and Hellums [1972] for the estimation of the diffusion and sorption parameters of shales, using

previously published data [McKinley and Swaminathan, 1996]. In three sets of history matching

runs, (a) D∗ is obtained for a fixed Kd equal to that determined from batch experiments [McKinley
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andSwaminathan ,1996], (b)both D∗ and Kd aresimultaneouslydeterminedforalinearequilibrium

sorption model, and (c) D∗, Kd and k are simultaneously determined for a linear kinetic sorption

model. The excellent fits between observations and predictions based on the parameters from the

threehistory-matching runsareincontrast withthe significantdeviationsof thecurveobtained using

the parameters from the conventional analysis, which cannot be relied upon to provide accurate

estimates.

These results indicate both the power and accuracy of the semianalytical solution for parameter

estimation, as wellas the ambiguities that stem from using only CRD data, as the same experimental

data were matched almost equally well with three curves representing different sorption models and

involving different values of the pertinent parameters. An examination of the corresponding CRU

curves indicates that they are easily distinguishable from each other, and can resolvethe ambiguities

arising from non-unique solutions. The semi-analytical solution developed in this paper makes this

possible.

Appendix A: Alternative Boundary Equation

Equating the change in the dissolved species mass in the upstream reservoir with the mass that

crosses the x = 0 boundary and that lost due to radioactive decay, we have

−A φ

∫ t

0

[
DT

(
∂C

∂x

)

x=0
dt + DF

(
∂F

∂x

)

x=0

]
dt

= VU CU0 − VU

(
CU + λ

∫ t

0
CU dt

)
,

(A1)

where all the terms are as previously defined. For simplicity, we consider the case of linear

equilibrium sorption. Taking into account equations (18) and (21), the Laplace transform of (A1)

yields after a simple manipulation

α ω1 + β ω2 = VU CU0 , (A2)

where

ω1 = VU (s + λ) − D∗ A φγ and ω2 = VU (s + λ) + D∗ Aφ γ . (A3)
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Substituting α from equation (31) into (A2), β is determined from

β =
VU CU0

ω2 + η ω1 exp(−2γ L)
. (A4)

For linear kinetic and linear irreversible sorption, equation (A4) applies unchanged when the

appropriate D∗ and R∗ expressions are used (see Sections 3.2 and 3.3).
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Harada, M., P. L. Chambré, M. Foglia, K. Higashi, F. Iwamoto, D. Leung, D. H. Pigford, and

D. Ting, Migration of radionuclides through sorbing media, Report LBL-10500, Lawrence

Berkeley Laboratory, Berkeley, Calif., 1980.

Jahnke, F. M., Electrolyte diffusion in montmorillonite engineered barriers, Ph.D. dissertation,

Univ. of Calif., Berkeley, 1986.

Jahnke, F. M., and C. J. Radke, Electrolyte diffusion in compacted montmorillonite engineered

barriers, in Coupled Processes Associated With Nuclear Waste Repositories, pp. 287-297,

Academic Press, Orlando, 1987.

Jensen, D. J., and C. J. Radke, Cation diffusion through compacted sodium montmorillonite at

elevated temperature, J. Soil Sci., 39, 53-64, 1988.

Kirchner, G., G. Nageldinger, and R. Wellner, Modified diffusion technique for studying nonlinear



MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS 43

and kinetic sorption and desorption processes, Radiochimica Acta, 74, 189-192, 1996.

Lever, D.A., Some notes on experiments measuring diffusion of sorbed nuclides through porous

media, Report AERE-R 12321, UKAEA, Harwell Laboratory, Oxfordshire, 1986.

McKinley, M. D., and S. Swaminathan, Diffusion and sorption of lead and cadmium ions in Gulf

Coast shales, in Deep Injection Disposal of Hazardous and Industrial Waste, pp. 529-551,

Academic Press, San Diego, 1996.

Moridis, G. J., Alternative formulations of the Laplace Transform Boundary Element (LTBE)

numerical method for the solution of diffusion-type equations, in Boundary Element Technology

VII, pp. 815-833, Computational Mechanics Publications, Boston, and Elsevier Applied

Science, New York, 1992a.

Moridis, G. J., Evaluation of numerical inversion algorithms in Laplace-transform based numerical

methods for the solution of the equations of flow and transport in porous media (abstract), EOS

Trans. AGU, 73(14), 123, 1992b.

Moridis, G. J., Y.-S. Wu, and K. Pruess, EOS9nT: A TOUGH2 module for flow and solute/colloid

transport, ReportLBNL-41639 , Lawrence BerkeleyNationalLaboratory, Berkeley,Calif., 1998.

Moridis, G. J., and D. L. Reddell, The Laplace Transform Finite Difference (LTFD) method for

simulation of flow through porous media, Water Resour. Res., 27(8), 1873-1884, 1991.

Moridis, G. J., P. Persoff, J. Apps, A. James, C. Oldenburg, A. McGrath, B. Freifeld, L. Myer,

L. Pellerin, and K. Pruess, A design study for the isolation of the 281-3H retention basin at

the Savannah River Site using the Viscous Barrier Technology, Report LBNL-38920, Lawrence

Berkeley National Laboratory, Berkeley, Calif., 1996.

Muurinen, A., P. Penttilä-Hiltunen, and K. Clusheimo, Diffusion of chloride and uranium in

compacted sodium bentonite, in Scientific Basis for Nuclear Waste Management V, vol. 18,

pp. 743-748, Elsevier, New York, 1989.

Oldenburg, C., and K. Pruess, Dispersive transport dynamics in a strongly coupled groundwater-

brine flow system, Water Resour. Res., 31(2), 289-302, 1995.

Ortoleva, P. J., Geochemical Self-Organization, Oxford University Press, New York, 1994.



44 MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS
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Table 1. Standard parameters in the examples of the semianalytical solution

Parameter Value Parameter Value

VU 2 × 10−3 m3 VD 2 × 10−3 m3

A 10−2 m2 L 10−2 m

φ 0.35 ρ 2600 kgm−3

τp = τi = τs 0.1 Sr 0.0

λ 0 s−1 D0 10−9 m2s−1

DT = D∗ 10−10 m2s−1 Ds 0 m2s−1

Kd 4.14 × 10−4 m3kg−1 R∗ 3

Ki 1 KL 0 m3kg−1s−1

k 0 s−1 δ 1

MH 20 ER 10−9

T t = tob µ 0

Table 2. Fixed parameters in the history-matching example

Parameter Value Parameter Value

VU 4.906 × 10−3 m3 VD 2.76 × 10−3 m3

A 7.854 × 10−3 m2 L 10−2 m

φ 0.41 ρ 2600 kgm−3

τp = τi = τs 1 Sr 0.0

λ 0 s−1 DT = D∗ D0

Ds 0 m2s−1 Ki 1

KL 0 m3kg−1s−1 δ 1

MH 20 ER 10−9

T t = tob µ 0
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Figure 1. Diffusion cells for (a) through-diffusion experiments and (b) reservoir-depletion and/or

in-diffusion studies.
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Figure 2. Comparison of the SA1 solutions of CRD to the approximate analytical solutions of

equation (61) [Crank, 1975]. The corresponding SA1 predictions of CRU are also shown.



MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS 49

1.00

0.95

0.90

0.85

0.80

0.75

0.70

C
R

U

 (
d
im

e
n
si

o
n
le

ss
)

10008006004002000

Time (days)

 Eq.(62)
 SA1, L=100 m  
 SA2, L=100 m  

 SA2, L=0.05 m 

 SA2, L=0.02 m 

Figure 3. Comparison of the analytical solution [Lever, 1986] to (a) the SA1 solution for L = 100
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and L = 0.02 m.
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Figure 4. Effect of D∗ on the CRU and CRD solutions for R∗ = 3.
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Figure 5. Effect of sorption (variable R∗) on the CRU and CRD solutions for D∗ = 10−10 m2/s.
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Figure 6. Effect of surface diffusion on the CRU and CRD solutions for two different R∗ values.
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Figure 7. CRU and CRD behavior under conditions of very strong sorption and surface diffusion

(1: R∗ = 250, 2: R∗ = 4829, 3: R∗ = 14486, u: upstream, d: downstream, S: surface diffusion,

C: conventional technique).
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Figure 9. Effect of radioactive decay on the CRU and CRD solutions for (a) a non-sorbing
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Figure 10. Effect of the size of VU and VD on the CRU and CRD solutions in the case of strong

sorption with surface diffusion.
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Figure 12. Effect of the kinetic constant k on the CRU and CRD solutions in a PM with a

Kd = 1.8639 × 10−3 m3kg−1 (k1 = 10−5 s−1, k2 = 10−8 s−1, k3 = 10−10 s−1 ).
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Figure 13. Effect of the kinetic constant k on the CRU and CRD solutions in a PM with a

Kd = 5.1568 × 10−2 m3kg−1 (k1, k2, k3 as in Figure 12).



60 MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS

1.0

0.8

0.6

0.4

0.2

0.0

C
R

U
 o

r 
C

R
D

10
-1

10
0

10
1

10
2

10
3

10
4

Time (days)

 Kd = 1 m
3
/kg

 DT = 10
-10

 m
2
/s 

CRU, k1

CRU, k2

CRU, k3

CRD, k3

CRD, k3* 

CRD, k3* 

Figure 14. Effect of the kinetic constant k on the CRU and CRD solutions in a PM with a Kd = 1

m3kg−1 (k1, k2, k3 as in Figure 12).
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Figure 15. Evolution of the mass ratio MRSW = MS/MW over time for the combination of Kd

and k of Figures 12 through 14.
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Figure 16. Effect of the surface diffusion Ds = 0.1D0 on the CRU and CRD solutions in a PM

with a Kd = 5.1568 × 10−2 m3kg−1 (k1, k2, k3 as in Figure 12).
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Figure 17. Effect of the surface diffusion Ds = 0.1D0 on the CRU and CRD solutions in a PM

with a Kd = 1 m3kg−1 (k1, k2, k3 as in Figure 12).
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Figure 18. Mass of the dissolved species in the various components of the diffusion cell system

(i.e., MU , MW , MS , MD , MT ) under the conditions of the study for k = k3 in Figure 17.
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Figure 19. Spatial and temporal distribution of CRP = C(x)/CU0 in a PM sample with L = 10−2

m under the conditions of the study for k = k3 in Figure 17.
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Figure 20. Spatial and temporal distribution of FRS = F/CU0 in a PM sample with L = 10−2 m

under the conditions of the study for k = k3 in Figure 17.



MORIDIS: A SET OF SEMIANALYTICAL DIFFUSION SOLUTIONS FOR DIFFUSION CELLS 67

1.0

0.8

0.6

0.4

0.2

0.0

10
-1

10
0

10
1

10
2

10
3

10
4

 Time (days)

 KL = 10
-5

 m
3
/kg/s 

 KL = 10
-6

 m
3
/kg/s 

 KL = 10
-8

 m
3
/kg/s 

 KL = 10
-10

 m
3
/kg/s 

 D
T
 = 10-10 m2/s 

CRU curves 

CRD curve 

Figure21. Effect of varying KL on the CRU and CRD solutions under through-diffusionconditions

with irreversible sorption.
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Figure 22. Scoping calculations of CRU evolution over time in the example of the H-basin.
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Figure 23. CRP = C(x)/CU0 distribution over time in the PM of the H-basin example. Note that

advection is neglected.
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Figure 24. Relative masses of dissolved species in the various components of the H-basin system.
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Figure 25. Effect of the MH parameter in the De Hoog method (6 ≤ MH ≤ 22) on the deviation

(%) of the CRU and MT solutions from the standard solutions (obtained using the De Hoog method

with MH = 20). The curves for MH ≥ 10 exhibited deviations ≤ 10−7 % and are not shown.
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Figure 26. Effect of the NS parameter in the Stehfest algorithm (6 ≤ NS ≤ 22) on the deviation

(%) of CRU from the standard solution (De Hoog with MH = 20).
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Figure 27. Effect of the NS parameter in the Stehfest algorithm on the deviation (%) of MT from

the standard solution. Only the curves with deviations ≥ 10−7 % are shown.
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Figure 28. Comparison of measurements to SA1 predictions of CRD with history-matched

sorption/diffusion parameters in a ‘Beaumont 3646 ft’ sample [McKinley and Swaminathan, 1996].
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Figure 29. Predictions of CRU corresponding to the CRD curves in Figure 27.


